
Probabilistically Checkable 
Proofs



3-SAT

• Given a Boolean formula, does there exist an assignment which satisfies it?
𝑥! ∨ ¬𝑥" ∨ 𝑥# ∧ 𝑥" ∨ 𝑥$ ∨ 𝑥% ∧ ¬𝑥! ∨ ¬𝑥" ∨ ¬𝑥$

• YES instance if there exists an assignment which satisfies it, else NO instance. 

• If SAT instance is a YES instance,  the satisfying assignment suffices to “prove” this. 

• Given a polynomial sized proof, a Verifier (Turing machine) can verify in polynomial 
time that the instance is a YES instance.



Proof

𝑥! ∨ ¬𝑥" ∨ 𝑥# ∧ 𝑥" ∨ 𝑥$ ∨ 𝑥% ∧ ¬𝑥! ∨ ¬𝑥" ∨ ¬𝑥$
• Proof is “11101”, i.e.,  𝑥! = 1, 𝑥" = 1, 𝑥# = 1, 𝑥$ = 0, 𝑥% = 1.
• Other proofs “10011”,…

• A verifier (Turing Machine) can verify in polynomial time that this formula is 
satisfiable. 

• Does the verifier need to read the whole proof, or can the verifier make a decision
after reading only 𝑂 1 bits of the proof?



Verifier

• Verifier can use at most 𝑟 random bits and read 𝑞 locations in the proof.
• Verifier’s decision should be correct with “good” probability.

• Prover writes down a “proof” 𝑋.
• Verifier uses the 𝑟 independent random bits to decide upon the 𝑞 random locations 
𝑙!, 𝑙", … , 𝑙& of the proof to query. 

• Verifier computes 𝑔 𝑋'! , … , 𝑋'" and accepts if it evaluates to 1 and rejects if it 
evaluates to 0.
• 𝑔: 0,1 & → 0,1 is some fixed function depending on the setting. 



Verifier

• If YES instance, then there should exist a proof that the verifier accepts with 
probability at least 𝑐.

• If NO instance, ∀ proofs verifier should accept with probability at most 𝑠. 

• PCP(,* 𝑟, 𝑞 = class of languages which have a probabilistically checkable proof with 
these parameters. 

• We would like 𝑞 = 𝑂 1 , 𝑟 = 𝑂 log 𝑛 . Polynomial length proof.
• We would like 𝑐 − 𝑠 to be “large”.



Assignment to Variables as a Proof 

• Prover gives a “satisfying assignment” to the 3-SAT instance as proof. 
• Verifier: 

• Use random bits to sample a uniform random clause from the 3-SAT instance.
• If the assignment given by the prover satisfies this clause, then Accept, else 

Reject. 

• Since there are 𝑚 clauses, choosing a random clause requires 𝑟 = 𝑂 log𝑚 .
• Since checking only one clause, 𝑞 = 3.



Assignment to Variables as a Proof 

• If 3-SAT instance is a YES instance and the prover gives a satisfying assignment of the 
instance,

𝑐 = Pr veriBier accepts = 1

• If 3-SAT instance is a NO instance, then for any proof given by the prover

𝑠 = Pr veriBier accepts ≤
𝑚 − 1
𝑚

• Therefore, 𝑐 − 𝑠 ≠ Ω 1 .



PCP!,# O(log 𝑛), 𝑂 1 ⊆ 𝑁𝑃

Fix 𝐿 ∈ PCP(,* O(log 𝑛), 𝑂 1 . Given a 𝑥 and a proof 𝑃+ that 𝑥 belongs to 𝐿.

• Enumerate all 2, possible values of the random bits and check whether ≥ 𝑐 fraction 
make the verifier accept or whether ≤ 𝑠 fraction make the verifier accept. 

• Running time is poly(𝑛) since 𝑟 = 𝑂 log 𝑛 .

• Therefore 𝐿 ∈ 𝑁𝑃.



PCP Theorem

• PCP!,* O(log 𝑛), 𝑂 1 = 𝑁𝑃 for some absolute constant 𝑠 < 1.
[Arora, Safra – 92, Arora, Lund, Motwani, Sudan, Szegedy - 92],[Dinur - 04] 



Serial repetition

• For PCP!,* 𝑟, 𝑞 , repeat the protocol 𝑘 times.
• If verifier answered Yes in all of them, then output Yes.
• If verifier answered No in even one of them, then output No.

• Number of random bits needed = 𝑘 ⋅ 𝑟
• Number of locations queried = 𝑘 ⋅ 𝑞
• Completeness = 1
• Soundness =  𝑠- (H.W.)

• Therefore, ∀𝑘 ∈ ℤ., PCP!,* 𝑟, 𝑞 ⊆ PCP!,*# 𝑘𝑟, 𝑘𝑞 .



