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Mathematical model for optimization of a linear
objective subject to linear inequality constraints

polytime solvable many interesting
problems are obtained

as special cases

used to solve many problems exactly
Ce g max flow min cut bipartite matching
Total uni modularity total dual integrality TDI

can be used to solve up hard problems
approximately
e.g set cover bin packing
Deterministic randomized pounding

fractional
integral

LP Duality gives a refined understanding
for many problems



Consider simple case when all f are

Easy There are

exactly 1 or O so1ns

Gaussian elimination
does it in poly time
oCn3 arithmetic
operations

either returns the son or correctly reports
that no feasible soln exists

LP is harder There can be multiple infinite
feasible solutions we need to compute the best

What is LP

Example

y
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A closer view of the example
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Towards LP Duality
objective i From geometric viewpoint

j
21

OPT 57 for X 3 Xz
3 But how do we know that

it is optimal
Show obj 5

7

X Xz E 4 X Xz E Z Using 4 2

jig

can we do better
using 2 333

t

Yz s ax x2 3 x 2 2 s t 2 3 I E M
Q How do we find such values 47 317

via LP duality

near program Primal LP P

obj
Matrix vector

notationin

subject to
mxn nxt mx1

Goal Derive upper bound on obj
Approach Take nonnegative linear combination of the
constraints that componentwise dominates obj



matrix notation
Find y Ym 7,0 s t

ntones
m dim
vector

Then for eveyfeasible soln see rn of P
iii

notation
fees them
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to
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Primal P Dual

objective i min Zy Yz

subject to subject to

2 A 4 I 44 Yz 71
3 y 2427 1

j ca YETI Yi 727 O
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Recipe for conversion

Dual of
Dual

Primal
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Follows from
strong duality

Followsfrom
complslacknessconditions

Existence of y
imply

Ax b is infeasible



Application example of LP Duality
Max flow in a network

biffed graph G V E

g

source S E V sink t E V
Y

Ve are capacities c E Rt

Find the max flow that can be
sent from s to t subject to
1 Capacity constraints
For each arc e the floptent through e

is bounded by its capacity te E Ce
2 Flow conservation tu e v I s t
total flow into v total flow out of v

Formulate as an LP

s s 8
Add a fictitious arc of
infinite capacity from t to s

Flow Conservation flow conservation s t too

ydij cap cons

y
flowcons
in fact holds
by as

deficit in
flowbalance
in one node

imply surplus in
flow balance in another



Max 1 fts E O

fest n 151
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forEnts dig Pj P z o o o o to its di
AT

DI i o o i o o ti o lo let

ÉÉÉ in

Ex
Intuitive understanding of the dual program
For now consider dij e 0,13 Pi E 0 1

dig distance label on arcs Let Cdt Pt be an

opt son of thisPi potentials on nodes integer program



Then PE PE 7,1 P's 1 PE 0

This defines an s t cut CX T where
X is set of potential I nodes

I is set of potential O nodes

consider an arc i j with ie X j E F
then dig 7 Pi p 1 dig 1

For arc Ci j with i ex j E X or it I JET or ie X jex
dig 7 O thus can be set 1 or 0

To minimize the objective we should set them 0

Thus Objective of dual min s t cut

i e partition of V into X IT s t number

of arcs going from X lo I is minimized

Any path from s to t in G
contains at least one edge of C

so dual can be interpreted as fractional s t cut

The distance labels assigned to arcs by the dual

satisfy the property that distance labels on any
s t path s Vo Vi Vk t sum to 7 1

I drive Ig Pri Put Ps Pt s



o Relating max flow min cut

Due to capacity constraints capacity of any
s t cut is an upper bound on any feasible flow

i e max flow min cut 0
This is also evident from weak LP duality

Max flow
primal Lp E

dud LP E integer program
t for men cut

weak LP
LP duality relaxation

Note upperbounds
are redundant

surprisingly we have stronger property

primal Lp 1
dud LP integer programmax flow

for men cut
strong
LP duality

integral
polyhedron

Max flow min cut theorem

How to show integrality of LP



Understanding complementary slackness

Let ft be opt primal son max flow
Cdt pt be opt dual soln min cut defined by X X

Say arc i j has ie X jet
then dig I i e dig 0

Then c s fig Cij
Now say arc CK e has K E I LEX
then Pet Pet 1 and die E 0 23
Hence die pet pet 7,0 must be strict inequality
so C S fie 0

Arcs X I are saturated by ft 1
APCs I X Cappy no flow

Max flow
min cut



For max flow we consider an alternate LP based
on path decomposition
Advantage no need to explicitly state conservation
constraints will still have capacity non neg
constraints

Let p denote the set of all s t
PapfheguivalentOne can show following two LPs

subject to
le

Dae

subjectto



Again we can show dual corresponds to men cut

For a fix cut X X with S E X Y EX set

lij 1 if it x je I
0 else

Every s t path has at least one edge in cut IX I

Lij I 21 holds

Objective value Enele Uj cut X I
EEE

Hence again
Max flow dual LP integer program
primal LP gong for men cut

integral
LP duality polyhedron

Many other interesting theorems algorithms
can be viewed as consequence of LP duality
minimax theorem

