
Introduction to Linear Programming 1

E0 249: Approximation Algorithms, Spring 2022 Jan 19

Week 3

Introduction to Linear Programming & LP duality
Instructors: Arindam Khan Scribe: Aditya Lonkar

1 Introduction to Linear Programming

We will begin with a brief description of Linear Programming (LP) and state why it is such an important
tool in optimization (exact definition will be covered later). Later sections will cover other related aspects
of LP like LP duality, application of LP to Max-flow Min cut, algorithms for LP and extreme points. A
general reference for this part is [Rou12b; Rou12c; Rou12d; Rou12a]. Most of the figues have been adopted
from [Rou12b; Rou12c; Rou12d; Rou12a].

Linear Programming (LP) is a mathematical model for optimization of a linear objective subject to linear
inequality constraints. It is a very useful tool because it is polynomial time solvable (See Section 4) and can
be used to model a lot of problems in practice, i.e., it is general enough and can be solved efficiently. To
state some of its merits,

1. It can be used to solve many problems exactly like Max-Flow/Min-Cut, Bipartite matching, etc
where properties like Total unimodularity or Total dual integrality are used to show that the LP in
fact, admits an optimal integral solution.

2. It can be used to solve NP-complete problems approximately by reducing any such problem to Integer
Programming (IP), another NP-complete problem where the decision variables are restricted to have
only integer values. The corresponding LP (which is a relaxation of IP) in which the decision variables
are real numbers between 0 and 1, can be solved first to get a fractional solution and, we can further
round the values to integers using techniques like Deterministic rounding and Randomized rounding
to get an integral solution.

3. LP Duality (Section 2) gives a refined understanding for many problems.

Consider the problem where unlike in LP where we have a linear objective function to optimize with respect
to inequalities, we have a system of linear equations with no objective, i.e., given a m × n matrix A and a
m× 1 vector b, we want to find whether a solution exists for

Ax = b

for vectors x ∈ Rn.

It turns out that this problem is significantly easier than LP and can be solved by the well known algorithm
of Gaussian elimination, which runs in O(n3) time. Gaussian elimination either correctly returns a feasible
solution (there can be many) or reports that no solution exists. For an LP, we can have infinite feasible
solutions and need to output the best with respect to the given objective function which is a harder problem.

Introduction to Linear Programming 2

Let us now define an LP more formally.

Ingredients of a Linear Program

1. Decision variables x1, ..., xn ∈ R

2. Linear constraints, each of the form
j=n∑
j=1

ajxj (*) bi

where (*) could be ≥,≤ or =.

3. A linear objective function, of the form

max

j=n∑
j=1

cjxj

or

min

j=n∑
j=1

cjxj

Just to give some examples of expressions that are not allowed in an LP: x2
j , xjxk, log(1 + xj) for some

variables xj , xk. Some other points to note here are

• An equality constraint can be converted to two inequalities. For eg: a = b can be equivalently written
as a ≤ b and b ≤ a

• a ≥ b can be equivalently written as −a ≤ −b

• Amaximization objective can be written equivalently as a minimization objective. That is, max
∑

j cjxj

is equivalently min−
∑

j cjxj .

• Inequalities can be expressed as equalities along with a non-negativity constraint as follows: a ≥ b can
be equivalently written as a = b+ c and c ≥ 0 where c is a new variable.

This leads us to a definition of a standard LP : Primal LP.

Standard LP: Primal (P)

max

j=n∑
j=1

cjxj

subject to

for i ∈ [m],
aijxj ≤ bi

x1, ..., xn ≥ 0

The linear program has n non-negative decision variables x1, ..., xn and m constraints (not counting the
non-negativity ones). The aijs, bjs and cjs are all part of the input (fixed constants).

Introduction to Linear Programming 3

Equivalently, in matrix-vector notation the LP can be formulated as follows:

max cTx

subject to:
Ax ≤ b

x ≥ 0

Let’s look at a concrete example of a LP.

Example 1.1. Here is an algebraic view of a LP.

maxx1 + x2 (1)

subject to

4x1 + x2 ≤ 2 (2)

x1 + 2x2 ≤ 1 (3)

x1 ≥ 0 (4)

x2 ≥ 0 (5)

Below is a geometric view of the same example.

Figure 1: A geometric view of the example

We will state some points regarding correspondence between the algebraic and geometric perspective of an
LP:

1. A linear constraint in n dimensions corresponds to a halfspace in Rn. Thus a feasible region is an
intersection of halfspaces, the higher dimensional analog of a polygon.

2. The level sets of the objective function are parallel (n − 1)-dimensional hyperplanes in Rn, each or-
thogonal to the coefficient vector c of the objective function.

LP duality 4

3. The optimal solution is the feasible point furthest in the direction of c (for a maximization problem).

4. When there is a unique optimal solution, it is a vertex (corner) of the feasible region.

There can be some edge cases with respect to solution of an LP.

i There might be no feasible solutions at all.

ii The optimal objective function value is unbounded. Note that a necessary but not sufficient condition
for this case is that the feasible region is unbounded.

iii The optimal solution need not be unique, as a ‘side’ of the feasible region might be parallel to the level
sets of the objective function. Whenever the feasible region is bounded, there always exists an optimal
solution that is a vertex of the feasible region.