Hardness of Approximation of Max-𝑔
• Let 𝑔: 0,1 ! → 0,1 be a fixed function.
• Max-𝑔: Given a set of 𝑛 variables and a set of 𝑚 constraints 
𝑔 𝑋'!$

, 𝑋'%$
, … , 𝑋'"$ : 𝑖 ∈ 𝑚 , compute an assignment to the variables that 

maximizes the fraction of constraints satisfied. 

• Theorem: If 3SAT ∈ PCP(,* 𝑂 log 𝑛 , 𝑂 1 with 𝑔 as the test function, then NP-
hard to obtain an approximation factor better than 𝑠/𝑐 for this problem.

• Let 𝑋 be the proof provided by the prover. Each value of the random coins 𝑅 ∼
0,1 , gives 𝑞 locations 𝑙!

/ , 𝑙"
/ , … , 𝑙&

/ . Consider the set of tests  
𝑔 𝑋'!&

, 𝑋'%&
, … , 𝑋'"&

: 𝑅 performed by the verifier.



• The probability of the verifier accepting is equal to the fraction of tests satisfied by 
the proof.

• Therefore, prover’s task can be viewed as finding an assignment to the “variables” 𝑋
such that the fraction of satisfied constraints in 𝑔 𝑋'!&

, 𝑋'%&
, … , 𝑋'"& : 𝑅 is 

maximized.

• If 3SAT instance is a YES instance, then verifier accepts with probability at least 𝑐. 
• Therefore, there exists an assignment to 𝑋 which satisfies at least 𝑐 fraction of the 

constraints in  𝑔 𝑋'!&
, 𝑋'%&

, … , 𝑋'"& : 𝑅 .

• If 3SAT instance is a NO instance, then verifier accepts with probability at most 𝑠. 
• Therefore, any assignment to 𝑋 will satisfy at most 𝑠 fraction of the constraints in  
𝑔 𝑋'!&

, 𝑋'%&
, … , 𝑋'"& : 𝑅 .



Hardness of Approximation

• Therefore, for 𝑔 𝑋'!&
, 𝑋'%&

, … , 𝑋'"& : 𝑅 , it is NP-hard to determine whether there 
is an assignment which satisfies at least 𝑐 fraction of the constraints, or whether all 
assignments will satisfy at most 𝑠 fraction of the constraints.

• Therefore, for Max-𝑔, it is NP-hard to obtain any approximation algorithm with 
approximation factor better than 𝑠/𝑐.

• Gap𝑔(,*: Given an instance of Max-𝑔 promised to be one of the two cases
1. YES: ∃ an assignment to the variables satisfying ≥ 𝑐 fraction of constraints
2. NO: ∀ assignments to the variables satisfy ≤ 𝑠 fraction of constraints

Determine which case the instance is. 



Max 3-SAT

• [Hastad 01]: For every 𝜖 > 0,  and every 𝐿 ∈ 𝑁𝑃, there is a PCP with 𝑞 = 3, 𝑐 ≥ 1 −
𝜖 and 𝑠 ≤ !

"
+ 𝜖.  Moreover, the verifier chooses indices 𝑙!, 𝑙", 𝑙# ~ 𝑚 # and 𝑏 ∼

0,1 according to some distribution and checks whether 𝑋'! + 𝑋'% + 𝑋'' =
𝑏 𝑚𝑜𝑑 2 .

• For any 𝜖 > 0, GapE3LIN!01,!%.1
is NP-hard.

• A random assignment gives !
"

approximation (verify).

• A reduction from Max-E3LIN to MaxE3SAT shows that for any 𝜖, GapE3SAT!01,().1
is 

NP-hard. [Hastad 01] also proved GapE3SAT!,().1
is NP-hard.



FGLSS Graph
(Feige, Goldwasser, Lovasz, Safra, Szegedy)

• For PCP!,* 𝑟, 𝑞 construct a graph as follows. 
• Vertices

• 𝑅 = 2, rows, each containing ≤ 2& vertices. Total number of vertices 𝑁 ≤ 2,.&.
• Vertices in each row correspond to views on the queried bits that make the 

verifier accept. 
• Edges

• Add edges between vertices that represent consistent partial assignments.

• Any row is an independent set. Two rows that query different set of indices have a 
complete bipartite graph.



• Lemma: If the graph has a clique of size 𝑀, then the probability of accepting is at 
least 𝑀/2, (H.W.).
• The partial assignment of any two vertices in the clique are consistent with each 

other. 

• There is no 1/𝑠 approximation for max-clique assuming 3SAT ∈ PCP!,* 𝑟, 𝑞 . 
• There is no 1/𝑠- approximation for max-clique assuming 3SAT ∈ PCP!,*# 𝑘𝑟, 𝑘𝑞 . 

• Theorem: ∀𝜖 > 0, there is no 1/2234!*+ 5 approximation for max-clique assuming 
NP ⊈∪678 DTIME 2234, 9 .

• Choosing 𝑘 = log6 𝑛, 𝑁 ≈ 2- ,.& = 2: 234,-! 9 .

• Gap = 1/𝑠- = 1/2: 234, 9 = 1/2: 234
,

,-! 5 . 


