Local search for k-median

Section 9.2 in Williamson-Shmoys

Local search

- Local search: starting with an arbitrary solution, compute a locally optimal solution with respect to a fixed set of operations.
- Max-cut in graph G = (V, E): Start with an arbitrary $S \subseteq V$, local search using the following operations.
 - 1. $M_S(u)$: Update $S := S \setminus \{u\}$.
 - 2. $M_{V \setminus S}(u)$: Update $S := S \cup \{u\}$.
- At a locally optimal solution, no operation will improve the cost.
- 1. For any $u \in S$, $cost(S) cost(S \setminus \{u\}) \ge 0$.
- 2. For any $u \in V \setminus S$, $cost(S) cost(S \cup \{u\}) \ge 0$.

 Idea: Each operation gives an inequality. Use them to get a bound on the cost of the solution.

- For any $u \in S$, $cost(S) cost(S \setminus \{u\}) = |N(u) \cap (V \setminus S)| |N(u) \cap S| \ge 0$
- Therefore, $2|N(u) \cap (V \setminus S)| \ge |N(u) \cap S| + |N(u) \cap (V \setminus S)| = |N(u)|$
- Similarly, for any $u \in V \setminus S$, we have $2|N(u) \cap S| \ge |N(u)|$.
- Adding all of them,

$$\sum_{u \in S} |N(u) \cap (V \setminus S)| + \sum_{u \in V \setminus S} |N(u) \cap S| \ge \frac{1}{2} \left(\sum_{u \in S} |N(u)| + \sum_{u \in V \setminus S} |N(u)| \right) = \frac{1}{2} 2m$$

$$= 2 \cos(S)$$

k-median

- Goal: open at most k facilities to minimize the service cost.
- 1. Start with an arbitrary set $S \subseteq \mathcal{F}$ of k open facilities.
- 2. While there exists a $f_1 \in S$ and $f_2 \in \mathcal{F} \setminus S$, such that $c(S \setminus \{f_1\}) \cup \{f_2\}) < c(S)$,
 - 1. Swap f_1 and f_2 , i.e., set $S := (S \setminus \{f_1\}) \cup \{f_2\}$.
- 3. Output *S*.
- Let S denote a locally optimal solution and let O denote an optimal solution. For $j \in C$, let c_j denote the service cost of j in S and let o_j denote the service cost of j in O.

Analysis

- At a locally optimal solution $c(S s^{(1)} + o^{(1)}) c(S) \ge 0$.
- Let $s^{(1)}$ be the nearest facility in S to $o^{(1)}$. Bounding increase in service cost of $S s^{(1)} + o^{(1)}$?
- Assign clients in $N(s^{(1)}) \cap N(o^{(1)})$ to $o^{(1)}$
 - For j_1 , change = $-c_{j_1} + o_{j_1}$

Swap $s^{(1)}$ and $o^{(1)}$

- Assign clients in $N(s^{(1)}) \setminus N(o^{(1)})$ to nearest facility in $S \setminus \{s^{(1)}\}$
 - For j_2 , where $s^{(2)}$ is the nearest facility in S to $o^{(2)}$. change $\leq -c_{j_2} + d(j_2, o^{(2)}) + d(o^{(2)}, s^{(2)})$ $\leq -c_{j_2} + o_{j_2} + d(o^{(2)}, s^{(1)})$ $\leq -c_{j_2} + o_{j_2} + (c_{j_2} + o_{j_2})$ $= 2o_{j_2}$

Choose swaps carefully!

Choosing the swaps

- For each $i^* \in O$, let $\eta(i^*)$ be the nearest facility in S.
- Let $R_0, R_1, R_{\geq 2} \subseteq S$ be the set of facilities such that number of facilities mapped to them by η is $0,1,\geq 2$ respectively.
- Construct the set of swaps S as follows.
 - For each $i \in R_1$, add $(i, \eta^{-1}(i))$ to S. Let $O_1 \subseteq O$ be the set of facilities matched in this step.
 - Out of $R_0 \times (O \setminus O_1)$ choose a set of swaps such that each facility in $O \setminus O_1$ appears exactly once and each facility in R_0 appears at most twice, and add all of them to S.
- $|O \setminus O_1| \le 2|R_0|$ (H.W.).

• Lemma: For each swap $(s, o) \in S$

$$0 \le c(S + o - s) - c(S) \le \sum_{j \in N(o)} (o_j - c_j) + \sum_{j \in N(s)} 2o_j$$

- New assignment
 - For each $j \in N(o)$, assign j to o.
 - For each $j \in N(s) \setminus N(o)$, assign j to $\eta(f^{O}(j))$, where $f^{O}(j)$ is the facility serving j in O.
- Observe that in the second case $\eta(f^{O}(j)) \neq s$.
 - If $s \in R_1$, then $\eta^{-1}(s) = o$.
 - If $s \in R_0$, then $\eta(f^0(j)) \neq s$.
 - If $s \in R_{\geq 2}$, then $(s,*) \notin S$.

- Change in service of cost j
 - If $j \in N(o)$, change $= -c_j + o_j$
 - If $j \in N(s) \setminus N(o)$,

change
$$\leq -c_j + d(j, f^{o}(j)) + d(f^{o}(j), \eta(f^{o}(j)))$$

 $\leq -c_j + o_j + d(f^{o}(j), s) \leq -c_j + o_j + (c_j + o_j) = 2o_j$

- Therefore
- $0 \le c(S + o s) c(S) \le \sum_{j \in N(o)} (o_j c_j) + \sum_{j \in N(s)} 2o_j$

• Summing over all swaps in S, we get

$$0 \le \sum_{(s,o) \in \mathcal{S}} \left(\sum_{j \in N(o)} (o_j - c_j) + \sum_{j \in N(s)} 2o_j \right)$$

$$\le \sum_{o \in O} \left(\sum_{j \in N(o)} o_j \right) - \sum_{o \in O} \left(\sum_{j \in N(o)} c_j \right) + 2 \sum_{(s,o) \in \mathcal{S}} \left(\sum_{j \in N(s)} o_j \right)$$

$$\le c(O) - c(S) + 2 \cdot 2 \sum_{s \in S} \left(\sum_{j \in N(s)} o_j \right)$$

$$= c(O) - c(S) + 4c(O)$$

• $c(S) \le 5c(O)$. Therefore, 5-approximation algorithm.

Running time

- Checking whether a swap exists can be done in polynomial time.
- How many swaps?
- If there is no lower bound on the decrease in cost, there may be too many iterations.
- Perform a swap operation only if the cost decreases by a factor of (1ϵ) .
 - Can be shown that this gives a $(5 + \epsilon')$ -approximation (details in the book).
 - Running time is polynomial in size of instance and $\frac{1}{\epsilon}$ (H.W.).

Other local search operations

- t-swap: Close $\leq t$ facilities in S and open the same number of facilities.
- Running time: $n^{O(t)}$
- $\left(3 + \frac{2}{t}\right)$ -approximation to k-median.

• Current best known approximation factor for k-median is 2.675 [Byrka et al. - 2017] (not based on local search).