
E0 249: Approximation Algorithms, Spring 2022 February 21, 2022

Week 8, Lecture 1

SAT
Instructor: Anand Louis Scribe: Siddhartha Sarkar

1 Introduction

In this lecture, we will discuss the boolean satisfiability (SAT) problem through which we will illustrate a
number of techniques that are useful in many cases. We will look at two algorithms: one that works very well
for a certain regime of parameters and the other works well for a completely different regime of parameters.
Then we will look at a third algorithm that sort of does the best of both worlds and ends up performing
better than both of the previous algorithms. So in today’s lecture, we intend to illustrate this idea that how
we can get significantly better of two worlds under consideration.

Definition 1 (MAX-SAT problem). Given a set of boolean variables x1, x2, . . . , xn, a clause is an “OR” of
the boolean variables or their negations. Given a set of m clauses, the goal is to compute the assignment that
satisfies the largest fraction of clauses.

Definition 2 (MAX-k-SAT problem). Given a set of boolean variables x1, x2, . . . , xn, a clause is an “OR” of
the boolean variables or their negations. Given a set of m clauses where every clause has at most k (k ≥ 2)
literals, i.e., boolean variables or their negations, the goal is to compute the assignment that satisfies the
largest fraction of clauses.

Essentially MAX-k-SAT is the restricted version of MAX-SAT.

2 First Algorithm: Random Assignment

A simple algorithm for MAX-k-SAT is to independently set xi to true or false with probability 1/2, for each
i ∈ [n].

Algorithm 1: Random Assignment

1 For each i ∈ [n], independently set xi to true or false with probability 1/2.

Here the clause Ci is a conjunction of |Ci| literals. A clause Ci = xi1 ∨ ¬xi2 ∨ . . . ∨ ¬xik will be satisfied
if at least one of the literals turns out to be true. In other words, it will not be satisfied if each of the literals
is set to false. Therefore,

P[Ci is satisfied] = 1− 1

2|Ci|

By linearity of expectation, the expected number of clauses that are satisfied is given by

E[number of clauses satisfied] =
∑
i∈[m]

(
1− 1

2|Ci|

)

For the MAX-k-SAT problem, if |Ci| = k for each clause, then,

E[number of clauses satisfied in k-SAT] = m ·
(
1− 1

2k

)

E0 249: Approximation Algorithms, Spring 2022-1

Since, the maximum number of clauses satisfied is at most m, i.e., OPT ≤ m, the above algorithm is a
(1− 1

2k
)-approximation for MAX-k-SAT when each clause has exactly k literals.

In general, |Ci| ≥ 1 and hence 1
2|Ci|

≤ 1/2. Therefore,

E[number of clauses satisfied] =
∑
i∈[m]

(
1− 1

2|Ci|

)

≥
∑
i∈[m]

(
1− 1

2

)
=

m

2

Therefore, the algorithm above is a 1
2 -approximation for MAX-SAT.

3 Second Algorithm: Randomized LP Rounding

We will write an integer program for the MAX-SAT problem. To do so, let us introduce variable yi to
indicate the value of xi, i.e.,

yi =

{
1 if xi is true

0 if xi is false

Similarly, introduce variable zj to indicate whether clause Cj is satisfied. For a clause Cj , let Pj be the set
of indices that occur positively and Nj be the set of indices that occur negated. So,

Cj = (∨i∈Pj
xi) ∨ (∨i∈Nj

¬xi)

So, we will add the following constraint for clause Cj in the linear program.

zj ≤
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi)

Since we want to maximize the number of clauses satisfied, we write the integer linear program as below

max
∑
j∈[m]

zj

subject to

zj ≤
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ∀j ∈ [m]

zj ∈ {0, 1} ∀j ∈ [m]

yi ∈ {0, 1} ∀i ∈ [n]

An optimal solution to the above integer program gives us an optimal solution to the MAX-SAT problem.
We relax the integrality constraints to get the following LP.

max
∑
j∈[m]

zj (1)

subject to

zj ≤
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ∀j ∈ [m] (2)

E0 249: Approximation Algorithms, Spring 2022-2

0 ≤ zj ≤ 1 ∀j ∈ [m]

0 ≤ yi ≤ 1 ∀i ∈ [n]

We solve the LP relaxation (1). For each i, independently set xi to true with probability yi. If the optimal
solution to the LP happens to be an integer solution, each yi is either 0 or 1. Then we either set xi to true
or set it to false. This solution in fact satisfies the maximum number of clauses. This is just a sanity check.

Algorithm 2: Randomized LP Rounding

1 Solve the linear programming relaxation.
2 For each i ∈ [n], independently set variable xi to true with probability yi.

Now let us analyze the probability of an arbitrary clause Cj being satisfied. Suppose |Cj | = k. As before,
since clause Cj is an OR of a number of literals, it will be easier to compute the probability that it is not
satisfied.

