Introducheor +to Linear Prﬁrmming (LP):

[ Source : Tim Koushgax-d.e.n’.s lecture notes]

— Mathemakcal model for optinUzabhion of a Lnear
objective subject to Linear inequality consteaints.

Linear programming is a remarkable sweet spot between power /generality and
computational efficiency.

=
polytime solvable many interesting

problems are oktosned
os speciol cases.

— used. to solve many problems exactly
Ce.g. max-flow /min-cnt. bipartite ma.'l:d'v.'ng)
[ Total unimodularity, toral dual integrality (TPD]

— can be used +to solve wWP-hard problems
approxtmately.
(e.g. set cover, biwn packing)

L peteeministic / randomieed vounding *
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— LP Duality gives a refined wnderstanding
for many problems.
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* Consider simple case henn odL "75 "are * =

Easy : There are
a11T1 + a122 + - - - + Q1T = bl Q_xa_c'l:'\y A or O solns.

2171 + Q22T + -+ - + ATy, = bo . o .
Gaumssian elminathsn

does it in poly tame .
o (n?) oxrithmetic
Am1T1 + Am2To e 51§ AmnLn = bm EOPCéTa’D&MSJ

—either returns the soln. 6v Correctly veports
thakt "o feastble soln. 2xists.

LP is harder — There can be mMulbple Cinfinite)
feastble solubions, we need tv compute the “best’

s What is LP?

max T, + o

Ingredients of a Linear Program EXMP\&
1. Decision variables xq,...,x, € R. e, i 2
2. Linear constraints, each of the form constants T+ 229 <1
n T Z 0
Z Cj (*) [),j, To > 0.

j=1

Not allowwed.
2 .
%y » X3Xk, log Clr+X4).

where (*) could be <, >, or =.

3. A linear objective function, of the form

n a2y asy
IIlaXZ(ﬁj.’I)j a=b @ a4 b @,&5.—b
j=1 -
or ., A b & —as-b.
min Z Ci%is .
por max 2,¢ %) &S mun — 2‘37‘3
a->b

E a=btrc,cz20



° A closer view of the exampl

o Z 0
cbjective maxx) + ro 1)

direction of
/ objective functi

wajeot Yo: 41 + 19 <2

4, +x9 <2 (2)
1+ 22, <1 (3)
120 C4)
To > 0. (B)

ts

otn

Constr

constraint

Thus a feasible > thalfspace -
region is an intersection of halfspaces, the higher-dimensional analog of a polygon.? . .
Feasible regions

2. The level sets of the objective function are parallel (n — 1)-dimensional hyperplanes in = polytope /polyhedron
R™, each orthogonal to the coefficient vector ¢ of the objective function.

3. The optimal solution is the feasible point furthest in the direction of ¢ (for a maximiza-
tion problem) or —c (for a minimization problem). Equivalently, it is the last point of
intersection (traveling in the direction ¢ or —c) of a level set of the objective function
and the feasible region.

4. When there is a_.e., “corner”) of the feasible ~ OPT = verieX

region.

RS2S °
Edoe < : xo >0
LH all. For example, if we add the constraint
1+ 29 > 1 to our toy example, then there are no longer any feasible solutions. Linear 2 Aircotion of

programming algorithms correctly detect when this case occurs. " " .
/ objective function

2. i j oo for a maximization problem, 41‘1 + i) < 2
—oo for a minimization problem). Note a necessary but not sufficient condition for

this case is that the feasible region is unbounded. For example, if we dropped the
constraints 2z, + x5 < 1 and x1 + 225 < 1 from our toy example, then it would have
unbounded objective function value. Again, linear programming algorithms correctly
detect when this case occurs.

3.” as a “side” of the feasible region might
be parallel to the levels sets of the objective function. Whenever the feasible region

is bounded, however, there always exists an optimal solution that is a vertex of the
feasible region.*




- Towards LP-Duality:

cbjective  MAXT] + Tz (1) From 3eame‘\:r'\'c Vl'eraPO'I:Y\'b .
subeck 4o OPT = & for X,= 2, %=
4y +1x9 <2 (2) 7 7 7
£ x1+2i2§(1) CC” Bur $ovo do we knowy Bhat
g xlgo cj:»)) &t is optimal ?

Shas oy € Ty

4%+ Rz €2 [ MUsing (A)& (2))
1 [ ustng (2)& (57

Lusing 238 (277
Attenmpt 2!
3 \ 3
X +%Xo & \;CAX‘+7<2')+ ._-_;CK\‘!'ZXz) < Sz+

s
?.