2 LP duality

In Example 1.1 the proposed optimal solution had value 5
7 and occurred at (37 ,

2
7). But we cannot be sure

that it is indeed the maximum value of the objective without giving a formal proof, for which we get to
the notion of LP-duality. We will show an upper bound of 5

7 on the objective value of the function in the
example which together with the fact that we have a point at which the same value occurs, implies that it
is indeed the optimum value.

For our first attempt, observe that

x1 + x2 ≤ x1 + 2x2 ≤ 1 [From (3)]

The first inequality holds because of non-negativity of x2. For our second attempt,

x1 + x2 ≤ 1

7
(4x1 + x2) +

3

7
(x1 + x2) ≤

1

7
· 2 + 3

7
· 1 =

5

7

Note that the second inequality follows from (2) and (3) in the example. Thus, OPT ≤ 5
7 and we have a

feasible solution with value 5
7 which implies that it is indeed the optimal feasible solution. Generalizing this

approach to bound the value of the optimal solution motivates the definition of the dual LP.

Thus, the problem is to get an upper bound on the value of the optimal objective and the approach is to
take a linear combination of the constraints that componentwise dominate the objective function.

Dual LP (D)

min

i=m∑
i=1

biyi

such that
m∑
i=1

yi aij ≥ cj ∀j ∈ [n]

y1, ..., ym ≥ 0

Alternatively, in the matrix-vector notation:
min bT y

LP duality 5

such that
AT y ≥ c

y ≥ 0

For every feasible solution (x1, ..., xn) of (P),

j=n∑
j=1

cjxj︸ ︷︷ ︸
x’s obj fn

≤
j=n∑
j=1

(
i=m∑
i=1

yiaij

)
xj

=

i=m∑
i=1

yi ·

j=n∑
j=1

aijxj

 (Reversing the order of the sum)

≤
i=m∑
i=1

yibi︸ ︷︷ ︸
upper bound

(constraints of P + non-negativity of yis)

Thus, we have that OPT of P ≤
i=m∑
i=1

biyi.

We state a simple recipe for conversion between P and D.

Primal Dual
variables x1, ..., xn n constraints

m constraints variables y1, ..., ym
objective function c right-hand side c
right-hand side b objective function b

max cTx min bT y
constraint matrix A constraint matrix AT

ith constraint is “≤” yi ≥ 0
ith constraint is “≥” yi ≤ 0
ith constraint is “=” yi = 0

xi ≥ 0 jth constraint is “≤”
xi ≤ 0 jth constraint is “≥”
xi = 0 jth constraint is “=”

Note that it can be shown that the Dual of the Dual is the Primal.

Theorem 2.1 (Weak Duality). For every maximization linear program (P) and corresponding dual linear
program (D),

OPT value for (P) ≤ OPT value for (D)

Similarly, for every minimization linear program (P) and corresponding dual linear program (D),

OPT value for (P) ≥ OPT value for (D)

Weak duality has some interesting corollaries.

Corollary 2.2. Let (P), (D) be primal-dual pairs of linear programs.

LP duality 6

(a) If the optimal objective function value of (P) is unbounded, then (D) is infeasible.

(b) If the optimal objective function value of (D) is unbounded, then (P) is infeasible.

(c) If x, y are feasible for (P), (D) and cTx = bT y, then x, y are respectively optimal for (P) and (D).

2.1 Complementary Slackness

Now we give a corollary of Theorem 2.1. It is a sufficient and a necessary condition for optimality (as we
will see later).

Corollary 2.3 (Complementary slackness conditions). Let (P), (D) be a primal-dual pair of linear programs.
If x, y are feasible solutions to (P), (D) respectively and the following two conditions hold, then they are both
optimal.

(1) Whenever xj ̸= 0, y satisfies the jth constraint of (D) with equality.

(2) Whenever yi ̸= 0, x satisfies the ith constraint of (P) with equality.

The conditions assert that no decision variable and the corresponding constraint are simultaneously “slack”
(that is, it does not allow for both of them to not be tight at the same time).

Proof: We prove the corollary for (P) and (D) in standard forms as mentioned (the proof follows for any
variation in the way the LPs are described).

The first condition implies that

cjxj =

(
i=m∑
i=1

yiaij

)
xj (1)

for each j = 1..., n. Similarly the second condition implies that

yi

j=n∑
j=1

aijxj

 = yibi (2)

for each i = 1...,m. Summing equation (1) over j = 1 to j = n and equation (2) over i = 1 to i = m implies
cTx = bT y and Corollary 2.2 implies that both x and y are optimal.

Theorem 2.4 (Strong LP Duality). When a primal-dual pair (P), (D) of linear programs are both feasible,

OPT for (P) = OPT for (D)

Corollary 2.5 (LP Optimality conditions). Let x and y be feasible solutions to a primal-dual pair (P), (D)
of linear programs. Then x and y are both optimal

• if and only if cTx = bT y

• if and only if complementary slackness conditions hold.

