
E0 249: Approximation Algorithms March 11, 2022

Geometric Approximation - Week 3
Instructor: Arindam Khan Scribes: Anish Hebbar, Upamanyu Y

1 Introduction

This week, we’ll be using techniques like VC dimension and ε-nets, and applying them to prove approximation
guarantees. We’ll also learn about geometric packing problems, and techniques related to them.
The focus of the first half will be two problems - Geometric Set Cover and Geometric Hitting Set.

1.1 Geometric Set Cover (discrete version)

Problem statement: Given a set of m objects I (which can be weighted or unweighted) and a set of n
points P which are contained in these objects, the aim is to find the minimum weight subset S∗ ⊆ I which
covers all of P .
In the example below, the objects are unweighted circles.

Remark This turns out to be equivalent to the hitting set problem in the dual range space, which we will
come across later.

1.2 Hitting Set

Problem statement: Given a set of m objects I and a set of n points P (which can be weighted or
unweighted), the aim is to find the minimum subset S∗ ⊆ P which ’stabs’ all objects in I. That is, for any
A ∈ I, we have some p ∈ S∗ for which p ∈ A.

E0 249: Approximation Algorithms-1

We’ll see how to use VC dimension and ε-nets to obtain good approximations for these problems. The mo-
tivation behind using these techniques is the idea of sampling - estimating properties of the whole sample
space using a small set of observations. The minimum size sample required is called the sample complex-
ity. It turns out that we can capture the structure of a distribution or point set by using a small subset (an
ε-net), whose size depends on the complexity of the structure, but is independent of the size of the point set.

2 VC dimension

[Some resources for further reading on this topic are:

• Course notes for E0 234: Introduction to Randomized Algorithms [1]

• Chapter 20 of Geometric Approximation Algorithms by Har-Peled [2]

• Chapter 14 of Probability and Computing by Mitzenmacher and Upfal [3]

Definition 1 (Range space). A range space is a pair (X,R), where

• X is a finite or infinite set of points, called the ground set

• R is a family of subsets of X, called ranges.

An example is the set of closed intervals on the real line, i.e. X = R and R = {[a, b] | a, b ∈ R, a ≤ b}.

Definition 2 (Projection of a range space). Given a range space (X,R) and a set S ⊆ X, the projection of
R on S is defined as

R|S = {R ∩ S | R ∈ R} .

In the image below, X = R and R is the four intervals shown. If we take S = {2, 4}, then we can get every
subset of S in the projection:

• For R = [0, 1], R ∩ S = ∅

• For R = [1, 3], R ∩ S = {2}

• For R = [3, 5], R ∩ S = {4}

• For R = [1, 5], R ∩ S = {2, 4}.

S is said to be shattered by R if R|S = 2S (as in the above example).
If we take S = {2, 4, 6}, then it is not shattered - we cannot get the subset {2, 6}, as any interval that contains
2 and 6 must also contain 4. In general, no three points on the real line can be shattered by intervals.

E0 249: Approximation Algorithms-2

Definition 3 (VC dimension). The Vapnik-Chervonenkis (VC) dimension of a range space (X,R) is the
maximum cardinality of a set S ⊆ X shattered by R. If arbitrarily large sets are shattered by R, then the
VC dimension is infinite.

So in the example of X = R and R = the set of closed intervals on R, the VC dimension is 2 (as no 3 points
can be shattered).

Remark For the VC dimension of R to be ≥ d, we only need some set S with cardinality d which is
shattered by R. On the other hand, to show that the VC dimension is ≤ d, we need to show that all sets of
cardinality > d are not shattered by R. (In fact, it is sufficient to show that all sets of cardinality d+ 1 are
not shattered, as the subset of a shattered set is shattered).

Theorem 4 (Sauer-Shelah Theorem). For a range space (X,R) with |X| = n and VC dimension d, we have
|R| ≤ (nd).

So for a finite ground set, a low VC dimension implies that the cardinality of R is low.
For example, let X be a set of n points in R, and elements of R be intervals. Recall that the VC dimension
is 2 as no three points can be separated. An interval is defined by a pair of points, and there are n +

(
n
2

)
pairs we can choose, so we have |R| < n2.

Some examples:

Convex sets

If we take X = R2 and R = all closed convex subsets of R2, then the VC dimension is infinite. To see this,
for any n ∈ N, take Sn to be a set of n points on the circumference of a circle.

