
Primal-Dual method 1

E0 249: Approximation Algorithms, Spring 2022 April 19

Week 13

Primal-dual algorithm for Facility Location &
Local search for k-median

Instructors: Arindam Khan, Anand Louis Scribe: Aditya Lonkar

1 Introduction

In the previous lecture, we showed how to obtain a deterministic polynomial time 4-approximation and
a randomized polynomial time 3-approximation for the Facility Location problem using an LP-based
algorithm. In this lecture, we will first look at a deterministic primal-dual algorithm for the Facility
Location problem which yields a 3-approximation. Further, we will look at how to use Local search to get
a (5 + ϵ)-approximation for the k-median problem running in polynomial time as long as ϵ is a constant.

2 Primal-Dual method

This section is based on Section 7.3 and 7.6 in [WS11]. We have already seen the Primal-Dual method in
the context of set cover. The main idea in this method is that we do not need to explicitly construct a dual
solution. For a minimization problem, initially, the primal is infeasible and we start with a feasible dual
with let’s say all dual variables set to 0. Then, we increase dual variables in a certain fashion until the dual
constraints get tight. We do this until no more dual variable can be increased without violating a constraint.
Based on the constraints in the dual which got tight, we correspondingly choose the primal variable to be set
to 1 to be included in our solution. We first demonstrate the primal-dual method to get an exact solution
to the Shorted s-t path problem and then in the next subsection, we show how to obtain a 3-approximation
for the uncapacitated Facility Location location problem using the primal-dual method.

2.1 Shortest s-t path

Recall that in the Shortest s-t path problem, we are given a graph G = (V,E), two vertices s and t, and
a non-negative weight function for all the edges in E. The goal is to find a minimum weight s-t path in
G. There is a well known greedy algorithm called Dijkstra’s algorithm. We will demonstrate using the
primal-dual method an algorithm which runs in polynomial time and behaves in the same way as Dijkstra’s
algorithm.
First, we look at the primal and its dual LP formulations for this problem. Let Cs,t denote the set of s-t
cuts in G. The LP is as follows:

min
∑
c∈E

cexe

such that ∑
e∈δ(S)

xe ≥ 1 ∀S ∈ Cs,t

xe ≥ 0 ∀e ∈ E

The dual has variables yS corresponding to each S ∈ Cs,t. We state the dual now:

max
∑

S∈Cs,t

yS

Primal-Dual method 2

such that ∑
S∈Cs,t:e∈δ(S)

yS ≤ ce ∀e ∈ E

ys ≥ 0 ∀S ∈ Cs,t

Now, we state the primal-dual algorithm.

Algorithm 1: Primal-Dual algorithm for Shortest s-t path:

Initialize y = 0, F = ∅.
while there is no s-t path in (V, F) do

Let C be the connected component in (V, F) containing s. Increase yC until there is an edge
e ∈ δ(C) such that its corresponding dual constraint is tight.

Set F := F ∪ {e}
If P be an s-t path in (V, F), output P .

Lemma 2.1. At any point in the algorithm, F forms a tree containing s.

Proof. Proof is by induction on the size of the connected component containing s. Base case is true when
only s is in the connected component. When we add an edge e to a connected component C of (V, F)
containing s, e has one endpoint inside C and one endpoint outside by definition of the algorithm. Hence,
it cannot form a cycle. ■

Therefore, algorithm outputs an s-t path and for each edge e ∈ P , ce =
∑

S:e∈δ(S) yS due to the definition
of our algorithm. Thus, we have that∑

e∈P

ce =
∑
e∈P

∑
S:e∈δ(S)

yS =
∑

S∈Cs,t

yS |P ∩ δ(S)|

Lemma 2.2. For S ∈ Cs,t, if yS > 0, then |P ∩ δ(S)| = 1.

Proof. We will prove the statement of the lemma by contradiction. Hence, assume that for S ∈ Cs,t, yS > 0
and |P ∩ δ(S)| > 1. Then, there must be a subpath P ′ of P such that only the start and end vertices on P ′

are in S. But since yS ended up increasing to be strictly larger than 0, we can infer from Lemma 2.1 that F
at that point formed a tree spanning the vertices of S. Thus, F ∪ P ′ forms a cycle as there exist two paths
between the end vertices of the endpoints of P ′. This is a contradiction since by Lemma 2.1 we know that
even when the entire path was constructed by the algorithm, P ∈ F at that point and F was a tree. ■

The above lemma implies that
∑

e∈P ce =
∑

S∈Cs,t
yS ≤ OPT by weak duality. Since no s-t path can have

length < OPT, the algorithm finds a minimum weight path from s to t, i.e., with weight OPT.