Theorem 2.4 is proved using Farkas’s Lemma which we state now although we do not go into the proof of
either of these statements.

Lemma 2.6 (Farkas’s Lemma). Given a matrix A ∈ Rm×n and a right-hand side b ∈ Rm, exactly one of
the following holds.

1. There exists x ∈ Rn such that x ≥ 0 and Ax = b.

2. There exists y ∈ Rm such that yTA ≥ 0 and yT b < 0.

Application of LP-Duality 7

3 Application of LP-Duality

In this section, we study an application of LP-Duality in the context of Max-Flow Min-Cut. Recall the
Max-Flow problem: Given a directed graph G = (V,E), source s ∈ V , sink t ∈ V and positive arc capacities
c : E → R+, the goal is to find a max-flow that can be sent from s to t subject to the following constraints:

• Capacity constraints: For each arc e, the flow sent through e is bounded by its capacity, i.e., fe ≤ ce
where fe denotes the flow through arc e.

• Flow conservation: ∀v ∈ V \ {s, t},

total flow into v = total flow out of v

Figure 2: A flow network with source s and sink t. The numbers next to the edges in black are the capacities.
The numbers in red and the corresponding arrows indicate the amount of flow in that edge.

Now, we will formulate Max-Flow as an LP. We will add a fictitious arc from t to s so that we can conserve
flow even at s and t.

max fts

subject to
fij ≤ cij , (i, j) ∈ E∑

j:(j,i)∈E

fji −
∑

i:(i,j)∈E

fij ≤ 0, i ∈ V

fij ≥ 0, (i, j) ∈ E

where fij represents the flow on edge (i, j) ∈ E.

The second constraint should be an equality for conservation of flow at a node. However, since sum of all
those constraints over i ∈ V is 0. it implies that R.H.S of none of them can be strictly negative. Now, we
formulate the same LP keeping the matrix format in mind.

Application of LP-Duality 8

3.1 Primal LP (P) for Max-Flow

max 1 · fts +
∑
e∈E

0 · fe

such that

1 · fij +
∑

e∈E\{(i,j)}

0 · fe ≤ cij (i, j) ∈ E (1)

∑
j:(j,i)∈E

1 · fji +
∑

i:(i,j)∈E

(−1) · fij ≤ 0 i ∈ V (2)

fij ≥ 0

Note that here m = |E|+ |V |, that is, the number of constraints in the primal and n = |E|+ 1 which is the
number of variables. So we have |E| variables in the dual corresponding to constraint (1) in the primal and
for any such constraint corresponding to (i, j) ∈ E we have a corresponding variable dij in (D). Similarly,
we have |V | variables in the dual corresponding to constraint (2) in the dual and for any such constraint
corresponding to i ∈ V we have a corresponding variable pi in (D).

3.2 Dual LP (D) for Max-Flow

min
∑
i∈V

0 · pi +
∑

(i,j)∈E

cij · dij

such that

for (t, s), 1 · ps + (−1) · pt ≥ 1

for E \ (t, s), dij + pj − pi ≥ 0

dij ≥ 0

pi ≥ 0

3.3 Intuitive understanding of (D)

We will see how the dual (D) formulated in the last subsection has an intuitive understanding w.r.t cuts in
the graph. To that end, for now, assume that dij ∈ {0, 1} and pi ∈ {0, 1}, i.e, we are now interested in the
integer program of (D). Let dij be some distance label on arcs and pi be potentials on nodes. Let (d∗, p∗) be
an optimal solution to this integer program (I). Since (d∗, p∗) is an optimal solution to the IP, it is a feasible
solution to (D) as well. Hence, we have that

p∗s − p∗t ≥ 1 =⇒ p∗s = 1, p∗t = 0

This defines a s− t cut (X,X) where X is the set of potential 1 nodes and X̄ is the set of potential 0 nodes.
Note that having higher integral potentials for the nodes does not make sense as (D) is a minimization
program and hence, we restrict their values to {0, 1}.

Application of LP-Duality 9

Consider an arc (i, j) with i ∈ X and j ∈ X̄. Then

dij ≥ pi − pj =⇒ dij = 1

For arc (i, j) with i ∈ X and j ∈ X, i ∈ X̄ and j ∈ X̄ or i ∈ X̄ and j ∈ X, dij ≥ 0, thus can be set to 1 or
0. To minimize the objective we set it to 0.

Thus, objective of dual = min s− t cut. That is, partition the vertex set V into (X, X̄) such that the weight
of arcs going from X to X̄ is minimized (The weight of arc (i, j) given by cij).

Another observation for (D) is that any path from s − t in G contains at least one edge from a cut C by
definition. This inspires the interpretation of dual as a fractional s − t cut (Note that now the decision
variables need not be integral). The distance labels assigned to arcs by the dual satisfy the property that
distance labels on any s− t path (s = v0, v1, ..., vk = t) sum to at least 1. This is because

i=k−1∑
i=0

dvivi+1
≥

i=k−1∑
i=0

(pvi − pvi+1
) = ps − pt ≥ 1

The first and second inequalities follow from the first and the second constraints in (D), respectively.

