
The primal-dual method
Sections 7.3 and 7.6 from Williamson-Shmoys.

Shortest 𝑠 − 𝑡 path

• Initialize 𝑦 = 0, 𝐹 = ∅.
• While there is no s-t path in 𝑉, 𝐹 do

• Let 𝐶 be the connected component in 𝑉, 𝐹
containing 𝑠.

• Increase 𝑦! until there is an edge 𝑒 ∈ 𝛿 𝐶 such
that corresponding dual constraint is tight.

• Set 𝐹 ≔ 𝐹 ∪ 𝑒 .
• Let 𝑃 be an 𝑠 − 𝑡 path in 𝑉, 𝐹 .
• Output 𝑃.

min$
!∈#

𝑐!𝑥!

Subject to

$
!∈$ %

𝑥! ≥ 1 ∀𝑆 ∈ 𝐶&,(

𝑥! ≥ 0 ∀𝑒 ∈ 𝐸

max $
%∈)!,#

𝑦%

subject to

$
%∈)!,#:!∈$ %

𝑦% ≤ 𝑐! ∀𝑒 ∈ 𝐸

𝑦& ≥ 0 ∀𝑆 ∈ 𝐶&,(

• Lemma: At any point in the algorithm, 𝐹 forms a tree containing 𝑠.
• Proof by induction (H.W.).

• Therefore, algorithm outputs an s-t path, and for each edge 𝑒 in the path, 𝑐4 =
∑5:4∈7 8 𝑦5.

&
4∈9

𝑐4 =!
!∈#

!
$:!∈& '

𝑦$ = !
$∈(!,#

𝑃 ∩ 𝛿 𝑆 𝑦$

• Lemma: For 𝑆 ∈ 𝐶8,; if 𝑦" > 0 then 𝑃 ∩ 𝛿 𝑆 = 1.

• Lemma implies that ∑#∈% 𝑐# = ∑5∈<!,# 𝑦5 ≤ 𝑂𝑃𝑇 using weak duality.

• Since no s-t path of length < 𝑂𝑃𝑇, 𝑃 must have length = 𝑂𝑃𝑇.

• Lemma: For 𝑆 ∈ 𝐶8,; if 𝑦5 > 0 then 𝑃 ∩ 𝛿 𝑆 = 1.

Proof:
• Suppose for some 𝑆 ∈ 𝐶&,(has 𝑦" > 0 and 𝑃 ∩ 𝛿 𝑆 > 1.
• There must be a sub-path 𝑃′ of 𝑃 joining two vertices in 𝑆 such that only the start

and end vertices of 𝑃′ are in 𝑆.
• At the time we increased 𝑦", 𝐹 was a tree spanning the vertices in 𝑆.
• 𝐹 ∪ 𝑃′ contains a cycle.
• This is a contradiction.

• Algorithm behaves in the same way as Dijkstra’s algorithm.

Primal-dual algorithm for facility location

• For client 𝑗, 𝑤)* can be viewed as its “contribution” to paying the opening cost of
facility 𝑖.

• For 𝑖 ∈ ℱ, define 𝑁 𝑖 ≝ 𝑗 ∈ 𝒞: 𝑣* ≥ 𝑑 𝑖, 𝑗 .

• For 𝑗 ∈ 𝒞, define 𝑁 𝑗 ≝ 𝑖 ∈ ℱ: 𝑣* ≥ 𝑑 𝑖, 𝑗 .

max$
+∈𝒞

𝑣+

Subject to
𝑣+ − 𝑤-+ ≤ 𝑑-+ ∀𝑖 ∈ ℱ, 𝑗 ∈ 𝒞

$
+∈𝒞

𝑤-+ ≤ 𝑓- ∀𝑖 ∈ ℱ

𝑤-+ ≥ 0 ∀𝑖 ∈ ℱ, 𝑗 ∈ 𝒞

min$
-∈ℱ

𝑓-𝑦- + $
+∈𝒞,-∈ℱ

𝑑-+𝑥-+

Subject to

$
-∈ℱ

𝑥-+ = 1 ∀𝑗 ∈ 𝒞

𝑥-+ ≤ 𝑦- ∀𝑖 ∈ ℱ, 𝑗 ∈ 𝒞
𝑥-+ ≥ 0 ∀𝑖 ∈ ℱ, 𝑗 ∈ 𝒞

𝑦- ≥ 0 ∀𝑖 ∈ ℱ

Algorithm
• Initialize 𝑣* = 0, 𝑤)* = 0 ∀𝑖, 𝑗, 𝑆 = 𝒞 and 𝑇 = ∅, 𝑇′ = ∅.
• While 𝑆 ≠ ∅,

1. Increase 𝑣* for all 𝑗 ∈ 𝑆 and 𝑤)* for all 𝑗 ∈ 𝑆, 𝑖 ∈ 𝑁 𝑗 until (1) 𝑣* = 𝑑 𝑖, 𝑗 for
some 𝑗 ∈ 𝑆, 𝑖 ∈ 𝑇 or (2) ∑*∈𝒞𝑤)* = 𝑓) for some 𝑖 ∉ 𝑇.