2.2 Uncapacitated Facility location

First, we state the primal LP and the dual LP for Facility Location . For the primal,

min
∑
i∈F

fiyi +
∑

i∈F,j∈C
dijxij

such that ∑
i∈F

xij = 1 ∀j ∈ C

xij ≤ yi ∀i ∈ F , j ∈ C

Primal-Dual method 3

xij ≥ 0 ∀i ∈ F , j ∈ C

yi ≥ 0 ∀i ∈ F

For the dual,

max
∑
j∈C

vj

such that
vj − wij ≤ dij ∀i ∈ F , j ∈ C∑

j∈C
wij ≤ fi ∀i ∈ F

wij ≥ 0 ∀i ∈ F , j ∈ C

vj ≥ 0 ∀j ∈ C

In such problems, it is often a good idea to interpret what the dual means. Hence, wij can be viewed as the
contribution of client j towards opening facility i. vj as mentioned in the last lecture is the cost of client j
paid towards the total cost of the dual. Now, unlike in the case of shortest s-t path, here we have two types
of dual variables we can increase as according to the blueprint of a primal-dual algorithm.

Now, for i ∈ F , define N(i) = {j ∈ C : vj ≥ dij}.
Symmetrically, for j ∈ C, define N(j) = {i ∈ F : vj ≥ dij}. In our algorithm, we will consider a maximal
dual feasible solution (v∗, w∗), in the sense that we cannot increase the variables vj any further without
violating a constraint. From this, we obtain a set of values for the wij variables. This dual solution has a
nice structure as we explain now.
We will say that a client j contributes to a facility i if wij > 0. Now, observe that given a feasible set of
values for the dual variables v∗, we can derive w∗ by setting w∗

ij = max{0, v∗j − dij}. If we derive the w∗

values, in this way, if a client j contributes to facility i, then w∗
ij > 0 which implies that j ∈ N(i). Also, if

j ∈ N(i), then v∗j = w∗
ij + dij .

We now define T to be the set of facilities such that for i ∈ T ,
∑

j∈C wij = fi, i.e., their corresponding
constraint is tight or equivalently, the entire cost for their opening is paid for by different clients. Then, we
make the following claim.

Claim 2.3. In a maximal dual solution (v∗, w∗), every client should neighbour some facility in T .

Proof. First we claim that in a maximal dual solution, v∗j = mini∈F (dij + w∗
ij) and some facility i ∈ F

attaining this minimum lies in T . Then, v∗j ≥ dij which implies j neighbours i ∈ T . To see the claim, if
v∗j < mini∈F (dij +w∗

ij), we can feasibly increase v∗j without violating any constraints and hence, the solution
would not have been maximal. If v∗j = mini∈F (dij + w∗

ij) and the facility i attaining this minimum would
not have been in T , then we can again increase v∗j and w∗

ij simultaneously by the same amount until i ∈ T
and again, the solution would not have been maximal. ■

The next obvious intuition is to assign every client in j to some facility in T . That is, if we assign every
client j to a facility i to which it contributes, then, for a facility i ∈ T , the cost of assigning all j ∈ N(i) to
i plus the cost of opening i is as follows:

fi +
∑

j∈N(i)

dij =
∑

j∈N(i)

(w∗
ij + dij) =

∑
j∈N(i)

v∗j

The first equality follows from the fact that since i ∈ T , fi =
∑

j∈N(i) w
∗
ij . The clients which contribute to

the cost of opening facility i are exactly the ones which lie in its neighbourhood. Second equality follows
from the way we increased our dual variables. But the problem with assigning clients in this way is that a
client j might contribute to multiple facilities in T . Hence, the primal-dual algorithm which we present now