P[Cj is not satisfied] =
∏
i∈Pj

(1− yi)
∏
i∈Nj

(1− (1− yi))

≤

(
1

k

(∑
i∈Pj

(1− yi) +
∑
i∈Nj

(1− (1− yi))

))k

(Applying AM-GM inequality)

=

(
1− 1

k

(∑
i∈Pj

yi +
∑
i∈Nj

(1− yi)

))k

(By rearranging the terms)

≤
(
1− zj

k

)k

(By constraint (2))

Therefore,

P[Cj is satisfied] = 1− P[Cj is not satisfied]

≥ 1−
(
1− zj

k

)k

While this is a good bound, this is not immediately useful. The expected number of clauses satisfied will be
sum of these probabilities over all the clauses j. Then we would like to compare the LP value of (1) with
this expected number of clauses. The objective function of the LP is a linear polynomial in the zj ’s whereas
the bound we have got is a non-linear polynomial in the zj ’s. Therefore, they are not easy to be compared.
Therefore, we have to find a way to lower bound this quantity by some linear polynomial of the zj ’s. That
will help us compare the expected number of clauses satisfied with the optimal value of the LP. Here is a
lemma that accomplishes the same.

Lemma 3. For x ∈ [0, 1],

1−
(
1− x

k

)k ≥
(
1−

(
1− 1

k

)k)
x

Proof. Consider the function f(x) as below which is concave in [0, 1].

f(x) = 1−
(
1− x

k

)k
We have

f ′(x) =

(
1− x

k

)k−1

E0 249: Approximation Algorithms, Spring 2022-3

f ′′(x) = −k − 1

k

(
1− x

k

)k−2

Therefore f ′′(x) ≤ 0 for all x ∈ [0, 1]. Thus f(x) is concave in [0, 1]. Therefore the function does not lie
below the line segment joining (0, f(0)) and (1, f(1)). Therefore,

f(x)− f(0)

x− 0
≥ f(1)− f(0)

1− 0

=⇒ f(x) ≥ x(f(1)− 0)

=⇒ f(x) ≥
(
1−

(
1− 1

k

)k)
x

By applying Lemma (3), we can write

P[Cj is satisfied] ≥
(
1− (1− 1

k
)k
)
zj ≥ (1− 1

e
)zj

By linearity of expectation,

E[number of clauses satisfied] ≥
∑
j∈[m]

(1− 1

e
)zj

=
(
1− 1

e

)
OPTLP

≥
(
1− 1

e

)
OPT

Therefore, the Algorithm (2) is an
(
1 − 1

e

)
-approximation for the MAX-SAT problem. This is already an

improvement over the 1/2-approximation we have seen earlier.

4 Third Algorithm: The Best of Both Worlds

Now let us look at the two algorithms more closely. For a clause Cj having k literals, we have

P[Algorithm 1 satisfies Cj] =

(
1− 1

2k

)

P[Algorithm 2 satisfies Cj] ≥
(
1− (1− 1

k
)k
)
zj

Therefore, Algorithm 1 is better for large values of k, Algorithm 2 is better for small values of k. So what
can we do to get the best of both worlds? The following algorithm is surprisingly powerful and does exactly
what we intend to do.

Algorithm 3: Combining the two algorithms

1 Choose a random algorithm from {Algorithm 1, Algorithm 2}.
2 Run it on the instance and return its output.

E0 249: Approximation Algorithms, Spring 2022-4

The following equation is crucial and it captures the probability of a clause being satisfied by this algorithm.

P[Algorithm 3 satisfies Cj] =
1

2
P[Algorithm 1 satisfies Cj] +

1

2
P[Algorithm 2 satisfies Cj]

≥ 1

2

(
1− 1

2k

)
+

1

2

(
1− (1− 1

k
)k
)
zj

≥

(
1

2

(
1− 1

2k

)
+

1

2

(
1− (1− 1

k
)k
))

zj (Since zj ∈ [0, 1])

Now we can analyse the performance of Algorithm (3). The Table 1 summarises the probability of a clause
Cj being satisfied.

k
(
1− 1

2k

) (
1− (1− 1

k)
k
)

1
2

(
1− 1

2k

)
+ 1

2

(
1− (1− 1

k)
k
)

1 1/2 1 3/4
2 3/4 3/4 3/4

≥ 3 ≥ 7/8 ≥ (1− 1/e) ≥ 3/4

Table 1: Probability of a clause Cj with k literals being satisfied.

Thus, we have

P[Algorithm 3 satisfies Cj] ≥
3

4
zj

Therefore,

E[number of clauses satisfied by Algorithm 3] ≥ 3

4
OPTLP ≥ 3

4
OPT

It is noteworthy that choosing Algorithm 1 with probability p and Algorithm 2 with probability (1− p) for
some p ̸= 1/2 does not improve the approximation ratio of Algorithm 3. The current state of the art for the
MAX-SAT problem is better than 3/4.