Any nonempty Y ⊆ Sn defines a convex polygon (whose vertices are the elements of Y) which contains no
elements of Sn \Y . The empty set can also be obtained as a projection, so all subsets of Sn can be obtained.
That is, Sn can be shattered for any n.

Discs

For X = R2 and R = all discs in R2, we show that the VC dimension is 3.

E0 249: Approximation Algorithms-3

Any 3 points in general position can be shattered (an example is shown above). So the VC dimension is ≥ 3.
To show that it is ≤ 3, we need to show that no set of cardinality 4 is shattered.

Let the set be P = {a, b, c, d}.
Case 1: If the convex hull of P has only 3 of the points on its boundary, say a, b, c, then d lies in the interior.
So any convex set that contains a, b and c must also contain d. So we cannot obtain the set {a, b, c}.
Case 2: Suppose the convex hull has all four points on the boundary, a, b, c, d in clockwise order. If we
have discs whose projections are {a, c} and {b, d}, then they must intersect at 4 points, which is not possible
(atmost two points of intersection are possible).

Squares and rectangles

For X = R2 and R = all axis-parallel squares in R2, the VC dimension is 3. The proof is the exact same as
that for discs; squares cannot ’cross’, i.e. cannot intersect at more than 2 points.

However, if we let R be the set of all axis-parallel rectangles in R2 instead, then some configuration of 4
points can be shattered, (as rectangles can cross each other). For 5 points, we consider the minimal rectangle
enclosing these points.

E0 249: Approximation Algorithms-4

• If all 5 points are on the boundary, then there is a set of 4 (one point on each side) that cannot be
obtained.

• If there is atleast one point on the interior, then the set of points on the boundary cannot be obtained,
for convexity reasons.

So in this case the VC dimension is 4.

In general, most simple geometric ranges have low VC dimension.

3 ε-nets

An ε-net is a combinatorial object that intersects with every range of sufficient size.

Definition 5 (combinatorial definition). Let (X,R) be a range space, and let A ⊆ X be a finite subset. A
subset N ⊆ A is a combinatorial ε-net for A if N has a nonempty intersection with every set R ∈ R such
that |R ∩A| ≥ ε|A|.

Definition 6 (probabilistic definition). Let (X,R) be a range space, and D be a probability distribution on
X. A set N ⊆ X is an ε-net for X with respect to D if for any R ∈ R such that PrD(R) ≥ ε, the set R
contains at least one point from N . That is:

∀R ∈ R, PrD(R) ≥ ε =⇒ R ∩N ̸= ∅ .

For example, let A be the unit square and letR be all closed rectangles. The set of pointsN is a combinatorial
1/4-net. Note that this corresponds to the probabilistic setting where D is the uniform distribution on A.

Theorem 7 (ε-net theorem). Let (X,R) be a range space with VC dimension d, and let D be a probability
distribution on X. For any 0 < δ, ε ≤ 1

2 , there is an m = O(dε ln
d
ε +

1
ε ln

1
δ) such that a random sample from

D of size m is an ε-net for X with probability at least 1− δ.

Notes: m does not depend on |X|. Also, the 1
ε ln

1
δ term is small, and can be treated as constant.

E0 249: Approximation Algorithms-5

Approximation for hitting set

We use the above theorem to get an O(d ln(dOPT))-approximation for hitting set on a range space with VC
dimension d.

Problem setup: X has n elements e1, . . . en, and R has m sets S1, . . . Sm.

Algorithm:

1. Guess OPT by binary search. Take ε = 1
2OPT .

2. Initialise weights w(ei) := 1 for all i ∈ [n].

3. Loop:

• Find an ε-net Nε of size O(dε ln
d
ε), using the above theorem.

• If all sets are hit, return Nε and stop.

• Else, there is some Sj for which Sj ∩ Nε = ∅. Double the weights of each element of Sj ,
i.e. assign w(ei) := 2w(ei) ∀ ei ∈ Sj .

• Goto loop.

If the algorithm terminates, then from our choice of ε we get an O(d ln(dOPT)) approximation. This is
a variant of a Multiplicative Weight Update (MWU) algorithm. Intuitively, the total weight of points is
increasing by a rate of (1 + ε), and OPT is increasing at a faster rate of (1 + 1

OPT) = (1 + 2ε). So it should
terminate quickly with a good guarantee. We prove this with the following theorem:

Theorem 8. If ∃ a hitting set of size OPT, the doubling process can happen at most O(OPT·log n
OPT) times,

and the total weight is at most n4/OPT3.

