
E0 249: Approximation Algorithms February 7, 2022

Week-6
Lecture 1: Sparsest Cut

Instructor: Anand Louis Scribe: V S S Aniketh

1 Introduction

In this lecture, we will look at solving two related problems- sparsity (generalized) of a graph and expansion
of a graph. First, the definitions of two problems will be introduced, followed by two Integer Programming
formulations for solving the sparsity problem. Then, we will discuss the general sparsest cut problem and
its reduction to the LP relaxation of the seconds formulation specified above. Also, we will briefly look
at solving the general sparsest cut problem with O(log(n)) approximation. Finally, we will look into the
expander problem.

2 Problem definitions

Consider a Weighted Graph G = (V,E,w), where V is the set of vertices, E is the set of edges, w is the
weight function mapping each edge to a positive real number. In the case of unweighted graph, we can
consider each edge in the graph G being mapped to 1, under the weight function. Also let |V | = n
First, we define the following:

2.1 Some Definitions

Definition 1. (Weighted degree of vertex):
The (weighted) degree of a vertex u ∈ V is defined as du =

∑
v∈V wuv.

Definition 2. (Uniform Sparsity of cut):
Let a cut be (S, V − S). Sparsity of this cut, ΦG(S) is defined as:

ΦG(S) =

∑
u∈S,v∈V−S wuv

|S| · |V − S|
· |V |

Definition 3. (Generalized sparsity of a cut, Sparsest cut):
Consider an undirected graph G with k commodities (si, ti, di), i ∈ {1, 2, ...k}, where di is the positive demand
associated with the ith commodity and si, ti ∈ V . Sparsity(generalized) of the graph is defined as:

ΦG(S) =

∑
u∈S,v∈V−S wuv∑
i:|S∩{si,ti}|=1 di

Sparsest cut in G is defined as argminS⊂V,S ̸=ϕ ΦG(S)

Definition 4. (Expansion of a cut, Expansion of Graph):
Let a cut be (S, V − S). Expansion of this cut, ϕG(S) is defined as:

ϕG(S) =

∑
u∈S,v∈V−S wuv

min(
∑

u∈S du,
∑

u∈V−S du)

Expansion of a graph G defined as ϕG = argminS⊂V,S ̸=ϕ ϕG(S)
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Definition 5. (Distance Label):
Distance label z is defined as z : E → R+. Also, we can extend the function to all vertex pairs, x : V ·V → R+

as follows:

xuv = zuv,∀(u, v) ∈ E

xuv = Shortest distance betweenu, v under distance label z, for(u, v) /∈ E

3 Uniform Sparsest Cut Problem Formulation

Formulation-1

Suppose for some S ⊂ V ,

yu =

{
1, ifu ∈ S

0, ifu /∈ S

Then
∑

u,v∈V wuv · |yu − yv| = w(S, V − S). Also,
∑

u∈V yu = |S|.
Let k = |S|. For a particular value of k, we can write the Integer Programming Problem under this
formulation as follows:

min
1

k · (n− k)
·
∑

u,v∈V

wuv · |yu − yv|

st.
∑
u∈V

yu = k

yu ∈ {0, 1},∀u ∈ V

Now, since there only |V | = n values of k, we can solve the above integer programming problem for all the
n possible values of k, to get the Uniform Sparsest Cut.
Now consider, the LP relaxation of the above Integer Programming problem, in which yu ∈ {0, 1} is replaced
by 0 ≤ yu ≤ 1. For any value of k, it is obvious to see that minimum cost function is attained by setting
yu = k

n , for all u ∈ V and the value is 0.

Hence, this formulation is not much useful.

Formulation-2

Let k = |S|. The Integer programming problem under the current formulation is written as follows:

min
1

k · (n− k)
·
∑

u,v∈V

wuv · |yu − yv|

st.
∑

u,v∈V

|yu − yv| = k · (n− k) (1)

yu ∈ {0, 1},∀u ∈ V (2)

In the LP relaxation, we once again replace the condition(2) with 0 ≤ yu ≤ 1. Now, in the absence of
condition(1), we could have added 2 constraints zuv ≥ (yu − yv) and zuv ≥ (yv − yu), for every u, v ∈ V and
at the optimal solution we would have zuv = |yu − yv|. But this won’t work in the presence of condition (1).
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Adding metric constraints on zuv, we get the following LP formulation:

min
1

k · (n− k)