2. Case (1): 𝑣* = 𝑑 𝑖, 𝑗 for some 𝑗 ∈ 𝑆, 𝑖 ∈ 𝑇.
• Set 𝑆 ≔ 𝑆 ∖ 𝑗 .

3. Case (2): ∑*∈𝒞𝑤)* = 𝑓) for some 𝑖 ∉ 𝑇.
• Set 𝑆 ≔ 𝑆 ∖ 𝑁 𝑖 and 𝑇 ≔ 𝑇 ∪ 𝑖 .

• While 𝑇 ≠ ∅,
• Pick 𝑖 ∈ 𝑇 and set 𝑇, ≔ 𝑇, ∪ 𝑖 .
• Set 𝑇 ≔ 𝑇 ∖ ℎ ∈ 𝑇: ∃𝑗 ∈ 𝒞 such that 𝑤)* , 𝑤-* > 0 .

• Output 𝑇,.

max$
+∈𝒞

𝑣+

Subject to
𝑣+ − 𝑤-+ ≤ 𝑑-+ ∀𝑖 ∈ ℱ, 𝑗 ∈ 𝒞

$
+∈𝒞

𝑤-+ ≤ 𝑓- ∀𝑖 ∈ ℱ

𝑤-+ ≥ 0 ∀𝑖 ∈ ℱ, 𝑗 ∈ 𝒞

Algorithm

• Length=1, length=2 and length=3. 𝑓. = 1, 𝑓/ = 3, 𝑓0 = 5.

• Increase 𝑣1, 𝑣2, 𝑣3 till 𝑣1 = 𝑣2 = 𝑣3 = 1.
• Increase 𝑣1, 𝑣2, 𝑣3 and 𝑤1., 𝑤1/, 𝑤2/, 𝑤30 till 𝑣1 = 𝑣2 = 𝑣3 = 2.

• 𝑓. = 𝑤1.. Therefore, 𝑇 ≔ 𝑎 .
• 𝑁 𝑎 = 1,2 . Therefore, 𝑆 ≔ 3 .

• Increase 𝑣3 and 𝑤3/, 𝑤30 till 𝑣3 = 3.
• 𝑓/ = 𝑤1/ +𝑤2/ +𝑤3/.
• Therefore, 𝑇 ≔ 𝑎, 𝑏 and 𝑆 ≔ ∅

• 𝑇, ≔ 𝑎 .

𝑎 𝑐𝑏

1 2 3

Bounding cost of 𝑇!

• Lemma: For any facility 𝑖 ∈ 𝑇, ∑*∈𝒞𝑤)* = 𝑓) (verify).

• Each client 𝑗 ∈ 𝒞 “pays for” at most one facility in 𝑇,, i.e. there is at most one 𝑖 ∈ 𝑇,
such that 𝑤)* > 0.

Z
)∈4$

𝑓) = Z
)∈4$

Z
*∈5)

𝑤)* = Z
)∈4$

Z
*∈5)

𝑣* − 𝑑 𝑖, 𝑗

• Therefore,

Z
)∈4$

𝑓) +Z
)∈4$

Z
*∈5)

𝑑 𝑖, 𝑗 = Z
)∈4$

Z
*∈5)

𝑣*

• Lemma: If 𝑗 ∈ 𝒞 does not have a neighbor in 𝑇′, then
there exists a facility 𝑖 ∈ 𝑇′ such 𝑑 𝑖, 𝑗 ≤ 3𝑣*.

• Let ℎ ∈ 𝑇 ∖ 𝑇′ be a facility because of which we deleted 𝑗 from 𝑆.
• ℎ is not in 𝑇′ because there is another client 𝑙 ∈ 𝒞 and a facility 𝑖 ∈ 𝑇′ such that
𝑤-6, 𝑤)6 > 0.

• We will show 𝑑 ℎ, 𝑙 , 𝑑 𝑙, 𝑖 ≤ 𝑣*.

• Consider the point when we stopped increasing 𝑣*. Either (1) ℎ is already in 𝑇, or (2)
ℎ got added to 𝑇 now.

• Since 𝑤-6 > 0, either 𝑣6 had already stopped increasing or we stop increasing 𝑣6 now.
In both cases 𝑣* ≥ 𝑣6.

• Since 𝑤-6, 𝑤)6 > 0, we have 𝑑 ℎ, 𝑙 , 𝑑 𝑙, 𝑖 ≤ 𝑣6 ≤ 𝑣*.

𝑙

𝑖

𝑗

≤ 𝑣+≤ 𝑣/

≤ 𝑣/

ℎ

• Total cost

Z
)∈4$

𝑓) +Z
)∈4$

Z
*∈5)

𝑑 𝑖, 𝑗 + Z
*∈𝒞∖5 4$

𝑑 𝑖, 𝑗 = Z
)∈4$

Z
*∈5)

𝑣* + Z
*∈𝒞∖5 4$

3𝑣* ≤ 3Z
*∈𝒞

𝑣*

• 3-approximation algorithm.

