
E0 249: Approximation Algorithms April 4, 2022

Week 14 Lecture 2 - PCP
Instructor: Anand Louis Scribes: Anish Hebbar

In this lecture, we’ll be looking at Probabilistically Checkable Proofs and some applications to things such
as Hardness of approximation.

1 Probabilistically Checkable Proofs (PCP)

1.1 3-SAT

In order to motivate the idea behind Probabilistically Checkable Proofs, we first take a look at the 3-SAT
problem. In 3-SAT, we are given a boolean formula consisting of m clauses, each of length exactly 3, on a
total of n variables, and we wish to satisfy all the clauses simultaneously. For example, consider the instance

(x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x4 ∨ x5) ∧ ¬(x1 ∨ ¬x2 ∨ ¬x4)

We classify an instance as YES if there exists an assignment satisfying it (evaluates to TRUE), else we call
it a NO instance. Note that if a SAT instance is a YES instance, the binary string corresponding to the
satisfying assignment suffices as a “proof” of this fact.

Given a polynomial sized proof, a Verifier (Turing Machine) can verify in polynomial time that the given
instance is a YES instance (Simply by evaluating each clause). One such “proof” to the above instance ,
which is indeed a YES instance is 11101, namely x1 = 1, x2 = 1, x3 = 1, x4 =, x5 = 1. Note that the “proof”
(satisfying assignment) does not have to be unique, other assignments such as 10011 also work. We now ask
the following question:

Does the verifier need to read the entire proof, or can the verifier (Turing machine) make a “good” decision
after only reading O(1) bits of the proof?

We will make precise what “good” means soon. We will make use of a randomised scheme to verify the
proof.

• Say the verifier can make use of r random bits, and read q locations in the proof, in order to give a
decision that is correct with “good” probability.

• The prover then writes down a “proof” X in a predecided format (in this case, a binary string corre-
sponding to the assignment).

• The Verifier then used the r independent random bits to generate q random locations l1, l2, · · · lq of the
proof to query. These locations can be thought of as some deterministic function of these r random
bits.

• The Verifier then computes some 0 − 1 function g(Xl1 , · · ·Xlq ), and accepts the proof if the function
evaluates to 1, and rejects it otherwise (Evaluates to 0). Basically,

g : {0, 1}q → {0, 1}

is some evaluation function that will depend on the exact problem we are working with.

E0 249: Approximation Algorithms-1



• If we have a YES instance, we require that there exists a proof that the verifier accepts with probability
at least c (Correctness parameter). If we have a NO instance, we require that for all “proofs”, the
verifier accepts it with probability at most s (Soundness parameter).

Now, we denote PCPc,s(r, q) to be the class of languages which have a probabilistically checkable proof with
parameters c, s, r, q satisfying the above. Intuitively, we want q = O(1) (queries at most constantly many
locations), and r = O(log n) (We want the proof to be polynomial in the input size n. Each location can be
identified using log n many bits, and we want to query only q = O(1) many locations). Moreover, we want
c− s = Ω(1) ideally, namely that it is large.

Let us now come up with a trial toy scheme for the 3-SAT problem.

• Our prover gives a satisfying assignment (binary string) to the 3-SAT instance as a proof. The verifier
then uses random bits to sample a clause, uniformly at random from the 3-SAT instance. If the binary
string given satisfies this random clause, we ACCEPT, else we REJECT.

• Note that since there are m clauses, we need r = O(logm) many bits to choose one at random. Each
clause is length 3, so we need to query only q = 3 locations.

• If we had a YES instance, then the prover would have given a satisfying assignment that satisfies each
clause, hence we would always ACCEPT

c = P(Verifier ACCEPTS) = 1

If we had a NO instance, then at most m−1 clauses in the instance can be satisfied by any assignment,
so the probability that we make an error is at most

s = P(Verifier ACCEPTS) ≤ m− 1

m

• However, in this case c− s could be as small as 1
m ̸= Ω(1). Thus, we need a better strategy.

We now prove that
PCPc,s(O(log n), O(1)) ⊆ NP

Consider any language L ∈ PCPc,s(O(log n), O(1)) Namely, given any string x ∈ L, we will show that there
exists a polynomial time proof Px that x belongs to L.

• First, enumerate all 2r (r = O(log nn)) possible values of the random bits, and correspondingly compute
g(Xl1 , · · · , Xlq ) for each case whether at least c fraction of these evaluate to 1 (Verifier accepts), or
whether ≤ s fraction make the verifier accept.