Primal-Dual method 4

makes sure that a client j ∈ C is assigned to exactly 1 facility in T , which need not be its neighbour and
should not be too far from it.
We now present the algorithm: Generate a maximal dual solution by increasing the dual variables vj . Let
S be the set of clients whose duals we are increasing, and let T be the set of facilities whose dual inequality
is tight. Initially S = C and T = ∅. We increase vj uniformly for all j ∈ C. Once, vj = dij for some i,
we increase wij uniformly with vj . Then, two things can happen w.r.t j: either at some point j becomes
a neighbour of some tight facility i ∈ T or a dual inequality becomes tight for some facility i. In the first
case, we remove j from S, and in the second case, we add i to T and remove all neighbouring clients N(i)
from S. Once S is empty and very client neighbours some facility in T , we iteratively start selecting some
facilities T ′ ⊆ T to be included in our final solution. The way we do that is we start with some arbitrary
facility i ∈ T , add i to T ′ and delete all facilities i′ ∈ T such that i′ has a common neighbour j with i, which
contributes to both of them. We do this until T becomes empty, which defines our set T ′. Finally assign
every client j to the nearest facility in T ′.

Algorithm 2: Primal-Dual algorithm for Uncapacitated Facility Location

v ← 0, w ← 0
S ← D
T ← ∅
while S ̸= ∅ do

Increase vj for all j ∈ S and wij for all i ∈ N(j), j ∈ S uniformly until some
j ∈ S neighbours some i ∈ T or some i /∈ T has a tight dual inequality
if some j ∈ S neighbours some i ∈ T then

S ← S \ {j}
if i /∈ T has a tight dual inequality then

T ← T ∪ {N(i)}

T ′ ← ∅
while T ̸= ∅ do

Pick i ∈ T : T ′ ← T ′ ∪ {i}
T ← T \ {h ∈ T : ∃j ∈ D,wij > 0 and whj > 0}

Observe that the clients j ∈ C which get assigned in our algorithm to a neighbouring facility contribute very
little to the total cost as we saw in the analysis above. We just need to worry about clients which had to be
assigned to some facility in T ′ which was not their neighbour.
We will now prove that for a client j which did not get assigned to any facility in T ′ in the algorithm, there
exists some facility i ∈ T ′ such that dij ≤ 3vj . The intuition is that if a client j does not have a neighbour
in T ′, then it must have neighboured some tight facility h ∈ T such that some other client k contributed
both to h and another facility i ∈ T ′. We can now apply triangle inequality to get the required bound.

Lemma 2.4. If a client j does not have a neighbour in T ′, then there exists a facility in i ∈ T ′ such that
dij ≤ 3vj.

Proof. Consider j to be a client which does not neighbour any facility in T ′. During the course of the
algorithm, we stopped increasing vj because j neighboured some facility h ∈ T . h cannot be in T ′ due to
our assumption. Then, the facility h must have been removed from T because it neighboured some other
client k which neighboured another facility i ∈ T ′. We will show now that the cost of assigning j to i is at
most 3vj . This cost, by triangle inequality, is at most the sum of the three terms dhj + dhk + dik and we will
show that all of these terms individually are no more than vj .
We know that dhj ≤ vj by the fact that j neighbours h. Consider the point in the algorithm when we
stopped increasing vj . Due to our choice of h, either k already neighboured h or did it at the exact point in
time when j started to neighbour h. That is, Because the dual variables are increased uniformly, we have

Local search 5

Figure 1: The figure shows client j which does not neighbour any facility in T ′ in the algorithm. However,
it neighbours h and there exists a client k which contributes to another facility i ∈ T ′ and h. And dij ≤ 3vj
by triangle inequality.

that vk ≤ vj . Also, since the client k contributes to both i and h, we have that dhk ≤ vk and dhi ≤ vj , which
finishes the proof. ■

We now conclude by showing a bound on the cost of the solution produced by the primal-dual algorithm.
For any client that contributes to a facility in T ′, we assign it to this facility. Note by the construction of the
algorithm, any client contributes to at most one facility in T ′. Let A(i) ⊆ N(i) be the neighbouring clients
assigned to a facility i ∈ T ′. As mentioned before, the cost of opening the facility plus the cost of assigning
clients to it is ∑

i∈T ′

fi +
∑

j∈A(i)

dij

 =
∑
i∈T ′

∑
j∈A(i)

(wij + dij) =
∑
i∈T ′

∑
j∈A(i)

vj

Let Z be the set of clients not neighbouring a facility in T ′, so that Z = C \
⋃

i∈T ′ A(i). By the previous
Lemma, we know that there exists some facility i ∈ T ′ such that the cost of assigning j to i is at most 3vj .
Then, the total cost of our solution is∑

i∈T ′

∑
j∈A(i)

vj +
∑
j∈Z

3vj ≤ 3
∑
j∈C

vj ≤ 3OPT

where the last inequality follows from weak duality.