4.1 MAX-2SAT

MAX-2SAT is the restricted version of MAX-SAT where each clause contains at most 2 literals. We have
already seen a 3/4-approximation for MAX-2SAT in the previous section. Here, we will improve on that.
We write the integer linear program for the MAX-2SAT problem where each clause has exactly 2 literals
and the goal is to find a truth assignment of the boolean variables that maximizes the the number of clauses
satisfied. For each boolean variable xi, we consider a variable yi ∈ {+1,−1}. The boolean variable xi is
true if and only if yi = +1. For each clause, one can write a quadratic objective function. For example,
the clause ¬xa ∨ xb is not satisfied if and only if 1

4 (1 + ya)(1 − yb) = 1. Therefore, the clause ¬xa ∨ xb

is satisfied if and only if 1 − 1
4 (1 + ya)(1 − yb) = 1. For each clause of the MAX-2SAT instance there is

a corresponding quadratic term that captures whether the clause is satisfied. Therefore, we can write the
integer linear program for MAX-2SAT as

max
∑
j∈[m]

val(Cj)

subject to
y2i = 1 ∀i ∈ [n]

yi ∈ {+1,−1} ∀i ∈ [n]

E0 249: Approximation Algorithms, Spring 2022-5

where val(Cj) is the corresponding quadratic term for the clause Cj .

A solution to this quadratic program will give an optimal solution to the MAX-2SAT problem. We relax
the Integer Linear Program almost the same way as we did for the MAX-CUT Integer Linear Program. We
introduce a one vector v0 to play the role of 1 in the objective function. For the clause Cj = ¬xa ∨ xb, we
replace 1 by v0, ya by vector va and yb by vector vb, and consider the dot product instead.

val(Cj) = 1− 1

4
⟨v0 + va, v0 − vb⟩

= 1− 1

4
(⟨v0, v0⟩+ ⟨v0, va⟩ − ⟨v0, vb⟩ − ⟨va, vb⟩)

=
1

4
(1− ⟨v0, va⟩) +

1

4
(1 + ⟨v0, vb⟩) +

1

4
(1 + ⟨va, vb⟩)

Thus, the value of a 2 literal clause consists of a linear combination of vector terms of the form (1+ ⟨vi, vj⟩)
or (1− ⟨vi, vj⟩) for 0 ≤ i < j ≤ n. We can obtain the vector program relaxation of the ILP as

max
∑
j∈[m]

val(Cj)

subject to
||vi||2 = 1, 1 ≤ i ≤ n

||v0||2 = 1

vi ∈ Rn+1, 0 ≤ i ≤ n

Here, val(Cj) is the corresponding vector term for the clause Cj . To round the solution of the above program,
we apply the Goemans Williamson method as shown below.

Algorithm 4: Goemans Williamson rounding algorithm for MAX-2SAT

1 Sample a random Gaussian g ∼ N (0, 1)n+1.
2 Let Sg = {i ∈ [n] : ⟨vi, g⟩ has the same sign as ⟨vi, g⟩}.
3 Set all variables in Sg to true and variables in [n] \ Sg to false.

The rounding algorithm is very similar to what we did before in MAX-CUT. We need to analyse the terms
in the objective function. The term (1 − ⟨v0, va⟩) gets rounded to 2 with probability θ0a/π and we have
1−⟨v0, va⟩ = 1− cos θ0a. The term (1+ ⟨v0, vb⟩) gets rounded to 2 with probability (π− θ0b)/π and we have
1 + ⟨v0, vb⟩ = 1 + cos θ0b = 1− cos(π − θ0b).

Now the same lower bound as in the analysis of the SDP rounding of MAX-CUT is applicable. This gives
us an αGW = 0.878 approximation for the MAX-2SAT problem. For the MAX-3SAT problem, H̊astad [1]
proved that it is NP-hard to get a better approximation ratio than 7/8. In fact, it was proved that for
MAX-k-SAT, getting a better than 1 − 1

2k
approximation is NP-hard, where k ≥ 3. This landmark paper

was awarded the Gödel Prize in 2011. Such problems where a random assignment is the best we can do are
called approximation resistant problems. So, MAX-k-SAT is an approximation resistant problem. Another
example of an approximation resistant problem is MAX-k-XOR. The PCP theorem essentially says that it
is NP-hard to distinguish whether an instance is satisfiable or whether one can satisfy only 0.99 fraction of
the clauses there.

References

[1] J. Håstad, Some optimal inapproximability results, J. ACM 48 (2001), p. 798–859. url: https:

//doi.org/10.1145/502090.502098, doi:10.1145/502090.502098.

E0 249: Approximation Algorithms, Spring 2022-6

https://doi.org/10.1145/502090.502098
https://doi.org/10.1145/502090.502098
http://dx.doi.org/10.1145/502090.502098

	Introduction
	First Algorithm: Random Assignment
	Second Algorithm: Randomized LP Rounding
	Third Algorithm: The Best of Both Worlds
	MAX-2SAT