Proof. Let H be an optimal set.
For input X, say the set Sj is returned by some iteration. Then w(Sj) ≤ εw(X).
Thus in each iteration, w(X) becomes at most w(X) + w(Sj) ≤ (1 + ε)w(X).
So the total weight of X after k iterations is

w(X) ≤ n(1 + ε)k ≤ neεk [as 1 + ε ≤ eε for ε > 0]

As H is a hitting set, H ∩ Sj ̸= ∅. So atleast one element of H is doubled in every iteration. Say h ∈ H is
doubled zh times.
We use Jensen’s inequality: given pi ≥ 0 and

∑
i pi = 1, then for a convex function ϕ(x) we have

∑
i piϕ(xi) ≥

ϕ(
∑

i pixi). Take ϕ(x) = 2x and pi = 2ε for i ∈ [|H|] (note that |H| = 1/2ε). This gives us

w(H) =
∑
h∈H

2zh =
1

2ε

∑
h∈H

2ε·2zh ≥ 1

2ε
2
∑

2ε·zh ≥ 22εk/2ε .

The last inequality holds because
∑

h zh ≥ k.
As w(H) ≤ w(X), we have

(22εk)/2ε ≤ neεk ≤ n·2 3
2 εk [as e ≤ 2

3
2]

=⇒ 22εk−3εk/2 ≤ 2nε

=⇒ 22εk ≤ 2nε =⇒ εk/2 ≤ log 2nε

=⇒ k ≤ 2

ε
log(2nε) = O(OPT log

n

OPT
)

E0 249: Approximation Algorithms-6

Thus w(X) ≤ neεk ≤ ne2 log(2nε) ≤ O(n3/OPT2).

Further results
If ∃ ε-nets of size O(dε), then we can take 1

ε = Θ(OPT) and use the same argument to get an O(d)-
approximation.

• ε-nets of size O(1ε) exist for discs in R2, giving an O(d)-approximation [4].

• For rectangles, ε-nets of size O(1ε log log
1
ε) exist [5]. Taking ε = Θ(1

OPT) gives an O(OPT log logOPT)-
approximation, which is currently the best known.

• Getting an O(1) approximation for geometric hitting set/set cover for rectangles is an open problem.
Note that set cover is just the hitting set problem in the dual range space.

Definition 9. The dual range space to a range space S = (X,R) is the space S∗ = (R, X∗), where
X∗ = {Rp : p ∈ X}. Rp is the set of ranges r ∈ R that contain the point p ∈ X.

Consider the below example with disks, with the range space denoted by an incidence matrix between disks
and points. The dual range space is essentially obtained by taking the transpose of the incidence matrix.
One can also see that S∗∗ = S (dual of dual range space).

p1 p′1 p2 p3 p4 p5 p6
D1 1 1 1 1 1 0 0
D2 1 1 0 0 1 1 1
D3 1 1 1 0 0 0 1

D1 D2 D3

p1 1 1 1
p′1 1 1 1
p2 1 0 1
p3 1 0 0
p4 1 1 0
p5 0 1 0
p6 0 1 1

Lemma 10. Consider a range space (X,R) with VC-dimension d. Then the dual range space S∗ = (R, X∗)
has VC-dimension ≤ 2d+1. (See [2] or [1] for details)

The above gives us a bound on the VC-dimension of the dual range space. In particular, it shows that if the
VC-dimension of the range space is O(1) (which is true in most geometric settings), so is the VC-dimension
of the dual range space. Thus, to solve Geometric Set Cover with Rectangles, we instead solve Geometric
hitting set with dual range space of rectangles, which has VC-dimension O(1).

E0 249: Approximation Algorithms-7

LP-based approach for hitting set [6] :

Natural LP: (LP1)

min
∑
u∈X

xu = J

∑
u∈S

xu ≥ 1, ∀S ∈ R

xu ≥ 0, ∀u ∈ X

Equivalent LP: (LP2)

max ε∑
i∈S

µi ≥ ε, ∀S ∈ R∑
u∈X

µu = 1

ε, µu ≥ 0, ∀u ∈ X

LP1 clearly corresponds to the hitting set problem, with J being the size of the optimal hitting set. We can
transform it into the equivalent LP (LP2), using the transformation

ε =
1∑

u∈X xu
, µu = ε · xu ∀u ∈ X

Indeed, if J∗ and ε∗ are the optimums respectively for the two LPs, then the above equivalence transform
shows that J∗ = 1

ε∗ .