∑
u,v∈V

wuv · zuv

st.
∑

u,v∈V

zuv = k · (n− k)

zuv + zvw ≥ zuw,∀u, v, w ∈ V

zuv ≥ 0,∀u, v ∈ V

Now, if we set zuv

k·(n−k) to be zuv, in the above LP, we get:

min
∑

u,v∈V

wuv · zuv

st.
∑

u,v∈V

zuv = 1

zuv + zvw ≥ zuw, forallu, v, w ∈ V

zuv ≥ 0,∀u, v ∈ V

4 Generalized Sparsest Cut

4.1 Problem Formulation

Consider a graph G = (V,E,w) and the multi commodity demand flow problem [1] on this graph, with k
commodities (si, ti, di), i ∈ {1, 2, ...k}, where si, ti ∈ V and di is the demand associated with the commodity.
Let Pi be the set of paths from si to ti.
Let fp be a flow in path p.
Let ce be a capacity of edge e, ce is 0 if edge is not present in Graph G.
The LP for this Multi-commodity demand flow problem is given as:

max f

st.
∑

P :P∈Pi

fP ≥ f · di,∀i ∈ {1, 2, ...k}

∑
P :P∋e

fP ≤ ce,∀e ∈ E

The Dual for the above problem is:

min .
∑
e∈E

ce · xe (LP-1)

st.

k∑
i=1

di · yi ≥ 1∑
e:e∈P

xe ≥ yi,∀P ∈ Pi, 1 ≤ i ≤ k

yi ≥ 0,∀1 ≤ i ≤ k

xe ≥ 0,∀e ∈ E

This Dual is the LP for Generalized Sparsest Cut problem. It can be shown [1] that the above LP has an
optimal solution which satisfies the following:
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� The distance label xe assigned to each edge e ∈ E forms a metric, i.e., ∀u, v, w ∈ V (xuw ≤ xuv + xvw).

� dist(si, ti) = xsiti = yi, for all i ∈ {1, 2, ...k}

�

∑k
i=1 yi · di = 1

Therefore, the distance labels xe for the Optimal solution satisfy the following equations:

k∑
i=1

xsiti · di = 1

xuv + xvw ≥ xuw,∀u, v, w ∈ V

Hence, the LP for Generalized sparsest cut has the same optimal value as that of the LP below:

min.
∑
e∈E

ce · xe (LP-2)

st.
k∑

i=1

di · xsiti = 1

xuv + xvw ≥ xuw,∀u, v, w ∈ V

Let f∗ be the optimal value for the Multi-commodity demand flow problem.
For any set S ⊂ V , define the following:

� δ(S) = Set of edges crossing the cut (S, V − S)

� c(S) =
∑

e∈δ(S) ce

� d(S) =
∑

i:|{si,ti}∩S|=1 di

Lemma 6. For every set S ⊂ V , f∗ ≤ c(S)
d(S)

Proof. Let A = {i : |S ∩ {si, ti}| = 1}. Hence d(S) =
∑

i∈A di
f∗ · di ≤

∑
P∈Pi

fP , for all i ∈ {1, 2, ...k}

f∗ · d(S) =
∑
i∈A

f∗ · di ≤
∑
i∈A

∑
P :P∈Pi

fP . (3)

Also, for every i ∈ A, for every path P from si to ti, there is at least one edge e in δ(S) which is contained
in the path P.
Hence ∑

i∈A

∑
P :P∈Pi

fP ≤
∑

e∈δ(S)

∑
P :P∋e

fP ≤
∑

e∈δ(S)

ce = c(S) (4)

From (3) and (4), we get:

f∗ · d(S) ≤ c(S)

f∗ ≤ c(S)

d(S)

Hence proved.
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4.2 Reduction to Sparsest Cut Problem

Introduce a commodity for each pair of points(nC2 in all) u, v ∈ V, u ̸= v, with demand being 1, i.e.(u, v, 1).
Substituting this into (LP-2) for Generalized Sparsest Cut problem , we get:

min.
∑
e∈E

ce ∗ xe

st.
∑

u,v∈V

xuv = 1

xuv + xvw ≥ xuw,∀u, v, w ∈ V

which is the same as the second formulation given for Uniform Sparsest Cut Problem.