3 Local search

This section is based on Section 9.2 in [WS11]. First, we will start with the basics of Local search and show
how to get a 1/2-approximation algorithm for Max-Cut. Then, we will show how to design a local search
algorithm for k-Median. The basic idea in local search is to start with an arbitrary solution. Then, try a
set of predefined local operations; if one of them works (gives a better value for the objective function), we
change our solution to the one defined by this local move. Once it is not possible to execute any such local
moves, we stop.

3.1 Max-Cut

In this subsection, we present a local search algorithm for Max-Cut which gives a 1/2-approximate solution.
We already know how to get an easy randomized 1/2-approximation algorithm. This algorithm is essentially
same in the way it tries out the local moves to the randomized algorithm. Recall the Max-Cut problem:

Local search 6

We are given a graph G = (V,E) and we want to partition of the vertex set into S and V \ S such that the
number of edges crossing this partition is maximized. First, we start with an arbitrary partition (S, V \ S).
We then employ the following operations in our local search algorithm:

1. Ms(u): Update S := S \ {u}.

2. MV \S(u): Update S := S ∪ {u}.

As mentioned before, we execute the above two moves until no move leads to a better solution than the local
solution at that point of time. Thus,

1. For any u ∈ S, cost(S)− cost(S \ {u}) ≥ 0.

2. For any u ∈ V \ S, cost(S)− cost(S ∪ {u}) ≥ 0.

Here, cost(S) refers to the Max-Cut value when (S, V \ S) is the partition of the vertex set V .
Now, we prove that such a locally optimum solution w.r.t the local moves mentioned above is a 1/2-
approximate solution. In fact, we will prove something stronger that the cost of this solution is at least
m/2, where m = |E|. The idea in the analysis is to use all of the above inequalities which arise from the
fact that the solution is locally optimum, for each vertex u ∈ V .
The above inequality for any vertex u ∈ S boils down to:

cost(S)− cost(S \ {u}) = |N(u) ∩ (V \ S)| − |N(u) ∩ S| ≥ 0

where N(u) refers to the neighbourhood of vertex u in V (G). Therefore,

2|N(u) ∩ (V \ S)| ≥ |N(u) ∩ (V \ S)|+ |N(u) ∩ S| = |N(u)|

Similarly, for any u ∈ V \ S,

2|N(u) ∩ S| ≥ |N(u) ∩ (V \ S)|+ |N(u) ∩ S| = |N(u)|

Now, we add all of the inequalities, i.e., for each vertex u ∈ V .∑
u∈S

|N(u) ∩ (V \ S)|+
∑

u∈V \S

|N(u) ∩ S| ≥ 1

2
(
∑
u∈S

|N(u)|+
∑

u∈V \S

|N(u)|) =
1

2
· 2m = m

The terms on the LHS of the first inequality above count each edge {u, v} crossing the cut twice. This is
because assume w.l.o.g that u ∈ S and v ∈ V \ S. Then, the {u, v} adds to the count by 1 in the first term
of the LHS and adds to the count by 1 again in the second term of the LHS since v ∈ V \ S. Hence, we get
that the Max-Cut value is at least m/2, which implies a 1

2 -approximation. As for the running time, each
local search move leads to an increase in the Max-Cut value by at least 1 for it to be a feasible move. Since,
the Max-Cut value can be at most m, the algorithm runs in polynomial time.

3.2 k-median

In this subsection, we demonstrate a (5 + ϵ)-approximation for the k-median problem using local search
which runs in polynomial time as long as ϵ > 0 is a constant. k-median can be thought of as a variant of
facility location. In k-median , we can open at most k facilities so as to minimize the service cost. That
is, we are given a set of facilities F as before and a set of client C. The cost of opening a facility fi = 0, but
we can open at most k facilities so as to minimize the service cost. Also given is a set of distances. Facility
i and client j have a distance dij between them. These distances form a metric.
To describe the local search algorithm, we start with an arbitrary set S ⊆ F of at most k facilities. We will
use c(S) to denote the cost of S. That is, the sum of distances over all clients between a client and assigned
facility pair when the facilities chosen form the set S. We check if a feasible swap of size 1 exists. That is,