• The runtime is poly(n) as r = O(log n), so there that O(nO(1)) many possible values of the random
bit, each of which is checked in polynomial time. Hence, we have exhibited a proof in polynomial time
that x ∈ L =⇒ L ∈ NP .

The PCP theorem states something stronger:

Theorem 1 (PCP Theorem [1, 2]). PCP1,s(O(log n), O(1)) = NP for some absolute constant s < 1.

E0 249: Approximation Algorithms-2



Dinur [3] significantly simplified the proof of the above theorem, using ideas like expander graphs, and her
proof is the one usually covered in graduate courses on complexity theory today.
We will now look at the idea of serial repetition, in order to improve our soundness guarantee s. We follow
the below scheme.

Take PCP1,s(r, q), and repeat the protocol k many times. If the verifier answered Yes in all cases, output
YES (ACCEPT). Otherwise, output NO (REJECT). We now need k · r random bits, and query k · q many
locations. As long as k is constant, we still query at most constantly many locations.

• If we have a YES instance, then the verifier will answer Yes in all cases and we output YES, showing
c = 1 for this new protocol.

• If we have a NO instance, then the only way the verifier outputs YES is if the answer is YES in all cases,
which happens with probability at most sk, as these are k independent trials. So the new soundness
parameter for this protocol is s′ = sk.

Thus, we have shown that ∀k ∈ N, PCP1,s(r, q) ⊆ PCP1,sk(kr, kq).

1.2 Hardness of Approximation of Max-g

We will now study a link between PCP and hardness of approximation. Let g : {0, 1}q → {0, 1} be a fixed
function.

Max-g: Given a set of n variables and a set of m constraints

{g(X
l
(i)
1
, · · ·X

l
(i)
q
) : i ∈ [m]}

compute an assignment to the variables that maximised the fraction of constraints satisfied.

We will show the following theorem.

Theorem 2. If 3SAT ∈ PCPc,s(O(log n), O(1)), with g as the test function, then it is NP-hard to obtain a
polytime approximation algorithm with approximation factor better than s/c for 3SAT .

Proof. Let X be the proof that is provided by the prover. The verifier tosses r random coins, R ∼ {0, 1}r

random coins, giving q locations l
(R)
1 , · · · l(R)

q to query. Now, consider the set of tests

{g(X
l
(R)
1

, · · ·X
l
(R)
q

) : R}

performed by the verifier. The probability that the verifier accepts the proof is simply the fraction of tests
satisfied by the proof. Hence, we can view the prover’s task as finding an assignment to the “variables” X
such that the fraction of satisfied constraints in {g(X

l
(R)
1

, · · ·X
l
(R)
q

) : R} is maximised.

• Say the 3SAT instance was a YES instance. Then, the verifier accepts the proof with probability at
least c, as we assumed 3SAT ∈ PCPc,s(O(log n), O(1)). Hence, there exists an assignment to X that
satisfies at least c fraction of the constraints in {g(X

l
(R)
1

, · · ·X
l
(R)
q

) : R}.

• Say the 3SAT instance was a NO instance. Then, the verifier accepts the proof with probability at most
s. Hence, any assignment to X satisfies at most s fraction of the constraints in {g(X

l
(R)
1

, · · ·X
l
(R)
q

) : R}.

Thus, by the PCP theorem, for {g(X
l
(R)
1

, · · ·X
l
(R)
q

) : R}, it is NP-hard to determine if there is any assign-

ment to X which satisfies at least c fraction of the constraints, or whether all such assignments satisfy at
most s fraction of the constraints. This then implies that for Max-g, it is NP-hard to obtain a polytime
approximation algorithm with approximation factor better than s/c, as if there were such an algorithm with

E0 249: Approximation Algorithms-3



approximation factor s/c + ε, as then if there existed an assignment satisfying at least c fraction of the
constraints, we can use this algorithm to obtain an assignment satisfying at least (s/c+ ε) · c = s+ c · ε > s
fraction of the constraints. So, we would be able to differentiate between the 2 cases in polytime, which is
impossible unless P = NP .

Given the above close connection, we now look at the Gap version of this problem.

Gapgc,s : Given an instance of Max-g promised to be one of the two cases

1. YES: ∃ an assignment to the variables satisfying ≥ c fraction of constraints.

2. NO: ∀ assignments to the variables ≤ s fraction of constraints are satisfied.

We need to determine the case that the instance falls in.