Hungarian algorithms Etest



Properties of extreme point solutions

Lau Ravi Singh Ch 2

t.gg
also known as vertex soln basic feasible son

Iggy
relaxation is exact

Basic feasible solution



ean hyperplanes var din

Basic solution AB is invertible rank rank A m
Nonbasic variable

so put m variables to 0
Other m variables are called basic variables

Resultingsystem is ABX b if A is invertible
its solution is a basic son Bs

If all variables in Bs are 7,0 then it is
Basic feasible solution BFS

Otherwise it is called infeasible son

If some basic variables are 0 in BFS degenerate
i all are o non degenerate

Thm 2.1.5 Basic feasible son extreme point
son vertex soln

Lem 2.1.2 F an extreme point optimal son

Optimal son uses a basic feasible solution

Vertices
extreme BFS E B S E em
points



Max 2x 3 2 U r

s t 2x Xz Id to F

X 2 2 5 I 3

Xi 270
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citingExampt 2x X2
X X2 I 3 32,1Xi Xz to ItXi X2 70

510,3
MIX 2X X2

3 F on 32,32
Xi X2 Xa O

Xi Xz Xz Xa 710

Wine I soÉasic
n x Xz xz xa o 32,32 05 Bs BFS nondes

2 Xi Xz X2 Xq 0 0,0 3,0 Bs BFS des

3 Xi X4 Xz X3 0 3 0,0 3 BS X

4 Xz X3 X Xq 0 O 0 3,0 BS BFS def
5 X2 X4 X X3 0 CO 3,0 3 BS BFS nondy
6 Xz 74 X X2 0 O O 3,0 BS BFS def

Vertices
extreme E BFS É BS I em
points
3 Corners

5 BFS 6135 E 6

For monday BFS there is one to one correspondence
between BFS vertex

But not for deg BFS

At any BFS there are n lin indep tight constraints
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Linear independence hey Oz un to are linearly
independent imply Line O unless all Li 0

rmin 2X 3 2

É c zjX 2 27,5

I 383 B 3,17

1514 I s EE o

I'sA I rank A 2 2 5

37 6 31

It A Af ftp.nidep Extreme
pointcols

Atf At z i Af Extreme
point

At At Oxo matrix Not extreme point

AtB A I 2 AF I 2 Nifty I Notextreme
point



Rank Lemma
Max

n

at hi o ti AF Rank AI 2 n

so maximal no of lin indep constraints is 2

Rank lemma basically says if variables
is n constraints is tn

we havelinnchintaintt from Atm on negativity constrainb
that gets tight in an extreme point

If all ki O all these
n constraints come from A

2

4 r

i e nontrivial constraints
y É

F

ja 3,37And the n constraints
2 so 1.27

that gets tight are

linearly independent lol i j
Is 2 5giftintinesupport size of x is s m

Aa n m nonnegativity constraints need to be satisfied
Rank lemma is one of the key ingredient
in iterative methods see Book by

Lau Ravi Singh



How to solve LP

Simplex method Dantzig 47

start from a

pivot vertex

Local search
if there is any
better neighbor
vertex more there

Maintain 1 3 works towards 2

Pros mostly good in practice
Cons worst case exponential time

Cn din polytope can have r 2n vertices



Ellipsoid method Khachiyan 793

Pros first poly time ago Proves LP is in P

might even solve LPs with exponentially many
constraints

maintains 1 2
Cons slow for practice works towards 3

Optimization Feasibility Separation

an allegedly
feasible som
n to the LP

B It might even handle exponentially many
constraints Book by Grotschel Lorasz Schrijver

consider min cut again
Given le either feasible
a I
s t efflécs or some te co
Given ed check if all lé 70
Else return le co
Then run Dijkstra'salso to
compute shortest s tpath
using lé as edgelengths



If shortest path P has length L1
return violated constraint effect

Else all s t paths have length 7,1
le is a feasible solution

separation oracle is heavily used in solving
LPs in approximation algorithms

W S Book

Ch 4.2 minimize weighted sum of completion
times on a single machine

ch 4.4 the prize collecting Steiner tree

separation problem is solved using max flow
ch 4.6 the bin packing problem
configuration LP has exponentially many variables
dual Lp has exponentially many constraints

separation problem of the dual is the knapsack
problem which can be solved using an FPTAs

using that we can solve configuration LP within
lte factor

Ch 8.3 the multicut problem
separation problem is solved using shortest path
ch 8 linear arrangement problem
Ch Il z min cost degree bounded spanning tree
separation problem is solved using max flow

Ch 11 3 survivable network design
separation problem is solved using max flow
Ch 15.2 Oblivious pouting



To solve an LP

step 1 OPT FEASIBILITY objective
Replace obj max ctx by ctx mÉ ÉÉvalue

do a binaryso feasible OPT M search

step 2 FEASIBILITY SEPARATION

e



Interior point methods Karman kan 84

works well in practice
also runs in poly time in the worst case

central path methods

maximize

x



Integrality gap

It

ALGO
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A problem can have many different LP relaxations

E S Bin packing has two commonly
used LPs

assignment LP
configuration LP YEIegTittygap

Also SDPs semidefinite program generalize LPs
sometimes are used to obtain approximation

guarantees that are not possible to obtain
via Les

So finding a right LP SDP relaxation
is critical Hierarchies help here

t ER