R Hondo we fird suclh valines Y5 & 245 0

Standard WLnear program : Peimal P (P
maxicjxj — ok ™)

Matrix - vector

subject to notation :
n nrl nxy
j=1
u subje,ct' to :
D asw; <bs ) 1
= mrwn nNnA "nxl
o <
e (10) Ax <b
. x >0,
j=1
Zrpeen @ 20, (12)
This linear program has n nonnegative decision variables x1, ..., z, and m constraints (not

counting the nonnegativity constraints). The a;;’s, b;’s, and ¢;’s are all part of the input
(i.e., fixed constants).!

Goal : Derive wpper bourd on obj-
Approach : Take nonnegative Unear combrna tian of the
constraints that Ccomponentoise) deminates obj-
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upper bound

e Upshot :

OPT of (P) <

moteix notation :

7 (o) S-l’,' ATH >/ c
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vec tev

%) of (P
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S, by Yy
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Here’s the key point: the tightest upper bound on OPT is itself the optimal solution to a

linear program. Namely:

subject to

Or, in matrix-vector form:

subject to

min;biyi 'DIACZL
T’Oj"ﬁa—‘ Yv
Zailyi >

This linear program is called the dual to (P), and we sometimes denote it by (D)



max CTX

Petnadll S Duad
Ax<b
cbjective maxx; + xryg 1) x>0, mair Zy‘ + y?.
Sv..b:)eo\: o S\Ab:)zc_{'. to -
dry + x5 <2 (2) A=[4 AY + Y 2 1
\ 2
Pl mt+20<1 G v+ 2y, 2
i S A=[1.]1%]
g 120 ¢4) ¥,Y,2 0
Rec.pe —fsv CENVErSLEN °
Primal Dual
variables 1, ..., T, n constraints
m constraints variables y1, ..., Ym

objective function c

right-hand side b
max ¢! x
constraint matrix A
1th constraint is “<”
1th constraint is “>”
1th constraint is “="
Xy Z 0
Xy S 0
Tj € R

right-hand side ¢
objective function b
min b’y
constraint matrix AT
yi >0

¥i <0

y;i € R
jth constraint is “>”
jth constraint is “<”

“ ”

jth constraint is “=

Dual c'g-.
Dual

= Pevmall



Theorem 5.1 (Weak Duality) For every mazimization linear program (P) and corre-
sponding dual linear program (D),

OPT wvalue for (P) < OPT value for (D);

for every minimization linear program (P) and corresponding dual linear program (D),
OPT walue for (P)> OPT value for (D).

Y XXX XX XX PO OO0 O —
P D =

Figure 3: visualization of weak duality. X represents feasible solutions for P while O repre-
sents feasible solutions for D.

Weak duality already has some very interesting corollaries.
Corollary 5.2 Let (P),(D) be a primal-dual pair of linear programs.
(a) If the optimal objective function value of (P) is unbounded, then (D) is infeasible.
(b) If the optimal objective function value of (D) is unbounded, then (P) is infeasible.

(c) If x,y are feasible for (P),(D) and c'x = y*b, then both x and 'y are both optimal.

n
m
maximize Z CjT; mywimize Z biyi
j=1 i=1
n m
subject to Zaijxj &b, i=1,...,m subject to Zaijyi 2¢, J=1...
= i=1
g > i =1,...
x3>07 .7:17 , yli()’ ‘ 1/

2 Complementary Slackness Conditions

2.1 The Conditions
Theoen S. |
Next is a corollary of Carallars—=+: It is another sufficient (and as we’ll see later, necessary)

condition for optimality.

Corollary 2.1 (Complementary Slackness Conditions) Let (P),(D) be a primal-dual
pair of linear programs. If X,y are feasible solutions to (P),(D), and the following two
conditions hold then both x and'y are both optimal.

(1) Whenever x; # 0, y satisfies the jth constraint of (D) with equality.
(2) Whenever y; # 0, x satisfies the ith constraint of (P) with equality.

The conditions assert that no decision variable and corresponding constraint are simultane-
ously “slack” (i.e., it forbids that the decision variable is not 0 and also the constraint is not
tight).

Proof of Corollary 2.1: We prove the corollary for the case of primal and dual programs of
the form (P) and (D) in Section 1; the other cases are all the same.
The first condition implies that

Ve
Q‘\w“’“ :_ 2 €% _g ;:1: yz”z’y) T
J=r1 J=t

for each j = 1,..., n (either z; = 0 or ¢; = >, y;a;;). Hence, inequality (1) holds with

equality. Similarly, the second condition implies that

"wr n Aol
) Z Yi <j§aiﬂi> ‘—éyibi - 'DV\‘A

12) t
foreach i =1,..., m. Hence inequality (3) also holds with equality. Thus ¢’x = y”b, and

Corollary 1.1 implies that both x and y are optimal. l



2.2 Physical Interpretation

X*

Figure 2: Physical interpretation of complementary slackness. The objective function pushes
a particle in the direction ¢ until it rests at x*. Walls also exert a force on the particle, and
complementary slackness asserts that only walls touching the particle exert a force, and sum
of forces is equal to 0.