Algorithm:

• Solve LP2 to obtain µ∗, ε∗.

• Find ε∗−net H with weight(u) = µu,∀u ∈ X. As
∑

i∈S µi ≥ ε,∀S ∈ R, H is a hitting set.

Note that the above LP based approach can be naturally generalized to the weighted case, where we want
to minimize

J =
∑
u∈X

wu · xu

Application: Art Gallery Theorem
The art gallery problem is a classical visibility problem in computational geometry, where one has to guard
an art gallery (polygon) with the minimum number of guards (points that together ”see” the whole polygon).
A set S of points is said to guard a polygon if for every point p in the polygon, there is some q ∈ S such
that the line segment between p and q does not leave the polygon.

For example, 4 points are needed to cover the below polygon.

E0 249: Approximation Algorithms-8

In general, one can show that n/3 points always suffice to cover any arbitrary polygon via a colouring
argument, as triangulations of planar polygons are always 3 colourable. As seen below, simply pick all
points of a given colour to obtain a valid solution. However, the polygon can easily be seen to be covered by
2 points, so this does not necessarily achieve the optimum.

• Consider the range space S = (P,R), where R is the set of visibility polygons Vp(P), p ∈ P .

Vp(P) = {q : q ∈ P, pq ⊆ P}

Theorem 11. VC-dimension(S) = O(1) (See [2], Section 6.4 for details)

E0 249: Approximation Algorithms-9

• We want to cover the entire polygon using the minimum number of visibility polygons. But this is just
geometric set cover for the range space S.

• Using the previous algorithms discussed in this lecture, we obtain an O(logOPT) approximation algo-
rithm.

4 Rectangle Packing Problems

I think packing problems are appealing to mathematicians and computer scientists because they
seem very simple – just place these items into the container. Yet they tend to be extremely
complicated to actually solve.

- Erik Demaine, Professor at the Massachusetts Institute of Technology.

Bin packing Variant: In this setting we are given n rectangles, and we wish to pack them into minimum
number of bins (non overlapping axis - parallel packing).

• For 2D bin packing, where rectangles can be translated both vertically and horizontally, the best known
result is a 1.405 = 1 + ln(1.5) asymptotic approximation , and it is known that it has no APTAS. [7].

• In the d - dimensional case, 1.69d−1 approximation is possible [8].

• For the Guillotine variant, where there is an extra constraint that the packing must be guillotine
separable, an APTAS is known [9]. There is a conjecture that any 2D bin packing can be converted
into a guillotine separable packing, using at most 4/3 times the original number of bins, plus a constant.

• In Uniform Round-SAP (Storage allocation Problem), where rectangles can only be moved in one
direction (vertically), a (2 + ε) approximation is known, and it has been shown that there is no
APTAS. For arbitrary profiles (not just rectangles), there is an O(log log n) approximation [10].

• In Rectangle Colouring (Corresponds to rectangles being fixed), we have to find the chromatic number
for the geometric intersection graph defined by the rectangles, and an O(logOPT) approximation is
known for this case [12].

Knapsack Variant: In this setting we are given n rectangles with associated profit, and we wish to pack
maximum profit subset of rectangles into a single knapsack (non overlapping axis - parallel packing).

• For 2D knapsack, where rectangles can be translated both vertically and horizontally, the best known
result is a 1.89 approximation [13] and it remains open if there exists a PTAS.

• In the d− dimensional case, (1+ ε)3d approximation is possible [15], and it is open if there is a poly(d)
approximation, or even f(d) hardness.

• For the Guillotine variant, where there is an extra constraint that the packing must be guillotine
separable, a PPTAS [14] is known, and it remains open if a PTAS is possible.

• In Uniform SAP (Storage allocation Problem), where rectangles can only be moved in one direction
(vertically), a 1.969 approximation is known [11].

• In MWISR (Maximum weight independent set of rectangles) (Corresponds to rectangles being fixed),
we have to find the maximum weight independent set in the geometric intersection graph defined by
the rectangles, and an O(log log n) approximation is known[12] .

We will now describe a PTAS for packing squares into a 1×1 unit knapsack, in order to maximise the packed
area (Profit = area case).

Problem Statement:

E0 249: Approximation Algorithms-10

• Given: n squares I = {S1, S2, · · ·Sn}. Square Si has sidelength si.

• Goal: Find axis-parallel nonoverlapping packing of maximum profit (area) subset of squares.