Local search 7

Figure 2: The figure shows the swap operation between s(1) and o(1).

if there exists a facility f1 ∈ S and another facility f2 ∈ F \ S such that c((S \ {f1}) ∪ {f2}) − c(S) < 0,
then we discard f1 from our solution and add f2 to it. This is called a feasible swap. Finally, if no swap is
feasible, we simply output S.
Let S denote a locally optimal solution and let O denote an optimal solution. For j ∈ C, let cj denote its
service cost and let oj denote the service cost of j in O. Assume w.l.o.g that S has k facilities and O has k
facilities. This is because one can trivially add more facilities to a solution without incurring any extra cost.
Let the facilities in S be s(1), s(2), ..., s(k) and the facilities in O be o(1), o(2), ..., o(k).
Since the solution is locally optimal, we know that c((S \ s(1)) ∪ {o(1)}) ≥ 0. Here, let s(1) be the nearest
facility in S to s(1). We want to somehow bound the increase in service cost by discarding s(1) and including
o(1) in our solution. Hence, instead of considering the optimal assignment of clients after swapping s(1)

and o(1), we will choose a slightly different assignment to get a more amenable expression in terms of the
bound on the change in cost which will anyway be an upper bound on the optimal assignment of clients
to the facilities. To that end, we now consider an assignment of clients to facilities after swapping s(1) and
o(1). Then, all the clients not in the neighbourhood of s(1) remained assigned as previously. For the clients
j ∈ N(s(1))∩N(o(1)), we assign them to o(1). For the clients j ∈ N(s(1))\N(o(1)), let’s say o(2) is the facility
assigned to j in O. Now assume that a facility s(2) exists which is closest to o(2) in S such that s(2) ̸= s(1).
Then, in this case, we assign j to s(2) after swapping.
So, after swapping s(1) with o(1), in the first case when a client j1 ∈ N(s(1)) ∩N(o(1)), the change in cost is
−cj1 + oj1 . For the second case, when a client j2 ∈ N(s(1)) \N(o(1)), the change in cost is

change in cost ≤ −cj2 + d(j2, o
(2)) + d(o(2), s(2))

The above expression follows from triangle inequality. Since, we know that s(2) is the closest to o(2) in S,

change in cost ≤ −cj2 + d(j2, o
(2)) + d(o(2), s(1))

change in cost ≤ −cj2 + oj2 + oj2 + cj2 = 2oj2

But, note that here we crucially use that s(2) ̸= s(1), otherwise the analysis fails since we are swapping s(1)

out of the solution to begin with. Hence, this leads to the insight for choosing our swaps carefully.
For a locally optimal solution, the analysis will only consider a specific set of swaps which will help us bound
the change in cost. Hence, without even considering a subset of the possible swaps, we will be able to show
a (5 + ϵ)-approximation for a locally optimal solution.

Local search 8

3.2.1 Choosing the swaps

We consider a function η which maps each facility i ∈ O to its nearest facility in S. Hence, for a facility
i ∈ O, let η(i) denote the closest facility to it in S. Define R0, R1, R≥2 ⊆ S to be the set of those facilities
such that the number of facilities mapped by η to them is 0, 1 and 2, respectively. We now construct the set
of swaps S:

1. For each i ∈ R1, add (i, η−1(i)) to S. Note that η−1i is well defined here for such an i. Let O1 ⊆ O be
the set of facilities matched in this step.

2. We prove in a claim below that |O \O1| ≤ 2R0. Out of R0 × (O \O1), we then choose a set of swaps
such that each facility i ∈ R0 appears at most twice. Add all these swaps to S.

3. We do not consider any facility in R≥2 in any swap in S.

Claim 3.1.
|O \O1| ≤ 2R0

Proof. First, note that |S \ R1| = |O \ O1| by definition of η. Since, the facilities in R≥2 ⊆ (S \ R1) are

matched to at least 2 facilities in O\O1, |R≥2| ≤ |O\O1|
2 . Also, |R≥2|+ |R0| = |S \R1|. Hence, |R0| ≥ |O\O1|

2 ,
which implies the claim. ■

For the swaps in S, our assignment is going to be slightly different than what we showed before. For a swap
(s, o) ∈ S, for each j ∈ N(o), assign client j to o. And for j ∈ N(s) \ N(o), assign j to η(f0

j), where f0
j is

the facility serving j in O. We have the following lemma to bound the change in the cost for swaps in S.