We offer the following informal physical metaphor for the complementary slackness condi-
tions, which some students find helpful (Figure 2). For a linear program of the form (P) in
Section 1, think of the objective function as exerting “force” in the direction c. This pushes
a particle in the direction c¢ (within the feasible region) until it cannot move any further in
this direction. When the particle comes to rest at position x*, the sum of the forces acting on
it must sum to 0. What else exerts force on the particle? The “walls” of the feasible region,
corresponding to the constraints. The direction of the force exerted by the ith constraint of
the form ZJ".:I a;;x; < b; is perpendicular to the wall, that is, —a;, where a; is the ith row of
the constraint matrix. We can interpret the corresponding dual variable y; as the magnitude
of the force exerted in this direction —a;. The assertion that the sum of the forces equals 0
corresponds to the equation ¢ = Y. | y;a;. The complementary slackness conditions assert
that y > 0 only when a’x = b; — that is, only the walls that the particle touches are
allowed to exert force on it.

Theorem 4.1 (Strong LP Duality) When a primal-dual pair (P),(D) of linear programs
are both feasible,
OPT for (P) = OPT for (D).

Corollary 4.2 (LP Optimality Conditions) Let X,y are feasible solutions to the primal-
dual pair (P),(D) be a = primal-dual pair, then Eollows
P strong Aualiby
x,y are both optimal if and only if c'x=y'b

iof and only if the complementary slackness conditions hold.

S Follows frem )
c,,.\',\, s\ackness condithons,

Theorem 4.4 (Farkas’s Lemma) Given a matric A € R™ " and a right-hand side b €
R™, exactly one of the following holds:
Existence of v
(i) There exists x € R™ such that x > 0 and Ax = b; tenply
Ax =b s infeasible:
(ii) There exists y € R™ such that yTA >0 and y'b < 0.



* Application / example of LP Duality:

Max - f£low in & netwoerk:

Directed. groph G = (v, E)’
source SEV, sink tev.

+Ve arc copacities c : E—RY

A flow network, with

Fnd the max —P\svo that caan be source s and sink t. The
sent feerh s o + S\Abje.c.t to : numbers next to the edge

are the capacities.
1. Copacity constraints - /,Fe_
For each arc e, the flon sent -l:bw-wa-&. e
is bounded by its capacity, f. € ce

2.Flow conservation: Vo € V\ ys.k5,
totad flovo into v = fal flow owrof v.

- Fermulate on an LP:

Add a fietitious arc of
S@b - s@b q'h—ﬁ.‘,\j.-l-e_ c.p\(o-caﬂy fnmths.

Elow — Conservatbtion =2 flon consenvabtion @ s.i too.

maximize  fis “‘-‘j
subject to  f;; < cij,zé % / (i,7) € B
. VS Coms.
( Z fﬂ N Z fw’>§ O"\ = V_}fn —f—mch holds
e

j: (JvZ)EE .7 ('LJ)EE b)":’ as
. .. Aef\'ci—\— e
f” Z O’ (Z"]) < L -?‘ON bl aw e
1N SN2 noda
{m.p\y Surplus (i
f\ow balance in ansther



MK 1. .F{S + 2‘ o. ‘fe m= ] 1= ‘1‘1 maximize Em:biyi
i=1

ece n=|e!
S t- A“‘. "‘]Vl' subject to Zaijyigcj, ji=1,...,n
' )
L. :Ft + 2’ O'SC é Cf' /v 1\ GE yi > 0, i=1,....,m
) eeE\y J ) .
minimize Z CjT;
s fiy+ 2(—1).{;)’ £0 Vv eV =
:)'. (:ja\.) 30 (h) ~ Pf subject to Zaijxj >by, di=1,...,m
j=1

eE e

fii = 0- E
) 7 s ts @ ¢,))  em
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s.t- C'F!n' "L’s) 1"?5 +C-1).P‘L—>,v 1 1?-| 6‘

V)
)
4
2
o
L

(fmertsd) dij+ B — Py = 0 © - vs
T.
A
Dv\a.\ ‘. SO 1Lo0|[tLo-10
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minimize E cijd;j
(i,5)€E

subject to  d;; —p; +p; >0, (i,j)eE T

Ps—pt21 *;k'
pi 2.0 eV

Fovr now consider dij € jo,1\ & i€ 30.1}
+* L)
dq.‘)'—?o\*'s\:ance,wcy\ oxres. let (47, P7) be an

. QP-t- solh 01; Hus
P+ — potentiols o nodes. nteger progvar.