3.4 Relating Max-Flow Min-Cut

Due to capacity constraints, capacity of any s − t cut is an upper bound on any feasible flow that can be
sent from s to t. Hence, Max-Flow is at most the value of the Min-Cut. This is also evident from Weak
LP-Duality.

Max-Flow ≤
Weak LP-Duality

Dual-LP ≤
LP relaxation

Integer program for Min-Cut

Surprisingly, we have a stronger property

Max-Flow =
Strong LP-Duality

Dual-LP =
Integral LP polyhedron

Integer program for Min-Cut

This implies Max-Flow = Min-Cut. The second equality is due to the fact that the Dual LP has an integral
optimal solution which we will give a few pointers to. To show integrality of an LP, either show that the
constraint matrix is unimodular or by total dual integrality. A totally unimodular matrix is one where every
square non-singular submatrix is unimodular. Equivalently every square submatrix has determinant 0,−1, 1.
It follows then that any totally unimodular matrix has either 0,−1, 1 as its entries.

Total dual integrality (TDI) is a sufficient condition for showing integrality of a polyhedron. A linear system
Ax ≤ b where A and b are rational, is called totally dual integral if for any c ∈ Zn such that there is a
feasible bounded solution to the linear program

max cTx

Ax ≤ b,

there is an optimal dual solution.

Note that TDI is a weaker sufficient condition for integrality than total unimodularity.

Application of LP-Duality 10

3.5 Understanding Complementary Slackness

We will alternatively show that Max-Flow = Min-Cut through complementary slackness. Let f∗ be optimal
solution to (P), that is, it is the max flow and (d∗, p∗) be an optimal solution to (D) (Min-Cut defined by
(X, X̄)).

• Say arc (i, j) has i ∈ X and j ∈ X̄. Then d∗ij = 1, i.e., d∗ij ̸= 0 by virtue of complementary slackness
implies that f∗

ij = cij .

• Say arc (k, l) has k ∈ X̄ and l ∈ X. Then p∗k − p∗l = −1 and since d∗kl ∈ {0, 1} implies that
d∗kl − p∗k + p∗l ≥ 0 must be strict inequality. Hence, by complementary slackness we get that f∗

ij = 0.

This implies that arcs going from X to X̄ are saturated with flow and arcs going from X̄ to X have no flow
which in turn implies that Max-Flow = Min-Cut.

3.6 Alternate formulation of Dual LP for Max-Flow

For Max-Flow, consider an alternate LP based on path decomposition which is shown below. The advantage
here is that there is no need for explicitly stating the conservation constraints. Let P denote the set of all
s− t paths. Then one can show that the following LP is equivalent to the originally stated Max-Flow LP in
Subsection 3.1.

max
P∈P

fP

subject to ∑
P∈P : e∈P

fP ≤ ce

fP ≥ 0 ∀P ∈ P
We will define a corresponding dual variable le for the 1st constraint in the primal for each edge e. The dual
program is as follows:

min
∑
e∈E

cele

subject to ∑
e∈P

le ≥ 1 ∀P ∈ P

le ≥ 0 ∀e ∈ E

Again we show that the dual corresponds to the Min-Cut. For a fixed cut (X, X̄) with s ∈ X and t ∈ X̄, set

lij = 1 if i ∈ X and j ∈ X̄

= 0 else

Every s−t path has at least one edge in (X, X̄), hence if that edge is say (i, j), then lij = 1 and the constraint
inequality is satisfied.

The objective value
∑

e∈E cele =
∑

i∈X,j∈X̄ cij = Cut[X, X̄]. Hence, again

Max-Flow =
Strong LP-Duality

Dual-LP =
Integral LP polyhedron

Integer program for Min-Cut

Many other interesting theorems/algorithms can be viewed as a consequence of LP-Duality. For eg. Minimax
theorem and Hungarian algorithms.

Algorithms for LP 11

4 Algorithms for LP

How to solve LPs?

A General Algorithm design paradigm:

1. x is feasible for (P).

2. y is feasible for (D).

3. x, y satisfy complementary slackness conditions.

Pick two of these conditions to maintain at all times, and work toward achieving the
third.

4.1 Simplex method

(a) Illustration of a feasible set and its optimal
solution x∗. We know that there always exists
an optimal solution at a vertex of the feasible
set, in the direction of the objective function.

(b) A system of linear inequalities defines a
polytope as a feasible region. The simplex al-
gorithm begins at a starting vertex and moves
along the edges of the polytope until it reaches
the vertex of the optimal solution.

Figure 4: Polyhedron of simplex
algorithm in 3D.

We briefly describe the Simplex method [Dantzig ’47].

• Start from a “pivot” vertex.

• Local search: If there is any better neighbour vertex, move there.

Maintain 1, 3 and work toward 2 according to the paradigm. The ad-
vantage of this method is that it works very well in practice but the
disadvantage is that, in worst case it can take exponential time. For most
practical instances, it works quite well.