We will use the following high-level strategy.

1. Start with an optimal packing P0.

2. Modify P0 to obtain a structured packing P1 such that area(P0) ≈ area(P1)

3. Find packing P2 in polynomial time such that area(P1) ≈ area(P2)

Item classification and shifting:
For some 2 constants εlarge and εsmall, define a square Si to be

• Small if si ≤ εsmall

• Large if si ≥ εlarge

• Medium if si ∈ (εsmall, εlarge)

Lemma 12. For any given ε > 0 and positive increasing function f such that f(x) < x, there exists εlarge
such that ε > εlarge > f(εlarge) = εsmall = Ωε(1), such that total area of squares with side length in
(εsmall, εlarge) is at most ε.

Proof. Take K = 1
ε , ε0 = ε. Define εi+1 = f(εi), 0 ≤ i ≤ K.

We obtain K + 1 disjoint ranges (εi, εi−1], ∀i ∈ [K + 1]. So, there exists i such that the total area of all
squares in OPT with side length in (εi, εi−1) is ≤ 1

K = ε. So set εsmall = εi, εlarge = εi−1

So, from now on we will ignore medium squares, as they contribute at most ε area to OPT.
Packing of large squares:

• By pushing all the large squares to the bottom left, we can see that the number of large squares in
OPT is at most 1

ε2 , as they don’t overlap and have sidelength atleast ε.

• The number of positions for left bottom corners of these squares is Oεlarge
(1) ≤ (1

εlarge
!) · 1

εlarge
)2. The

bound comes looking at the maximum number of large items in a chain (vertical and horizontal), and
all possible permutations of it.

• We can now brute force to find the packing in nOεlarge
(1) time by trying all possible packings of large

squares, so if all items are large we solve the problem exactly in polynomial time.

So, from now on we have ”guessed” all large squares in OPT (note that their packing in our solution might
be different from how they were packed in OPT).

Packing of small squares:
We will need to use NFD (Next-Fit-Decreasing) as a subroutine. The procedure is as follows.

E0 249: Approximation Algorithms-11

• Sort squares by height.

• Squares are packed left-justified on a level until there is insufficient space at the right to accommodate
the next rectangle

• Then we start a new level and proceed.

Lemma 13. Consider a set of squares S with sidelengths ≤ δ. If NFD cannot place any square in a rectangle
R := r1 × r2, where r1, r2 ≥ δ, then total wasted space is ≤ δ(r1 + r2)

Proof. Let l be the number of shelves in the packing, and the length of the smallest and largest square in
level i be ci, di respectively.

• Non increasing order in NFD =⇒ ci+1 ≤ di

• Total wasted part (red)

≤
l∑

i=1

(ci − di) · r1 ≤

(
l−1∑
i=1

(ci − ci+1) + cl − dl

)
· r1

≤ (c1 − dl) · r1 ≤ δ · r1

E0 249: Approximation Algorithms-12

• Total wasted part (green)

≤
l∑

i=1

d2i ≤ δ ·
l∑

i=1

di ≤ δ · r2

Corollary 14. If all squares are small, NFD will pack a total area of at least min{total area of squares, 1−
2 · εsmall}

Using the above corollary, we immediately get a 2+ ε approximation by packing only large or small squares,
and then taking the best packing.

PTAS using Grid - decomposition

• Pack large squares in OPT using brute force.

• Extend their edges to create a grid. Each square creates 2 gridlines vertically and horizontally. So, we
get ≤ (2 ·Nlarge + 2)2 = β = Oεlarge

(1) many grid cells, where Nlarge is the number of large items.

• For cell Q := r1 × r2, if r1, r2 ≥ 1
ε · εsmall, start packing small rectangles in Q by NFD. Else ignore cell

Q.

• By the lemma on wasted space in NFD, either we pack all the small items of the total wasted space is

≤ β · 1
ε
· εsmall + β · 2εsmall = β(

1

ε
+ 2)εsmall

As an ignored cell can have maximum area ≤ 1
ε · εsmall, and at most 2 · εsmall area can be wasted in a

packed cell. We can now choose f such that

β(
1

ε
+ 2)εsmall ≤ ε ⇐⇒ εsmall ≤

ε2

1 + 2ε
Oεlarge

(1)

• Then, we have only wasted at most ε area, giving us a PTAS.

Variants of square packing:

• For General square packing in 2D knapsack, there is a PTAS [16], and an EPTAS [17]

• For d−dimensional cube packing into d−dimensional knapsack, d > 2, a PTAS is known [14].