*e

Then, BS—FL>1 = ©5=1, f=0.

>
Thas o\e—f'-‘ne.s an S-t cant (%.X%), where 97 2,
X is set of potertiol 1 nodes o

X IS 2t of potentioll O medes:
Consider an arc Cl',j) Wwithh (e x,\‘jef.
then, d{j > P-p =1 =Sdi=1

Fr are Ci,J) With 1€X.)€X or 1€X,)EX or ieR,)EX,
d—«‘j>,o ; thus Canm be sk 1 or O.
To Mmirnkmize the o],')ect&e, we Shownl ) set Ben, O.

TPiws, ob‘)zcbn}e O-,S’_ dual = muia s-t ant
Ci.e-, partithon ogf Vinte [ X, %] sk 2umbere
c? arcs Fens from X b X is UL i 32

Obsecevabien -
Any path fromn s to € ™ §
@@ Contauns at leost one edge of C-

So Adual can be \'n‘\'e;(var‘ei‘eA o 'ﬁ"ac\i'mal. s-t cunb -

The Alstance Rabels asm'%me_d. to arcs by Hre Auanl
sanh-sjs, the pvopeply that distonce Raobels on Kny

S-% Pad:\n, (S=Vo,Vi, .., Ve =kt) sun o Z 1.

et ) wt ()
2 v, 2 2 (R =Py, ) = Ps— P 24
\=0 =0



o Re\a.b.'nj max - fFlovo & - aak -

Due o copacity constraints, CAprciby c:? ary
s-t cnt s an wpper bourd o any feasible flsw.

te., Mmax-Llas £ min-ant %

T™Ts is adso evident fr'c'v\/\ veak. L?—ckuxo&}.-'tr.

max -flod £ duasl LP = integer program
Cpoimaol P) L y For sk
weak LP
Le-dualib, relaxatron

(Nete: WP bauand»
avre redundant )

var‘»”l‘s\'r\j\y, we tave s-\:*ms'nﬁem P’”OP@”’b"

max-flowd — duat LP _—  integer progvem
Cpoimaed. P) | L Fore Tk
streng ?rr\-z_jwml.
LP - duwolity Poly\/\e_a_m

=> Ma.sc--F—[m,o v ek thesrem

- How to shovwe i.r\—k-e_jr’o\.\iky cf LPe:

A totally unimodular matrix!" (TU matrix) is a matrix for which every square non-singular submatrix is unimodular.
Equivalently, every square submatrix has determinant 0, +1 or —1. A totally unimodular matrix need not be square itself. From
the definition it follows that any submatrix of a totally unimodular matrix is itself totally unimodular (TU). Furthermore it
follows that any TU matrix has only 0, +1 or -1 entries. The converse is not true, i.e., a matrix with only 0, +1 or -1 entries is
not necessarily unimodular. A matrix is TU if and only if its transpose is TU.

Totally unimodular matrices are extremely important in polyhedral combinatorics and combinatorial optimization since they
give a quick way to verify that a linear program is integral (has an integral optimum, when any optimum exists). Specifically, if
Ais TU and b is integral, then linear programs of forms like {mincz | Az > b,z > 0} or {maxcz | Az < b} have
integral optima, for any c. Hence if A is totally unimodular and b is integral, every extreme point of the feasible region (e.g.
{z | Az > b})is integral and thus the feasible region is an integral polyhedron.



In mathematical optimization, total dual integrality is a sufficient condition for the integrality of a polyhedron. Thus, the
optimization of a linear objective over the integral points of such a polyhedron can be done using techniques from linear
programming.

Alinear system Az < b, where A and b are rational, is called totally dual integral (TDI) if for any ¢ € Z" such that thereis a
feasible, bounded solution to the linear program

max CT T

Az <b,

there is an integer optimal dual solution.[M21(3]

Edmonds and Giles[?) showed that if a polyhedron P is the solution set of a TDI system Az < b, where b has all integer
entries, then every vertex of P is integer-valued. Thus, if a linear program as above is solved by the simplex algorithm, the
optimal solution returned will be integer. Further, Giles and Pulleyblank[" showed that if P is a polytope whose vertices are
all integer valued, then P is the solution set of some TDI system Ax < b, where b is integer valued.

Note that TDI is a weaker sufficient condition for integrality than total unimodularity.[“]

° Understanding complementary slackness:
— lek £* be opt primal soln (e A 0).
Ca™, P*) be opt dual solin Cmivs cntt defined by X, X)),
— Say arc (i,9) thas 1€ X e X.
then 4G =4 Ce. AY *+0
Thew c.s. JZ‘; = c.j-

— Now say arc CR, L) Romw R E X, LEX -
thew PS - Pl =-1 and Jdf, € 0,1},
Hence, dL.:L — P +Pr > 0 must be strict inedqualaily

So, ¢.s. S ££, =0.