4.2 Ellipsoid method

Ellipsoid method [Khachiyan ’79] gave a breakthrough here, in solving LPs in polynomial time.

The advantages of this method are: the first polynomial time algorithm for LP, and it can even solve LPs
with exponentially many constraints.

The con of this method is that it can be very slow in practice.

Algorithms for LP 12

Here, we maintain 1, 2 and work towards 3 according to the paradigm.

A famous result by [GLS12], which is used in the Ellipsoid method is

Optimization = Feasibility = Separation

Which says that optimization over a polytope is equivalent to finding whether a system of inequalities is
feasible and these two are equivalent to answering the question of whether a point lies inside a polytope (If
not, then output a separating hyperplane between the point and the polytope).

Figure 5: The responsibility of a separation oracle.

We will an example of Separation oracle: Consider the Min-Cut LP discussed in Section 3.6 where the
number of non-trivial constraints is equal to the number of s− t paths, which can be exponential. We will
demonstrate a polynomial time separation oracle for the LP which does the following:

Given l′e, either returns that it is a feasible solution to the LP or returns some path P such that
∑

e∈P l′e < 1
or some l′e < 0.

The solution is as follows:

Given l′e first check whether l′e ≥ 0 for all e ∈ E. If for some e ∈ E, l′e < 0 return it. If that is not the case
and l′e ≥ 0 for all e ∈ E, then run Dijkstra’s algorithm to compute s− t shortest path, using l′e as lengths on
the edges. Now, if shortest path has length < 1, return violated constraint. Else all s− t paths have length
≥ 1 which implies l′e is a feasible solution.

Important to mention here that separation oracles are heavily used in the design of approximation algorithms
and a lot of examples of the same can be found in [WS11].

To Solve an LP:

Step 1: OPT → FEASIBILITY

To solve an LP, we first convert the optimization problem to a feasibility problem. Replace the objective
(lets say cTx) by a linear constraint cTx ≥ M where M is some target objective function value. Thus, if we
can efficiently check feasibility we can do a binary search w.r.t the objective value.

Step 2: FEASIBILITY → SEPARATION

This is where we use the Ellipsoid method as mentioned below.

Elementary but tedious calculations show that volume of the current ellipsoid is guaranteed to shrink at a
certain rate at each iteration, and this yields a polynomial bound on the number of iterations required. The
algorithm stops when the current ellipsoid is so small that it cannot possibly contain a feasible point (given
the precision of the input data).

Algorithms for LP 13

Figure 6: The ellipsoid method initializes a huge sphere (blue circle) that encompasses the feasible region
(yellow pentagon). If the ellipsoid center is not feasible, then the separation oracle produces a violated
constraint (dashed line) that splits the ellipsoid into two regions, one containing the feasible region and one
that does not. A new ellipsoid is drawn (red oval) and the method continues recursively.

4.3 Interior-point methods

Interior point methods [Karmarkar ’84], again one of the landmark results. This method runs in polynomial
time and also works well in practice. Many LP solvers in fact, use this method.

Here, you have an objective function:

max cTx− λ · f(distance between x and boundary)︸ ︷︷ ︸
barrier function

where λ ≥ 0 is a parameter and f is a “barrier function” that blows up (to ∞) as its argument goes to 0.
Initially, one sets λ so big that the problem becomes easy (When f(x) = log 1

x , the solution is the analytic
center of the feasible region and can be computed using eg. Newton’s method). Then one gradually decreases
λ, tracking the corresponding optimal point along the way (The “central path” is the set of optimal points
as λ varies from ∞ to 0). When λ = 0, the optimal point is an optimal solution to the linear program, as
desired.

Algorithms for LP 14

Figure 7: Example search for solutions. Blue lines show constraints and red lines show iterated solutions.

4.4 Integrality gap

Recall that many combinatorial problems of interest are NP-Hard and hence, can be encoded as integer linear
programs. Since, solving an integer LP is hard by the same token, we nearly always relax the integrality
into a linear non-negativity constraint during our analysis.

In LP rounding, we will directly round the LP solution to generate an integer combinatorial solution. In

(a) A (general) integer program and its LP re-
laxation.

(b) LP rounding solves for x∗, the fractional
optimal solution and rounds it to an integer
feasible solution x̂. The approximation ratio
is the ratio between x̂ and the integer optimal
solution (a○). We bound this using the ratio
between x̂ and x∗ (b○)).

Figure 8b, the approximation factor is a○. It is often difficult to analyze this, so we use the upper bound
provided by b○ (LP rounding) or d○ (dual fitting and primal-dual). Here c○ is called the integrality gap
which is the difference between the integer and fractional optimal solutions. It is a structural property of
the LP and cannot be avoided if that particular LP is used, in the approximation factor.

Definition 4.1 (Integrality gap). For an integer minimization problem, let OPTint be the optimal solution
and OPT∗ be the optimal solution to its fractional relaxation. Let the possible set of instances to this problem

Extreme points 15

be I. Then the integrality gap of this relaxation of the problem is:

max
I

OPTint

OPT∗

A similar form exists for maximization problems.