5 Solving Generalized Sparsest Cut Problem

Definition 7. (Metric Embeddings) A metric (V, x), x is distance label assigned to edges, embeds into l1
with distortion α, if there exits an f : V → Rm for some m such that:

x(u, v) ≤ ||f(u)− f(v)|| ≤ α · x(u, v),∀u, v ∈ V

Definition 8. (Cut packing) Let G = (V,E) be a graph, with a distance labels x assigned to the edges,
which are in turn satisfying metric property. Let y be function y : 2V → R+. y is said to be α approximate
cut packing (iff):

xe ≤
∑

S:e∈δ(S)

yS ≤ α · xe,∀e ∈ E

where δ(S) is the set of edges crossing the cut (S, V − S).

Lemma 9. Let σ : V → Rm be a mapping. There is a cut packing y : 2V → R+, st. for all edges (u, v), we
have:

∥σ(u)− σ(v)∥1 =
∑

S:(u,v)∈δ(S)

yS

Moreover, the number of non-zero yS, where S ∈ 2V , is at the most m · (n− 1), where |V | = n

Proof. Refer to Lemma 21.10 in [1]

Lemma 10. Let y : 2V → R+ be a cut packing with m non-zero yS. Then, there is a mapping σ : V → Rm,
such that for each edge (u, v): ∑

S:(u,v)∈δ(S)

yS = ∥σ(u)− σ(v)∥1

Proof. Refer to Lemma 21.11 in [1]

Lemma 11. Given a graph G = (V,E), with distance labels d assigned to edges, satisfying metric property:
There is an α-approximate cut-packing y (iff) There is an embedding σ with α-distortion.

Proof. Follows from Lemma-9 and Lemma-10.

Lemma 12. Let y : 2V → R+ be an α-approximate cut packing for (V, x), where x is the distance labels,

as obtained on solving (LP-2) of the Generalized Sparsest Cut problem. Further, let S∗ = argmin({ c(S)
d(S) :

where S is st. yS > 0}). Then
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c(S∗)
d(S∗) ≤ α ∗ |OPT |

where c(S), d(S) for a set S ⊂ V are as defined in Section 4.1 and OPT is optimal solution for the generalized
sparsest cut problem

Proof. Consider
∑

e∈E ce · xe: ∑
e∈E

ce · xe ≥
∑
e∈E

ce · (
∑

S:e∈δ(S)

yS) ·
1

α

=
1

α
·
∑
S

yS
∑

e:e∈δ(S)

ce

=
1

α
·
∑
S

c(S) · yS

Now let ei = (si, ti), where (si, ti, di) is the ith commodity. Also define I
(S)
ei as follows:

I(S)
ei =

{
1, if |{si, ti} ∩ S| = 1

0, otherwise

Then, we have:

1 =

k∑
i=1

xei · di

≤
k∑

i=1

(
∑

S:ei∈δ(S)

yS) · di

=
∑
S

yS · (
k∑

i=1

I(S)
ei · d(i))

=
∑
S

yS · d(S)

Therefore, we have: ∑
e∈E ce · xe

1
≥ 1

α
·
∑

S c(S) · yS∑
S yS · d(S)∑

S c(S) · yS∑
S yS · d(S)

≥ c(S∗)

d(S∗)

α ∗
∑
e∈E

ce · xe ≥
c(S∗)

d(S∗)

Let f∗ be as defined in Sec-4.1. From Lemma-1, we have c(OPT )
d(OPT ) ≥ f∗, where OPT is an optimum for

generalized sparsest cut problem. Also, from Strong Duality of LP, it follows that f∗ =
∑

e∈E ce ∗ xe.

Therefore, c(OPT )
d(OPT ) ≥

∑
e∈E ce ∗ xe and hence:

c(S∗)

d(S∗)
≤ α · c(OPT )

d(OPT )
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Theorem 13. (Bourgain’s Theorem)
Given an n point metric space (X,d) there exists a randomized polynomial time algorithm to compute an
embedding f : X → Rpoly(n) with O(log(k))-distortion, with high probability, where k is the number of
commodities

Algorithm

Combining Bourgain’s Theorem with Lemma-2 and Lemma-5, we get a polynomial time randomized algo-
rithm that is of O(log(k))-approximation for the generalized sparsest cut problem, with high probability.