Lemma 3.2. For each swap (s, o) ∈ S, we have that

0 ≤ c((S \ {s}) ∪ {o}) ≤
∑

j∈N(o)

+
∑

j∈N(s)

2oj

Proof. Recall in the analysis that we showed before when we swapped s(1) with o(1), the problem arose when
η(f0

j) was s(1) again for some facility j assigned to s(1) before the swap. But, the swaps in S ensure that this

does not happen. In our new assignment mentioned in the paragraph above, we can claim that η(f0
j) ̸= s

for the swap (s, o). This is because no swaps were included in S involving any facility in R≥2. As mentioned
before, if j ∈ N(o), the change in cost is −cj + oj . If j ∈ N(s) \N(o), then the change in cost C ′ is

C ′ ≤ −cj + d(j, f0(j)) + d(j, η(f0(j)))

=⇒ C ′ ≤ −cj + oj + (cj + oj) = 2oj

■

Summing over all swaps in S, we get that

0 ≤
∑

(s,o)∈S

 ∑
j∈N(o)

(cj − oj) +
∑

j∈N(s)

2oj


0 ≤

∑
(o∈O)

 ∑
j∈N(o)

cj

− ∑
(o∈O)

 ∑
j∈N(o)

oj

 +
∑

(s,o)∈S

∑
j∈N(s)

2oj

This follows from the fact that every o ∈ O appears in exactly one swap in S. Now using the fact that a
client j is uniquely mapped to a facility in O,

0 ≤ c(O)− c(S) + 2 · 2
∑
s∈S

 ∑
j∈N(S)

oj



References 9

The above inequality follows from the fact that a facility in S appears in at most two swaps in S. Further,
we now use that clients are uniquely mapped to facilities in S which gives

0 ≤ c(O)− c(S) + 4c(O)

=⇒ c(S) ≤ 5c(O)

Therefore, it is a 5-approximation algorithm.
To analyze the running time, checking if a swap exists can be done in polynomial time since the swaps
are of size 1. We have to just check O(nk) number of possible swaps and further assign the clients to the
nearest facility. But, local search algorithms need not always terminate. In the presented algorithm, it is
unclear if the algorithm will terminate in polynomial time since there can be Θ(nk) values for the local
search solution. Hence, for an arbitrarily large k the algorithm may need super polynomial time. But we
can slightly compromise on the approximation factor by only allowing swaps which decrease the local search
solution’s value by a factor of at least (1− ϵ) for sufficiently small ϵ > 0.
By this approach, in the above equation the LHS will be −ϵ · c(S) and the RHS remains the same. Hence,

the inequality turns out to be c(S) ≤ 5c(O)
(1−ϵ) ≤ 5(1 + ϵ). Thus, choosing ϵ to be sufficiently small we can get

an algorithm with approximation ratio arbitrarily close to 5. Since now feasible swaps in the local search
algorithm necessitate that the cost of the solution decreases by a factor of (1− ϵ), the number of swaps will
be bounded by logC

log(1+ϵ) , where C is the maximum cost of any feasible solution to the instance. Using the

Taylor series expansion of log(1 + x), it is easy to see that log(1 + ϵ) = Θ(ϵ) for small ϵ > 0. Since logC can
be bounded by the input size, the running time of this algorithm is polynomial in the input and (1/ϵ).
The swap operation of size 1 can be generalized to swaps of size at most t, by which one can achieve an
approximation of (3 + 2

t), but the running time of this local search algorithm is nO(t). Hence, if we choose
t = 2/ϵ, we can achieve an approximation of (3 + ϵ) and the running time of such an algorithm would be
nO(1/ϵ).
The current best known algorithm (in terms of approximation) for k-median is due to Byrka et al. [Byr+14]
which yields a 2.675 approximation. Note that this algorithm is not a local search based algorithm which
uses a technique called dependent rounding and its running time is nO((1/ϵ) log(1/ϵ)).

References

[WS11] David P Williamson and David B Shmoys. The design of approximation algorithms. Cambridge
university press, 2011.

[Byr+14] Jaros law Byrka et al. “An improved approximation for k-median, and positive correlation in
budgeted optimization”. In: Proceedings of the twenty-sixth annual ACM-SIAM symposium on
Discrete algorithms. SIAM. 2014, pp. 737–756.