In other words, any integer approximation which relies on a bound against the fractional optimal will incur
this loss in the approximation ratio. Some problems, however exist without any integrality gap. Another
point to note here is that integrality gaps are unconditional. They do not rely on any assumption of P ̸= NP.
However, different LP relaxations can have different integrality gaps. One example of such a problem is Bin
Packing. The two commonly used LPs are:

• assignment LP

• configuration LP (Very small integrality gap)

Also SDPs (semi-definite programs) are used to generalize LPs and sometimes, used to obtain approximation
guarantees that are not possible to be obtained via LPs. SDPs have decision variables as vectors instead of
scalars. Finding the right LP/SDP relaxation is critical. Hierarchies help here (which we will see later in
the course).

Instead of finding the heuristic approach of finding inequalities that may be helpful for an LP or an SDP, there
is a more systematic (and potentially more powerful) approach lying in the use of LP or SDP hierarchies.
In particular, there are procedures by Balas, Ceria, Cornuéjols [BCC93]; Lovász, Schrijver [LS91] (with LP
strengthening LS and SDP strengthening LS+); Sherali, Adams [SA90] or Lassere [Las01a; Las01b]. On the
t-th level, they all use nO(t) additional variables to strengthen an initial relaxation K = {x ∈ Rn|Ax ≥ b}
(thus the term Lift-and-Project Methods) and they all can be solved in time nO(t), Moreover for t = n,
they define the integral hull KI and for any set of |S| ≤ t variables, a solution x can be written as convex
combinations of vectors from K that are integral on S.

5 Extreme points

For this section, the reference is [LRS11].

Definition 5.1. Let P = {x : Ax = b, x ≥ 0} ∈ Rn.Then x ∈ Rn is an extreme point solution of P if there
does not exist a non-zero vector y ∈ Rn such that x+ y, x− y ∈ P . This is also known as a vertex solution
or a basic feasible solution (to be covered later).

Definition 5.2. Let P be a polytope and x be an extreme point solution of P then x is integral if each
coordinate of x is an integer. Then P is called integral if every extreme point of P is integral.

Lemma 5.3. Let P = {x : Ax ≥ b, x ≥ 0} and assume that min{cTx : x ∈ P} is finite. Then for every
x ∈ P , there exists x′ ∈ P such that Ax′ = b and cTx′ ≤ cTx, i.e., there is always an extreme point optimal
solution.

5.1 Basic feasible solution

Consider the linear program:
min cTx

Extreme points 16

such that
Ax ≥ b

x ≥ 0

By introducing slack variables sj for each constraint, we obtain an equivalent linear program in standard
form:

min cTx

such that
Ax+ s ≥ b

x ≥ 0

s ≥ 0

where s is a vector. Henceforth, we study linear programs in standard from: {min cTx : Ax = b, x ≥ 0}.
Without loss of generality, we can assume that A is full row-rank. Otherwise, we can remove constraints
which are linear combinations of other constraints and still have an equivalent linear program. Now, we
define a basic feasible solution.

A subset of columns B of the constraint matrix A is called a basis if the matrix of the columns corresponding
to B, i.e., AB is invertible. A solution x is called basic if and only if there is a basis B such that xj = 0
if j /∈ B and xB = A−1

B B. If in addition to being basic, it is also feasible, i.e., A−1
B B ≥ 0, then it is called

a basic feasible solution. The correspondence between bases and basic feasible solution is not one to one.
There can be many bases which correspond to the same basic feasible solution. The next theorem shows
equivalence between extreme point solutions and basic feasible solutions.

Theorem 5.4 ([LRS11]). Let A be a m × n matrix with full row rank. Then every feasible x to P = {x :
Ax = b, x ≥ 0} is a basic feasible solution if and only if x is an extreme point solution.

Hence, a basic solution implies AB is invertible and rank(AB) = rank(A) = m. So, put n−m variables to
be 0, other m variables are called basic variables. Resulting system is ABXB = b and if AB is invertible,
then the solution is a basic solution (BS). If all variables in BS are ≥ 0, then it is a basic feasible solution
(BFS). Otherwise, it is called an infeasible solution.

If some basic variables are 0 in BFS, then it is called a degenerate solution. On the other hand, if all of
them are positive, it called a non-degenerate solution. Because of Lemma 5.3, we know that there exists an
extreme point as a optimal solution (assuming feasibility of the program) and Theorem 5.4 then implies that
there exists an optimal solution which is a basic feasible solution.

No. of extreme points ≤ BFS ≤ BS ≤
(
n

m

)
To explain each inequality, the last inequality follows from the fact that some bases might be non-invertible.
Second inequality is due to some of the solutions in BS being infeasible and the first inequality is because
some solutions in BFS can be degenerate and multiple such ones can map to the same extreme point.

We will now look at some examples.