In Uniform sparsest cut problem, since the number of commodities is nC2, we get O(log(nC2)) = O(log(n))-
approximate algorithm for the Uniform Sparsest cut problem.

6 Solving Expansion of a Graph

Procedure

� Introduce commodities for each pair of vertices u,v : (u, v, du ∗ dv), where du is weighted degree of
vertex u, dv is the weighted degree of vertex v.

� With the above commodities run the algorithm for generalized sparsest cut problem and let the out-
putted set be S∗

� Return S∗

Lemma 14. Set S∗ returned by the above Procedure is O(log(n))-approximation of the expansion of G

Proof. Observe that with demands for commodities as defined in the procedure, we get:

d(S) =
∑
u∈S

du ·
∑

v∈V−S

dv

where S ⊂ V and du is weighted degree of vertex u ∈ V .
Let OPT be the optimal for Generalized Sparsest Cut problem. Because the Algorithm suggested in Section-5
is an O(log(n))-approximation algorithm, we have:

c(S∗)

d(S∗)
≤ O(log(n)) · c(OPT )

d(OPT )
≤ O(log(n)) · c(S1)

d(S1)
. (5)

LetmS = min{
∑

u∈S du,
∑

v∈V−S dv} andMS = max{
∑

u∈S du,
∑

v∈V−S dv}. Note that for any Set S ⊂ V :

mS +MS =
∑
u∈V

du

mS ≤ MS

Hence,

0 ≤ mS ≤
∑

u∈V du

2
≤ MS ≤

∑
u∈V

du (6)

Combining (5), (6), we get:

c(S∗)

mS∗
≤ 2 ·O(log(n)) · c(S1)

mS1

c(S∗)

mS∗
≤ O(log(n)) · c(S1)

mS1

Hence, S∗ is an O(log(n))-approximation to S1, which is expansion of G.
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7 Expanders

Let G = (V,E) be d-regular expander graph |V | = n, n > N0 where N0 is sufficiently large. Then, h(G) > ε
for some constant ε > 0, where h(G) is the edge expansion defined as:

h(G) = minS:0<|S|≤n
2

e(S, V − S)

|S|

where e(S, V − S) is the number of edges crossing the (S, V − S). From the definition of h(G), and that
h(G) > ε, we have:

e(S, V − S)

|S|
> ε

e(S, V − S)

|S|
· n

|V − S|
> ε

for all 0 < |S| ≤ n
2 . Hence min0<|S|≤n

2

e(S,V−S)
|S| · n

|V−S| = ΦG > ε too.

Hence, ΦG = Ω(1)

Define capacities st. ce = 1, for all e ∈ E and cuv = 0, for all (u, v) /∈ E
Now, consider the metric z defined on the graph as follows: Set zuv = 1, for all (u, v) ∈ E

zuv = shortest distance between (u, v) ∀(u, v) /∈ E

We have: ∑
u,v∈V

cuvzuv =
n · d
2

Fix a vertex u ∈ V . Number of vertices at a distance of at most k is ≤ d1 + d2 + ....dk ≤ d(k+1).

Hence, for k = ⌊(logd(n2 ))⌋ − 1, at least n
2 vertices are at a distance of at least k from u.

Therefore, ∑
u,v∈V

zuv ≥
∑
u∈V

n

2
· k = Ω(n2 logd n)

Now setting ruv = zuv∑
u,v∈V zuv

, we see that r is a feasible solution for the following LP of the Uniform Sparsest

cut problem:

min
∑

u,v∈V

wuv · zuv

st.
∑

u,v∈V

zuv = 1

zuv + zvw ≥ zuw, ∀u, v, w ∈ V

zuv ≥ 0, ∀u, v ∈ V

Hence,

n ·
∑

u,v∈V

cuv · ruv = n ·
∑

u,v∈V cuv · zuv∑
u,v∈V zuv

= n ·O(
n ∗ d

n2 logd n
) = O(

1

log(n)
)

Now let x be the optimal solution for the above LP. Let OPT be the uniform sparsest cut for graph G

ΦG(OPT ) = Ω(1)

n ·
∑

u,v∈V

cuvxuv ≤ n ·
∑

u,v∈V

cuvruv = O(
1

log(n)
)
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Integrality Factor= Ω(1)

O( 1
log(n)

)
= Ω(log(n))

Also, Bourgain’s Theorem is tight up to constant factors.
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