> Aves X — X are soturated. loy -F'k- - maT\—_F\m

krcs X — X carry no floo. vnin - cate



Fox max-JlLos»o e constidey an alfzrnate L base)

on pacti. decmr\Posi‘tCm-

A'd.\/av\‘\aae,'- no meed. to 2xp\ cZHY staote conservation,
consteounts. Wil =N\ \Wave WO‘C‘L\/& Nonneg

constralrts.

Llet P denote the seof cg_ aAl s-% 'Po:tl/\s .
One can shew follodinsg o LPs are eduivalent:

max Z fr (18)
peP maximize  fis
Sub)ut o ” subject to  fi; < ¢y, (i,7) e E
Z fr <u. foralleeEK (19) Z fji_‘z fi; <0, 1€V
PEP:ecP j: (4,9)€E it (i,9)€E
total flow on e fij >0, (Z,j) ek
fp>0 for all P € P. (20)
Dual :
min Z Uele
ecE
Snbjeck 4o
Zfe >1 for all P € P (21)
eceP

l.>0 forall e € E.



A@-a;m we con show ualk ccv'ves?mf\én 4o Ut
For o fix ank (X, X)) Wit SeX, yeXx sek

0 1 f tex.,jeXx
O else

Every S-t pat o ot leant mzaae_ “n Ak D<,§<]

=
J

= 2;5 =1 3 (21) tolds.

Ob')ec_l:fva voldune = S uele = é_. ’LL.) = cuk [%,%x 7] .
eer rex
yexR
Bence, 030“&\
™Mmax -,Flcwo = duet LP — dinteger ?vosvayn
Cpoimael LP) Fore sk

* Many other in+evesh“n5 %\r\asrems/o&ﬁaﬁ-bhw\s
can be wewed ovn conseguence of LP dualits

see TR

- MArnimax Hheorenn-
notes

- \—hxnﬁa.raiw\. O\chvi‘bhms.



- Properties of extreme point solutions:
L Lau-Rawi-Singh . an 2]

» Definition 1.2.1 Let P = {z : Az = b,z > 0} C R". Then x € R" is an extreme point
“  solution of P if there does not exist a non-zero vector y € R™ such that x +y,x —y € P.

r_MR) x -9

— also knorm as vertex soln / basic feasitle soln.

Definition 2.1.1 Let P be a polytope and let x be an extreme point solution of P then
x 1s wntegral if each co-ordinate of x is an integer. The polytope P is called integral if
every extreme point of P is integral.

LP relaxabion is exact.

Then for every x € P, there exists an extreme point solution 2’ € P such that "2’ < Tz,
i.e., there is always an extreme point optimal solution.

\L Lemma 2.1.2 Let P = {x : Az > b,x > 0} and assume that min{c’z : x € P} is finite.

Basic feasible solubtion -

Consider the linear program

T

minimize cx
subject to Ax >
x > 0

By introducing slack variables s; for each constraint, we obtain an equivalent linear
program in standard form.

T

minimize (ol
subject to Az +s =
x 2
s 2

Henceforth, we study linear program in standard form: {mincz : Ax = b,z > 0}.
Without loss of generality, we can assume that A is of full row rank. If there are dependent
constraints, we can remove them without affecting the system or its optimal solution.



A subset of columns B of the constraint matrix A is called a basis if the matrix of
columns corresponding to B, i.e. Ap, is invertible. A solution z is called basic if and only
if there is a basis B such that z; = 0if j ¢ B and zp = Aglb. If in addition to being
basic, it is also feasible, i.e., Al_glb > 0, it is called a basic feasible solution for short. The
correspondence between bases and basic feasible solutions is not one to one. Indeed there
can be many bases which correspond to the same basic feasible solution. The next theorem
shows the equivalence of extreme point solutions and basic feasible solutions.

e (hy perp\ane) var (dim)
Theorem 2.1.5 Let A be a.m X n matriz with full row rank.  Then every feasible x to
P {x : Ax b,x > 0} is a basic feasible solubion if and only 3f x s an extreme poind

solution

Basic solution : Ag is mvertble . aank = vank (A)=m.
_9 Nonbasic vaxiable
So, Pu.t@—m) variables ‘o O,

Other m varmables are coled. basic vayiables .
Resulling systen is AgXg =b & if A, is Invertble.
(ts soluhorn is a basic soln, (83)

T4 oM vowiables in BS are 2 O, B~ it is

Basic ‘FeﬁSf‘a\z. solutis (BESD.
Other Wise, it s callea {n—Feasib\e soln,

If some (basic varables ave(O in BES — de?e_nemél’re,
v o ok ” " ove (SO ., — Den- Az%anzra’ce

Thrn 2.1.§ @ Basic feasible sdn = extrerme '\'_xs\r\t
oW = veviex son .

lem 1L I an extreme Pint optinmal son,

= Optimal son uses o basic feastble solution.