Example 5.1.
max 2x1 + 3x2

subject to

2x1 + x2 ≤ 4

x1 + 2x2 ≤ 5

Extreme points 17

x1 ≥ 0

x2 ≥ 0

Basic variables Non-basic
variables

Basic
solution

Associated
corner
point

Feasibility Objective
value

(s1, s2) (x1, x2) (4, 5) A Yes 0
(x2, s2) (x1, s1) (4,−3) F No −
(x2, s1) (x1, s2) (2.5, 1.5) B Yes 7.5
(x1, s2) (x2, s1) (2, 3) D Yes 4
(x1, s1) (x2, s2) (5,−6) E No −
(x1, x2) (s1, s2) (1, 2) C Yes 8

Figure 9: Example demonstrating the number of BS, BFS and extreme points.

The equivalent LP in standard form with slack variables s1, s2 is

max 2x1 + 3x2

subject to

2x1 + x2 + s1 = 4

x1 + 2x2 + s2 = 5

x1 ≥ 0

x2 ≥ 0

s1 ≥ 0

s2 ≥ 0

Extreme points 18

In this example, n = 4 and m = 2. Hence, we show what happens for all
(
4
2

)
= 6 choices for the bases in

the constraint matrix A which is

[
2 1 1 0
1 2 0 1

]
There are 4 extreme points of relevance here, 4 BFS, 6 BS.

Note that all the solutions here are non-degenerate.

Another more involved example which demonstrates this.

Example 5.2.
max 2x1 + x2

subject to

x1 + x2 ≤ 3

x1 − x2 ≤ 0

x1 ≥ 0

x2 ≥ 0

The equivalent LP in standard form with slack variables x3, x4 is

max 2x1 + x2

subject to

x1 + x2 + x3 = 3

x1 − x2 + x4 = 0

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0

x4 ≥ 0

Figure 10: Figure showing geometric view of the above example. The numbers in bold indicate the corre-
sponding point in the table below.

Extreme points 19

Basic variable Non-basic
variable

Solution
x1, x2, x3, x4

1 x1, x2 x3 = x4 = 0 (32 ,
3
2 , 0, 0) BS, BFS non-degen

2 x1, x3 x2 = x4 = 0 (0, 0, 3, 0) BS BFS degen
3 x1, x4 x2 = x3 = 0 (3, 0, 0,−3) BS, infeasible
4 x2, x3 x1 = x4 = 0 (0, 0, 3, 0) BS, BFS degen
5 x2, x4 x1 = x3 = 0 (0, 3, 0, 3) BS, BFS non-degen
6 x3, x4 x1 = x2 = 0 (0, 0, 3, 0) BS, BFS degen

Hence, we have 3 corners (extreme-points), 5 BFS and 6 BS. For non-degenerate BFS there is a one-to-one
correspondence between BFS and vertex but not for degenerate BFS. At any BFS, there are n linearly
independent tight constraints.

An example to demonstrate that not all AB need be basic solutions, i.e., AB might be non-invertible.

Example 5.3.
max 2x1 − 4x2 + 5x3 − 6x4

subject to

x1 + 4x2 − 2x3 + 8x4 ≤ 2

−x1 + 2x2 + 3x3 + 4x4 ≤ 1

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0

x4 ≥ 0

An equivalent LP in standard form with slack variables is:

x1 + 4x2 − 2x3 + 8x4 + s1 = 2

−x1 + 2x2 + 3x3 + 4x4 + s2 = 1

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0

x4 ≥ 0

s1 ≥ 0

s2 ≥ 0

Extreme points 20

Cases Basic variable Non-basic
variable

Solution
x1, x2, x3, x4, s1, s2

Value of Z

1 x1, x2 x3 = x4 = s1 = s2 = 0 (0, 1/2, 0, 0, 0, 0) −2
2 x1, x3 x2 = x4 = s1 = s2 = 0 (8, 0, 3, 0, 0, 0) 31 (Optimal)
3 x1, x4 x2 = x3 = s1 = s2 = 0 (0, 0, 0, 1/4, 0, 0) −1.5
4 x1, s1 x2 = x3 = x4 = s2 = 0 (−1, 0, 0, 0, 3, 0) Not a BFS
5 x1, s2 x2 = x3 = x4 = s1 = 0 (2, 0, 0, 0, 0, 3) 4
6 x2, x3 x1 = x2 = s1 = s2 = 0 (0, 1/2, 0, 0, 0, 0) −2
7 x2, x4 x1 = x3 = s1 = s2 = 0 Not a part of BS Linearly dependent columns
8 x2, s1 x1 = x3 = x4 = s2 = 0 (0, 1/2, 0, 0, 0, 0) −2
9 x2, s2 x1 = x3 = x4 = s1 = 0 (0, 1/2, 0, 0, 0, 0) −2
10 x3, x4 x1 = x2 = s1 = s2 = 0 (0, 0, 0, 1/4, 0, 0) −1.5
11 x3, s1 x1 = x2 = x4 = s2 = 0 (0, 0, 1/3, 0, 8/3, 0) 1.66
12 x3, s2 x1 = x2 = x4 = s1 = 0 (0, 0,−1, 0, 0, 4) Not a BFS
13 x4, s1 x1 = x2 = x4 = s2 = 0 (0, 0, 0, 1/4, 0, 0) −1.5
14 x4, s2 x1 = x2 = x3 = s1 = 0 (0, 0, 0, 1/4, 0, 0) −1.5
15 s1, s2 x1 = x2 = x3 = x4 = 0 (0, 0, 0, 0, 2, 1) 0

Here row 7 in the table below has linearly dependent columns. And the number of corners is 6, 12 BFS and
14 BS and

(
n
m

)
=
(
6
2

)
= 15.

