
E0 249: Approximation Algorithms February 9, 2022

Week-6
Lecture 2: Max Cut

Instructor: Anand Louis Scribe: V S S Aniketh

1 Introduction

In this lecture, we will look at solving the Max-cut problem. First we will look into the basic formulation and
a randomised , de-randomised algorithm to solve the problem using this formulation. Both the algorithms
produce a 0.5- approximation. Then, we will look into Quadratic, semi-definite, and vector program based
formulations. Subsequently, we will look into Max-Cut SDP rounding method to solve the problem using
vector program based formulation which produces a 0.878- approximation to the Max-cut problem.

2 Max-Cut Formulations

Definition 1. (Max-Cut)
Given a weighted graph G = (V,E,w), the max-cut is given as argmaxS⊂V w(E(S, V − S))

2.1 Basic Formulation

An integer programming formulation of Max-cut is given as:

max
∑

(i,j)∈E

w(u,v)|xu − xv| (IP-1)

st. xi ∈ {0, 1},∀i ∈ V

2.1.1 A Randomised Algorithm

For every i ∈ V , randomly assign it to {0, 1}, with probability = 1
2 .

An edge (i, j) would cross the cut (iff) (xi = 1∧ xj = 0)∨ (xi = 0∧ xj = 1) and the probabilty of this event
is 1

4 + 1
4 = 1

2 .
The capacity of edges crossing the cut is:∑

(i,j)∈E

w(i,j) × I(i,j)crosses cut

where I(i,j)crosses cut is the indicator r.v denoting the event that the edge (i, j) crosses the cut.
Hence the expected capacity of edges crossing the cut is:

E(
∑

(i,j)∈E

w(i,j) × I(i,j)crosses cut) =(
∑

(i,j)∈E

w(i,j) × Pr(I(i,j)crosses cut))

=(
∑

(i,j)∈E

w(i,j))×
1

2

=

∑
(i,j)∈E w(i,j)

2

≥|Max-cut|
2

E0249-Max Cut: 1

2.1.2 A De-randomised Algorithm

The Algorithm above can be de-randomised by the method in which by induction, at every stage we make
a choice for a variable st. the conditional expectation with this choice, along with the choices made up to
previous stage, is at least the conditional expectation obtained up to the previous stage.

This, in the case of Max-Cut problem translates to the following Algorithm:
Starting from i = 1 up to |V |, place i on that side of the cut where less no. of neighbors of i, among
{1, 2, ..i− 1}, are present.
This de-randomised Algorithm has an approximation Ratio = 0.5.

2.2 Quadratic, Semi-definite, Vector program based formulations

Max-Cut problem can be re-formulated in the following way:

max
∑

(i,j)∈E

w(i,j)(xi − xj)
2 (IP-2)

st. xi ∈ {0, 1},∀i ∈ V

Another IP for the Max-Cut problem is:

max
1

4
×

∑
(i,j)∈E

w(i,j)(xi − xj)
2 (IP-3)

st. xi ∈ {−1, 1},∀i ∈ V

Consider vector x = [xi], i ∈ V . Introduce a variable Xij to denote xixj . Consider X = [Xij], (i, j) ∈ V ×V .
Then,

X = xxT

Substituting this into (IP-3) and setting Xii to 1 and using the fact that X ≽ 0, we get the following
semi-definite program:

max
∑
i,j∈V

wij
1

4
(Xii +Xjj − 2Xij) (SDP)

st. Xii = 1,∀i ∈ V

X ≽ 0

Any feasible solution of (IP-3) has a feasible equivalent(in terms of cost) solution SDP.

Lemma 2. For any X ≽ 0, X ∈ Rn×n there exist vectors v1, v2, ...vn ∈ Rn, such that Xij = ⟨vi, vj⟩,∀i, j ∈ [n]

Proof. It follows from spectral decomposition of X(being symmetric and positive semidefinite) that:

X = PDPT = (PD
1
2PT)× (PD

1
2PT)

where, D is a diagonal matrix with all entries(eigenvalues)≥ 0. P has orthonormal eigenvectors.