MAX - E3LIN: Given a system of linear equations over F2, with variables x1, · · ·xn and equations of the
form

xi + xj + xk = c

where 1 ≤ i, j, k ≤ n, c ∈ {0, 1}, the goal of the problem is to find an assignment to these variables that
satisfies the maximum fraction of equations.
Following are some results related to E3SAT and E3LIN due to Hastad [4].

• For every ε > 0, and every L ∈ NP , there is a PCP with q = 3, c ≥ 1 − ε and s ≤ 1
2 + ε. Moreover,

the verifier chooses indices (l1, l2, l3) ∼ [m]3 and b ∼ {0, 1} according to some distribution, and checks
whether Xl1 +Xl2 +Xl3 = b (mod 2).

• Thus, we see that for any ε > 0, GapE3LIN1−ε, 12+ε is NP-hard. Using the s/c approximation hardness

result, we see we cannot get better than a 1
2 approximation for this problem.

• Note that if a solution to the system of equations exists, we can recast the above into matrix form and
solve it in polynomial time via gaussian elimination. If a solution does not exist, we observe that for
any given equation xi + xj + xk = c, if we randomly assigned values to the xi, the sum xi + xj + xk is
even with probability half, and odd with probability half. Thus, if there are m equations, the expected
number of satisfied equations, by linearity of expectation is

E [No. of equations satisfied] ≥ 1

2
·m ≥ OPT

2

showing that a random assignment gives a half approximation.

• A reduction from Max-E3LIN to MaxE3SAT shows that for any ε > 0, GapE3SAT1−ε, 78+ε is NP-hard.

Hastad [4] also proved GapE3SAT1, 78+ε is NP-hard.

1.3 Hardness for Max-Clique

We will use a reduction from PCP to a max-clique problem to get a hardness result. For PCP1,s(r, q), we
construct the FGLSS graph [5] (named after Feige, Goldwasser, Lovasz, Safra, Szegedy) as follows.

• Vertices: We make R = 2r rows, each containing ≤ 2q vertices. The total number of vertices is thus
N ≤ 2r+q. The vertices in each row correspond to views on the queried bits that make the verifier
accept the proof.

E0 249: Approximation Algorithms-4



• Edges: We add edges between any 2 vertices that do not conflict, i.e., represent consistent partial
assignments.

• Note that each row is an independent set, as each vertex on the row differs at atleast one position in
the corresponding assignment. If two rows query different sets of indices, then they form a complete
bipartite graph as there aren’t any edges among vertices in the same row, and any 2 vertices in different
rows have an edge (query different indices)

• Now, say this graph has a clique of size M . These vertices much be in M different rows. Then, the
partial assignment of any two vertices in the clique are consistent with each other (as they are all
joined by edges). The probability that the verifier accepts the proof is then ≥ M

2r , as if we land in any
of the M rows defined by the clique, we can choose the assignment corresponding to the clique, and
then extend the assignment arbitrarily on the remaining vertices.

• Thus, assuming 3SAT ∈ PCP1,s(r, q). we get that there is no 1/s approximation for max-clique.

• By serial repetition, we get that there is no 1
sk

approximation for max-clique assuming 3SAT ∈
PCP1,sk(kr, kq)

Theorem 3. ∀ε > 0, there is no 1/2log
1−ε N approximation for max-clique assuming NP ̸⊆

⋃
t>0 DTIME(2log

t n)
(Polynomial time)

Proof. In the serial repetition argument, choose k = logt n, then

N ≈ 2k(r+q) = 2O(logt+1 n)

The gap between correctness and soundness is

1

sk
=

1

2O(logt+1 n)
= 2O(log

t
t+1 N)

and for any given ε > 0, we can choose t large enough that t
t+1 > 1− ε as desired.

References

[1] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of NP. J.
ACM, 45(1):70–122, 1998.

[2] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification
and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.

[3] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12–es, 2007.

[4] Johan Hastad. Some optimal inapproximability results. J. ACM, 48(4):798–859, July 2001.

[5] Feige, Uriel, et al. “Interactive Proofs and the Hardness of Approximating Cliques.” Journal of the
ACM, vol. 43, no. 2, Mar. 1996, pp. 268–92.

E0 249: Approximation Algorithms-5


	Probabilistically Checkable Proofs (PCP)
	3-SAT
	Hardness of Approximation of Max-g
	Hardness for Max-Clique