H Vertices
Cextraome
Panks)

£ BFS £ BS & "Ch.



. Write all basic solution to the following system and find optimal
solution. MaximizeZ=2x; +3 x;
2X1+x25 4
X1 +2x2€5 and x, x220
Convert inequalities into equality by adding slack/surplus variable
2X1 +X2451=4
X1 +2X2+5=5 and Xy, X251, 5220

Non Basic Basic Basic Associated Feasibility Objective
Variables Variables solution corner Value
point

(s1, s2) (4,5)
(x2, s2 (4, -3)
(x2, 51 {2:9,1.5)
(x1, s2 (2,3)
(x1, $1 (5,-6)
(x1, Xz (1,2)

MR 22X, + 3R
st 2R/, + Rz L4 S

7<l )KZ?/O
A

~Y

MR 27<\+%7§2."'(051’\‘OS7_

A\ 4

KA 2%, +S, =5

K(/NQ,S1,52_>/O
K Ra Sh §‘L .
" =2 o | No degen BFS.
- Z
H= Vertces n
< L BS &
ranks) 4RFS g es C;) =6

A Corners



Erample 2 : e wi A
max 27 K 1 -10 | L
7(\"\‘%2 £3 v 3
Ai—%p £0 /"_\’> (%)

,%2 20
0,3
D N

VAR 2R\ %z

R —%Ry +Rgq =
'K\,X'g_/X'3,'7<q>/O.

N
>
2. 4.6 2\
0,07 C30)

T B2 K gy

1| m%e  [¥e=ra=0 [(34,%,0.0)| es BFS nendes

Soln
Pasic Non basic Soln
Vo abe V asx, ’
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Determine the optimum solution for following LP by enumerating all the basic

solution.
Maximize Z=2X; -4 X+5 X3 -6 X4
X1 +4%3-2%x3+8x4 €2 X\ ¥ AR, 2R3+ BX4+S,=0
-X1+2X2+3x3+4x3 S1 — KN T2+ IR+ 4K+ S, =0
X1, X2, X3 ,%s 20 K, R, R3,%4, 5\,S, >o0.
Introduce slack variables in the constraints.

Cases B.V. Non-B.V. Solution Value of Z
(X1,X2,X3,X4 51,52)
(0,1/2,0,0,0,0) . -2
(8,0,3,0,0,0) 31 (Optimal)
3=51 (0,0,0,1/4,0,0).7 -1.5
2=X3= Xa=52=0 (-1,0,0,0, 3,0) Not a BFS

X3= X4=51=0 -(/2-0 0,0,0,3) 4

(0,1/2,0,0,0,0). -2

Not a part of BS Linear dependent
columns

(0,1/2,0,0,0,0) - -2
(0,1/2,0,0,0,0) " -2
(0,0,0,1/4,0,0) .~ -1.5
(0,0,1/3,0,8/3,0) 5/3=1.6
(0,0,-1,0,0, 4) Not a BFS
(0,0, 6,’1/4, 0,0).-15
(0,0,0,1/4,0,0) «-1.5

MaRr 2%, —&X,4 SXy - CRy

(0,0,0)0/7_/\) 0

:,t):’\/e_r:t«&‘,es n
C extrame £ BFS £ BS &£ "Ch.

panks) L2 8PSges £ ()15
6 Corners



" Uinear independence : 8,1, .., Vn (F0) are Lineasly,
independent thnply £ o9 £ O unless au o =0 -

The next theorem relates extreme point solutions to corresponding non-singular
columns of the constraint matrix.

Lemma 2.1.3 Let P = {x : Az > b,z > 0}. For x € P, let A~ be the submatriz of
A restricted to rows which are at equality at x, and let A7 denote the submatriz of A=
consisting of the columns corresponding to the nonzeros in x. Then x is an extreme point
solution if and only if A7 has linearly independent columns (i.e., AL has full column rank).
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st 27+ R2> 4 S
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K1 ,7%2-0
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|
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Raank Lemma: "M A
1‘
Lemma 2.1.4 (Rank Lemma) Let P = {x : Ax > b,z > 0} and let x be an extreme
point solution of P such that x; > 0 for each i. Then any mazimal number of linearly
independent tight constraints of the form A;x = b; for some row i of A equals the number
of variables.