Setting PD
1
2PT = V , where V ∈ Rn×n and V = [v1 v2 ... vn], where vi ∈ Rn, we get Xij = ⟨vi, vj⟩∀i, j ∈

[n]

Using the above result, we get the following vector program based formulation which has the same set of
feasible solutions as that of (SDP):

max
∑
i,j∈V

wij
1

4
∥vi − vj∥2 (VP-1)

st. ∥vi∥2 = 1,∀i ∈ V

vi ∈ Rn,∀i ∈ V

E0249-Max Cut: 2

3 Max-cut SDP rounding

3.1 Algorithm

An SDP based rounding method for Max-Cut is as below:

� Solve the Vector program (VP-1) for getting the vectors vi, i ∈ V

� Sample a random vector g ∼ N (0, 1)n

� Output Sg = {i ∈ V : ⟨vi, g⟩ > 0}

3.2 Analysis

3.2.1 Algorithm is 0.878-approximate

Consider an edge {i, j} ∈ E

Pr({i, j} is cut) = Pr(⟨vi, g⟩ > 0 and ⟨vj , g⟩ < 0) + Pr(⟨vi, g⟩ < 0 and ⟨vj , g⟩ > 0) =
θij
π

SDP contribution of {i, j} ∈ E is:

1

4
∥vi − vj∥2 =

1

4
(∥vi∥2 + ∥vj∥2 − 2⟨vi, vj⟩) =

1

4
(1 + 1− 2 cos θij =

1

2
(1− cos θij)

Let αGW = infθ∈[0,π]

θ
π

1
2 (1−cos θ

). Then,

Pr[i, j is cut] =
θij
π

≥ αGW .
1

2
(1− cos θij) = αGW .

1

4
∥vi − vj∥2

E[cut] =
∑

{i,j}∈E

wijPr[i, j is cut] ≥ αGW

∑
{i,j}∈E

.wij
1

4
∥vi − vj∥2 = αGW |OPTSDP |

where |OPTSDP | is the value of optimal solution obtained for the SDP.
Also |OPTSDP | ≥ |Max-Cut|. Hence the SDP rounding Algorithm for Max-Cut problem is αGW -approximate.

αGW ≈ 0.878

3.3 Lower bound on Fraction of edges cut on Average

Let 1
W

∑
i,j∈V wij

1
4 ∥vi − vj∥2 = 1− ε, where W =

∑
i,j∈V wij . Let

1
4 ∥vi − vj∥2 = 1− εij . Then,∑

i,j∈V

wij

W
× 1

4
∥vi − vj∥2 = 1− ε

Lemma 3. For a fixed i, j ∈ V , Pr[(i, j) is not cut by Algorithm] = O(
√
εij)

Proof.

Pr[(i, j) is not cut by Algorithm] =1− θij
π

=
π − θij

π

εij = 1− 1

4
∥vi − vj∥2 = 1− (

1− cos θij
2

) =
1 + cos θij

2
= cos2(

θij
2
) = sin2(

π − θij
2

)

For x ∈ [0, π
2], x = O(sinx). Therefore,

Pr[(i, j) is not cut by Algorithm] =
π − θij

2
= O(| sin (π − θij

2
)|) = O(

√
εij)

E0249-Max Cut: 3

Theorem 4. Algorithm cuts at least 1−O(
√
ε) fraction of edges.

Proof. Let the fraction of edges not cut be denoted by r.v F . Let IE denote indicator rv for an event E.
Then,

F =
∑
i,j∈V

wij

W
× I(i,j) is not cut by Algorithm

E(F) =
∑
i,j∈V

wij

W
× Pr[(i, j) is not cut by Algorithm]

=
∑
i,j∈V

wij

W
×O(

√
εij)

We have the following equality: ∑
i,j∈V

wij

W
× (1− εij) = 1− ε

∑
i,j∈V

wij

W
× εij = ε

Further, observing that f(x) =
√
x is a concave function, on applying Jensen’s inequality for concave

functions, to the last expression, we get:

E(F) =
∑
i,j∈V

wij

W
×O(

√
εij) ≤ O(

√ ∑
i,j∈V

wij

W
× εij) = O(

√
ε)

Hence, the expected fraction of edges cut by the Algorithm is 1− E(F) = 1−O(
√
ε)

4 {0, 1}-SDP

� In this SDP version, for each i ∈ V , introduce vectors v
(0)
i , v

(1)
i to indicate 0 or 1 label.