E0 249: Approximation Algorithms-13

• An open problem of Meir and Moser asks if the squares of sidelength 1/n for n ≥ 1 can be packed

perfectly into a square of are
∑∞

i=1
1
n2 = π2

6 . It is known that this can be done for all squares of
sidelength n−t, 1

2 < t < 1, n ≥ n0, for any n0 sufficiently large depending on t. (In this case we need
to pack perfectly into a square of area

∑∞
i=n0

1
n2t) [18].

References

[1] “Course notes for E0 234: Introduction to Randomized Algorithms.” [Online]. Available:
https://www.csa.iisc.ac.in/∼arindamkhan/courses/RandAlgo21/RandAlgo.html#lectures

[2] S. Har-peled, “Geometric Approximation Algorithms,” 2008. [Online]. Available: https://sarielhp.org/
book/

[3] M. Mitzenmacher and E. Upfal, “Probability and Computing,” in Probability and Computing, 2005.

[4] J. Matousek, E. Welzl, and R. Seidel, “How to net a lot with little: small ε-nets for disks and halfspaces,”
pp. 16–22, 1990.

[5] B. Aronov, E. Ezra, and M. Sharir, “Small-size ε-nets for axis-parallel rectangles and boxes,” Proceedings
of the Annual ACM Symposium on Theory of Computing, pp. 639–648, 2009.

[6] G. Even, D. Rawitz, and S. Shahar, “Hitting sets when the VC-dimension is small,” Information Pro-
cessing Letters, vol. 95, no. 2, pp. 358–362, 2005.

[7] N. Bansal and A. Khan, “Improved approximation algorithm for two-dimensional bin packing,” Pro-
ceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 13–25, 2014.

[8] A. Caprara, “Packing 2-dimensional bins in harmony,” Annual Symposium on Foundations of Computer
Science - Proceedings, pp. 490–499, 2002.

[9] N. Bansal, A. Lodi, and M. Sviridenko, “A tale of two dimensional bin packing,” Proceedings - Annual
IEEE Symposium on Foundations of Computer Science, FOCS, vol. 2005, pp. 657–666, 2005.

[10] A. W. Debajyoti Kar, Arindam Khan, “Approximation Algorithms for Round-UFP and Round-SAP.”

[11] T. Mömke and A. Wiese, “Breaking the barrier of 2 for the storage allocation problem,” Leibniz Inter-
national Proceedings in Informatics, LIPIcs, vol. 168, 2020.

[12] P. Chalermsook and B. Walczak, “Coloring and maximum weight independent set of rectangles,” Pro-
ceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 860–868, 2021.

[13] W. Galvez, F. Grandoni, S. Heydrich, S. Ingala, A. Khan, and A. Wiese, “Approximating geometric
knapsack via l-packings,” Annual Symposium on Foundations of Computer Science - Proceedings, vol.
2017-October, pp. 260–271, 2017.

[14] K. V. N. S. Klaus Jansen, Arindam Khan, Marvin Lira, “A PTAS for Packing Hypercubes into a
Knapsack.” [Online]. Available: https://arxiv.org/abs/2202.11902

[15] A. Khan, A. Maiti, A. Sharma, and A. Wiese, “On guillotine separable packings for the two-dimensional
geometric knapsack problem,” Leibniz International Proceedings in Informatics, LIPIcs, vol. 189, 2021.

[16] K. Jansen and R. Solis-Oba, “A polynomial time approximation scheme for the square packing problem,”
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 5035 LNCS, pp. 184–198, 2008.

[17] S. Heydrich and A. Wiese, “Faster approximation schemes for the two-dimensional knapsack problem,”
ACM Transactions on Algorithms, vol. 15, no. 4, p. , 2019.

E0 249: Approximation Algorithms-14

https://www.csa.iisc.ac.in/~arindamkhan/courses/RandAlgo21/RandAlgo.html#lectures
https://sarielhp.org/book/
https://sarielhp.org/book/
https://arxiv.org/abs/2202.11902

[18] T. Tao, “Perfectly packing a square by squares of nearly harmonic sidelength.” [Online]. Available:
https://arxiv.org/abs/2202.03594

E0 249: Approximation Algorithms-15

https://arxiv.org/abs/2202.03594

	Introduction
	Geometric Set Cover (discrete version)
	Hitting Set

	VC dimension
	-nets
	Rectangle Packing Problems