Proof Since x; > 0 for each i, we have A, = A~. From Lemma 2.1.3 it follows that A~
has full column rank. Since the number of columns equals the number of non-zero variables
in z and row rank of any matrix equals the column rankf, we have that row rank of AT
equals the number of variables. Then any maximal number of linearly independent tight
constraints is exactly the maximal number of linearly independent rows of A= which is
exactly the row rank of A= and hence the claim follows. O

2
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* How to solve LP?

1. x is feasible for (P).
2. y is feasible for (D).

toward achieving the third.

A General Algorithm Design Paradigm

3. x,y satisfy the complementary slackness conditions (Corollary 2.1).

Pick two of these three conditions to maintain at all times, and work

* Stmplex method ( Dantzig '47]

X*

Figure 1: Illustration of a feasible set and an optimal solution z*. We know that there always

exists an optimal solution at a vertex of the feasible set, in the direction of the objective
function.

— Start frem a
“pivot” vertex

— Local seaych:
1f there is any
better p bor
ver-tex , vmoeve bthere.

Maintaun 41 & 3, works towards 2.

* Pros - fmosl:\j ?od. o p“ﬁacbu'ca‘
* Cons :

Weorst - case expenential &me

Optimal
solution

Starting

vertex _4

A system of linear inequalities
defines a polytope as a feasible
region. The simplex algorithm
begins at a starting vertex and
moves along the edges of the
polytope until it reaches the
vertex of the optimal solution.

Polyhedron of simplex algorithm
in 3D

(n-dian polytope cau fhave 2 (2M) ve,r#tée,sj



- Pros: fest polybme A0 - (Peoves LP is v P)
- wv.?&:b evenr solve (Ps it gxpcnen‘lx'a-lly "Mauny

constroLnts .
. maintins 1 &2,
- Cons : 3low Fov prachice Wworks towards 3.

Optimizabion = Feasi biliy = Separotion.

Feasible

Candidate

Separation

7

solution Oracle Output a
on a,LLQ.azd-ly 1

o e - violated

= +o the LP Q constraint

Figure 2: The responsibility of a separation oracle.

) Q It m;.cz!&\t even tandle zxpmar\t.‘a,lly mMmony
constraints . [Book by Grétschel, Levasz, Sdwijver]

Consider muln-ank rFrin ¢
Poly bme sep- oracle :
minZueEe Given L,e , _Lther —S:anf\a'lez
cel can be  or Teturns Seme patt. P
setr of ol (ampomertist S, 8¢ <. 4 or seme 14 LO.

s-t ?a-ths ec
S 6>1 forall Pe 7 (21) €
ecP ~Given A, dheck if alk £ > 0.
(. >0 for all e € E. Blse retuwen AL <LO0.

Then vun Dijkstra’s algo to
cempute shortest s-t path,
using & o edge lengths -



T4 shartest patic P tas \ensLr, <14,

return violatrd Consbraint ¢ Re L 1.
L P

Else alL st paths have Lengths > 1
> A s a feastUe solutisa.

— Separation ovracle is lﬂea.v'a\y used 1N so\v{nj
LPs o opproximation algorithwms.
W-S Bocok*
U A2 . mininwze weisfied sumn Of completion
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e To solve an LP:

step 1: OPT — FEASIB\LITY. — i;”‘:;m‘*
Replace ob) (max c™) by cTx>™M :F-'-"C-h"""
So feastble => OPT 2 M. cdos::;::)-“r

step 2: FEASIBILITY - SEPARATION

Sample sequence of iterates

N
. ; WY, /(2

A | SON LN A
S // NN R

W

7

Figure 3: The ellipsoid method first initializes a huge sphere (blue circle) that encompasses
the feasible region (yellow pentagon). If the ellipsoid center is not feasible, the separation
oracle produces a violated constraint (dashed line) that splits the ellipsoid into two regions,
one containing the feasible region and one that does not. A new ellipsoid (red oval) is drawn
that contains the feasible half-ellipsoid, and the method continues recursively.

Elementary but tedious calcu-
lations show that the volume of the current ellipsoid 1s guaranteed to shrink at a certain rate
at each iteration, and this yields a polynomial bound on the number of iterations required.
The algorithm stops when the current ellipsoid is so small that it cannot possibly contain a
feasible point (given the precision of the input data).



- Interior - point methods [ karmarkar’84])
— Works well ¢ practice.
— also runs tn polytime tn the worst case.

v central patin methods”

maximize cIx— M- f (distance between x and boundary)l,

~
barrier function

where A > 0 is a parameter and f is a “barrier function” that blows up (to +o0) as its
argument goes to 0 (e.g., log %) Initially, one sets A so big that the problem becomes easy
(when f(z) = logl, the solution is the “analytic center” of the feasible region, and can
be computed using e.g. Newton’s method). Then one gradually decreases the parameter A,
tracking the corresponding optimal point along the way. (The “central path” is the set of
optimal points as A varies from oo to 0.) When A = 0, the optimal point is an optimal
solution to the linear program, as desired.
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Example search for a solution. Blue lines show
constraints, red points show iterated solutions.