� Since i can receive exactly one of these labels, add constraint ⟨v(0)i , v
(1)
i ⟩ = 0 and

∥∥∥v(0)i

∥∥∥2+∥∥∥v(1)i

∥∥∥2 = 1.

� For each i, j ∈ V , add constraints
∥∥∥v(0)i − v

(0)
j

∥∥∥2 =
∥∥∥v(1)i − v

(1)
j

∥∥∥2 = ⟨v(0)i , v
(1)
j ⟩+ ⟨v(1)i , v

(0)
j ⟩

With the above constraints we consider the following vector program(VP-2) which corresponds to SDP-1:

max
∑
i,j∈V

wij

∥∥∥v(0)i − v
(0)
j

∥∥∥2 (VP-2)

st. ⟨v(0)i , v
(1)
i ⟩ = 0∥∥∥v(0)i

∥∥∥2 + ∥∥∥v(1)i

∥∥∥2 = 1,∀i ∈ V∥∥∥v(0)i − v
(0)
j

∥∥∥2 =
∥∥∥v(1)i − v

(1)
j

∥∥∥2
= ⟨v(0)i , v

(1)
j ⟩+ ⟨v(1)i , v

(0)
j ⟩,∀i, j ∈ V

Under the above constraints, the following claim holds

Claim 5. For all i, j ∈ V , v
(0)
i + v

(1)
i = v

(0)
j + v

(1)
j .

E0249-Max Cut: 4

Proof.

⟨v(0)i + v
(1)
i , v

(0)
j + v

(1)
j ⟩ = ⟨v(0)i , v

(0)
j ⟩+ ⟨v(1)i , v

(1)
j ⟩+ (⟨v(0)i , v

(1)
j ⟩+ ⟨v(1)i , v

(0)
j ⟩)

= ⟨v(0)i , v
(0)
j ⟩+ ⟨v(1)i , v

(1)
j ⟩+ 1

2
(
∥∥∥v(0)i − v

(0)
j

∥∥∥2 + ∥∥∥v(1)i − v
(1)
j

∥∥∥2)
=

1

2
(
∥∥∥v(0)i

∥∥∥2 + ∥∥∥v(0)j

∥∥∥2 + ∥∥∥v(1)i

∥∥∥2 + ∥∥∥v(1)j

∥∥∥2)
= 1

Therefore,∥∥∥(v(0)i + v
(1)
i)− (v

(0)
j + v

(1)
j)

∥∥∥2 =
∥∥∥v(0)i + v

(1)
i

∥∥∥2 + ∥∥∥v(0)j + v
(1)
j

∥∥∥2 − 2⟨v(0)i + v
(1)
i , v

(0)
j + v

(1)
j ⟩ = 0

Hence, v
(0)
i + v

(1)
i = v

(0)
j + v

(1)
j .

Let v0 = v
(0)
i + v

(1)
i , and define vi = 2v

(0)
i − v0.

Lemma 6. (vi)i∈V form a feasible solution to VP-1 with equal cost as that in VP-2

Proof.

∥vi∥2 =
∥∥∥2v(0)i − v0

∥∥∥ = 4
∥∥∥v(0)i

∥∥∥2 + ∥v0∥2 − 4⟨v(0)i , v0⟩ = 1

1

4
∥vi − vj∥2 =

1

4

∥∥∥(2v(0)i − v0)− (2v
(0)
j − v0)

∥∥∥2 =
∥∥∥v(0)i − v

(0)
j

∥∥∥2

E0249-Max Cut: 5

	Introduction
	Max-Cut Formulations
	Basic Formulation
	A Randomised Algorithm
	A De-randomised Algorithm

	Quadratic, Semi-definite, Vector program based formulations

	Max-cut SDP rounding
	Algorithm
	Analysis
	Algorithm is 0.878-approximate

	Lower bound on Fraction of edges cut on Average

	{0,1}-SDP