The next theorem relates extreme point solutions to the corresponding non-singular columns of the constraint
matrix.

Lemma 5.5. Let P = {x : Ax ≥ b, x ≥ 0}. For x ∈ P , let A= be the submatrix of A restricted to rows which
are at equality at x, and let A=

x denote the submatrix of A consisting of the columns of A corresponding to
the nonzeros in x. Then x is an extreme point if and only if A=

x has linearly independent columns (i.e., A=
x

has full column rank).

We will look at an example now in the context of the above lemma.

Example 5.4.
min 2x1 + 3x2

such that

2x1 + x2 ≥ 4

x1 + 2x2 ≥ 5

x1 + x2 ≥ 3

x1, x2 ≥ 0

A =

2 1
1 2
1 1

 rank(A) = 2

Now,

At C:, A=

2 1
1 2
1 1

, A=
x

2 1
1 2
1 1

 Columns 1 and 2 are linearly independent for A=
x and in this case and it is

an extreme point.

Extreme points 21

Figure 11: Figure showing geometric view of the above example. The purple region is unbounded.

at F : A=
[
2 1

]
, A=

x

[
1
]
Hence, it is an extreme point.

at A: A=0× 0 matrix, In this case, it is not an extreme point.

at B: A=
[
1 2

]
, A=

x

[
1 2

]
Columns 1 and 2 are not linearly independent for A=

x and in this case, it is not
an extreme point.

5.2 Rank Lemma

Lemma 5.6 (Rank lemma). Let P = {x : Ax ≥ b, x ≥ 0} and let x be an extreme point solution of P such
that xi > 0 for each i. Then any number of maximal linearly independent constraints of the form Aix = bi
for some row i of A equals the number of variables.

Proof: Since xi > 0 for each i we have A=
x = A=. From Lemma 5.5 it follows that A= has full column

rank. Since the number of rows equals the number of non-zero variables in x and row rank of any matrix
equals the column rank, we have that row rank of A= the number of variables. Then any maximal number
of linearly independent tight constraints is exactly the number of linearly independent rows of A= which is
exactly the row rank of A= and hence the claim follows.

At C:, xi > 0 ∀i, A=
x

2 1
1 2
1 1

, Rank(A=
x) = 2. So maximal number of linearly independent constraints is 2.

Rank lemma basically says that if no. of variables is n and no. of constraints is n+m, we have n constraints
that get tight at an extreme point.

If all xi > 0, then all these constraints come from non-trivial constraints. That is, they come from the matrix
A. And the n constraints that get tight are linearly independent. Rank lemma is one of the key ingredients
in iterative rounding algorithms [LRS11].

References 22

References

[SA90] Hanif D Sherali and Warren P Adams. “A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems”. In: SIAM Journal on Discrete
Mathematics 3.3 (1990), pp. 411–430.

[LS91] László Lovász and Alexander Schrijver. “Cones of matrices and set-functions and 0–1 optimiza-
tion”. In: SIAM journal on optimization 1.2 (1991), pp. 166–190.

[BCC93] Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. “A lift-and-project cutting plane algorithm
for mixed 0–1 programs”. In: Mathematical programming 58.1 (1993), pp. 295–324.

[Las01a] Jean B Lasserre. “An explicit exact SDP relaxation for nonlinear 0-1 programs”. In: International
Conference on Integer Programming and Combinatorial Optimization. Springer. 2001, pp. 293–
303.

[Las01b] Jean B Lasserre. “Global optimization with polynomials and the problem of moments”. In: SIAM
Journal on optimization 11.3 (2001), pp. 796–817.

[LRS11] Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. Iterative methods in combinatorial optimiza-
tion. Vol. 46. Cambridge University Press, 2011.

[WS11] David P Williamson and David B Shmoys. The design of approximation algorithms. Cambridge
university press, 2011.

[GLS12] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and combinato-
rial optimization. Vol. 2. Springer Science & Business Media, 2012.

[Rou12a] Tim Roughgarden. Tim Roughgarden Lecture notes- A second course in Algorithms: Lecture 10.
2012. url: http://timroughgarden.org/w16/l/l10.pdf.

[Rou12b] Tim Roughgarden. Tim Roughgarden Lecture notes- A second course in Algorithms: Lecture 7.
2012. url: http://timroughgarden.org/w16/l/l7.pdf.

[Rou12c] Tim Roughgarden. Tim Roughgarden Lecture notes- A second course in Algorithms: Lecture 8.
2012. url: http://timroughgarden.org/w16/l/l8.pdf.

[Rou12d] Tim Roughgarden. Tim Roughgarden Lecture notes- A second course in Algorithms: Lecture 9.
2012. url: http://timroughgarden.org/w16/l/l9.pdf.