* Tntegrality %0\{: :

LP Relaxation and Rounding

Recall that many combinatorial problems of interest can be encoded as integer linear programs. A
Solving integer linear programs is in general NP-hard, so we nearly always relaz the integrality 3
requirement into a linear constraint like nonnegativity during our analysis.

In LP rounding, we will directly round the fractional LP solution to generate 2 1
an integral combinatorial solution. In most cases, this rounding will incur some loss on the solution
value, so the results from LP rounding are often approximate.

LPOpt

max y

2z + 3y < 12

1 4
Optimization Fractional 2
relax . solve round T
Problem Relaxation z* —_— (int )
mteger >
(ILP) (LP) € * * * > T
we control the A (general) integer program and its LP-
gap between the fractional optimal solution and our rounded solution to bound the gap between relaxation
the rounded solution and the integer optimal.
min P AL[‘ (o]
s P (integer if’
I ® The approximation factor is @. It is often difficult to analyze this directly, so
) 3 N . use the upper bound provided by & (LP rounding) or @ (dual fitting and primal-dual). Both of these gaps,
® P (integer optimal) however, nclude theextra gap ®, which we call theintegralty gap, whichisthe (Zupg: beteen the
@ integer and fractional optimal solutions.
L * % & 5 * The integrality gap is a structural property of the LP, so we cannot avoid it if our approximation uses
@ P* = D* (fractional optimal ) . buicular LP relaxation. Tn fact, for most of the examples we have done, the approximation ratio we
L derived was the integrality gap (modulo constant factors).
YD

max D
0

Figure 1: LP rounding solves for z*, the fractional optimal solution, and rounds it to an integer
feasible solution z. The approximation ratio is the ratio between 2 and the integer optimal solution
(@). We bound this using the ratio between Z and z* ().

5 Integrality Gap

we’ll soorn study o. few approximation algorithms for set cover et awre(logn)-
approximate. This analysis is tight in the sense that the integrality gap for the set cover linear
program is indeed (logn) (i.e. there are examples we can construct where the optimal
integer solution is (logn) times more expensive than the fractional optimal).

Definition 1. For an integer minimization problem, let OP Ty, be its integer optimal solution and
OPT* be the optimal solution to a fractional relaxation. Let the possible instances to the problem
be the set of I. The integrality gap of this relaxation of the problem is:

OPTin (1)

max

1 OPT*(I)
A similar form exists for maximization problems.

In other words, any integer approximation which relies on a bound against the fractional op-
timal of this program will incur this penalty in the approximation ratio. There are some prob-
lem /relaxation pairs for which there is no gap, however, and the LP optimal admits integer solutions;
a few examples we have already seen include maximum flow and maximum bipartite matching. In
these cases, we say that the linear program is ezact.

Finally, integrality gaps are often unconditional — they do not rely on assumptions such as
P! = NP, unlike many other approximation lower bounds (for example, lower bounds derived from
PCP theorem). However, they only affect the specific relaxation, and may not apply to other
approximation alges for the optimization problem.



* A probem can fave many c\i_ffe;r’e.n'b LP velaxations.

E-3. Bin packing £avo boo Commonly
wnse LPs
- assi%'nmex\b e

— . . Very swmoall
m&cgu.mbm Le C in-t;'_jra\ii? 5"“1’)

A (general) integer program and its LP-
relaxation

. Also SDPs ((senwdefirste \:mo:j\"am) ?z.r\ero\buie LPs

& cometimes are used +to obtosin opproxiwmaotish
Wﬁan‘bees tHhat are rot possible ‘o obtasia
v LPs.

* So ft'r\éir\ﬁ a.*(*f%@\.t L,P/S_DP velaxatim
(s cribical - HHevrarchies ;elp Jrere.

Instead of following the heuristic approach of finding inequalities that may be help-
ful for an LP or SDP, there is a more systematic (and potentially more powerful) ap-
proach lying in the use of LP or SDP hierarchies. In particular there are procedures
by Balas, Ceria, Cornuéjols [BCC93]; Lovdsz, Schrijver [LS91] (with LP-strengthening LS
and an SDP-strengthening LS. ); Sherali, Adams [SA90] or Lasserre [LasOla, Las01b]. On
the t-th level, they all use n°¥ additional variables to strengthen an initial relaxation
K ={xeR" | Ax = b} (thus the term Lift-and-Project Methods) and they all can be solved
in time n°Y. Moreover, for ¢ = n they define the integral hull K; and for any set of | S| < ¢
variables, a solution x can be written as convex combinations of vectors from K that are
integral on S.



