
 

atSample complexity and ve Dimension

Ch20 YatIpbeled

Sampling using a small set of observations
estimate properties of an entire sample space

sample complexity minimum size sample to
obtain the required result

Let us consider two important problems
Range detection

oProbability estimation

Range is just a subset of the underlying space
Goal is to use one set of samples to detect
a set of ranges or estimate the prob of
ranges the set of possible ranges can be

really huge even infinite

For detection we want the sample to intersect
with each range in the set
while for prob estimation we want the

fraction of points in the sample that intersect
with each range in the set to approximate
the assoc prob of the range I I

Q Can we obtain some sample whose size is
independent of the number of ranges
and dependent on the structure of the space I



Q Assume we are given a range a b with an

underlying unknown prob distr D on O 27 S t

Pm o H E a b 7 E

Then how many samples do we need s t w p 77 8

we have at least one sample in a b

Let on x2 sem be m indep samples in IR

from an unknown distr D

Given interval a b if IP see a b Z E

then prob that a sample of size m ten yo
intersects a b is 7 I 7 EM 7 1 8

Given K such intervals union bound will show

IP a sample of size Ye en ko intersects each of
the intervals I K i e een's 7 1 8

Say we want select few samples from o 27 s t

all intervals of length no contains at least

one point in the sample
There are infinite such sets So union bound

won't help But ten equidistant points would
already work

indeed we'll see for any distribution a sample
size of s Ye en yo intersects all intervals having
prob 7 E W p 7 1 8

VC dimensions Rademacher complexity
helps in evaluation of sample complexity



VC Dimension Vapnik Chervonenkis dimension

X is also called
ground set

set of all closed
Example of range space intervals

X IR 62 Ca b l ca b E R

I
i s
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S 2,4 of 2 4 Bys is the set of all

two T possible subsets of S2 4

be

shattered
points

0

5 2 4,6 Bys gives seven of the eight possible
zpfoigtagq.bered subsets of S except 2,6

Any interval containing 2 6 must contain 4

1

So VC Dim of above range space with infinite
points ranges is only 2



Note VC dim R d if there is some set

of cardinality d that is shattered by R
It does not say all sets of cardinality d are

shattered by R To show VC dim d we

need to show all sets of cardinality d

are not shattered by R

M pEs
Convex sets X 1122 R

the family of all closed
convex sets on the plane

Claim This range space has infinite VC dimension
Need to show for any n E DN there exists a

set S with 1st n that can be shattered

Sn see an be n points on the

boundary of a circle

OF Any subset Y E Sn Y of defines a

convex set that does not contain

any points in Snl Y

Hence Y is included in the projection of Ron Sn
Empty set is also a projection as well

Hence F n E ar Sn is shattered

Disks X 1122 R the family of all disks on the plane
Observation For any 3 points on the plane in

general position one can find eight disks
so that the points are shattered



Note this is not true if the points are

collinear However we just need to show

one set of three points that can be shattered

É
6 I 4

I 4

Can disks shatter a set P with four points ha b c d
case 1 convex hull of P has only 3 points on

its boundary say a b c

Then X a b c can not be obtain as a

projection
Due to convexity any disk containing a b c

must contain d

Case 2 all 4 points are on the convex hull
Then if we can realize a C b d as

projections these two disks will intersect each
other at a points a contradiction

Note pseudodisks are

objects that can intersect
at E 2 times



Growth Function

different subsets of
size Ed out of n elements G din Edo Y
For n d we have g din 2d

for n d 7,2 g din I if E nd

The number of ranges for a set of n elements
grows polynomially in n the power being
dimension d instead of exponentially

Observation Y d n g Cd n 1 y d 1 n 1

not toinclude includes first
elementsfirst element

o Sauer Shelah theorem

Let X R be a range space with 1 1 n

VC dim d Then 121 I 9 Cd n End

proof we prove the claim by induction on d

and for each d by induction on n

Trivially holds for d o or n 0 as then G d n7 1

Take REX Define
An P a I r u n ER and I a E R

1212 7122 I E R



claim I 621 I Ralt 1 Rial
we charge elements of R to their corns
element in Rise

The only bad case is when I p s t both
U u and P a are in J2 as then

these two distinct ranges get mapped to

same range in Rise

But such ranges contribute to exactly one

element in Rn

We'll show us dim of X 223 Rn E d 1

VC dim of X 323 Rin is Ed

Then we il get

121 Éiltian ÉgÉÉi n i scan i
obs I g din

To conclude

ve dim of X a 1 In E d

For contradiction assume Ryu shatters a

set s of size It 1

Now for every R E R a there is a coms

R E R S t either R p or R RU ha



In either cases Rls contains s n R s n R

Then 22 shatters s as well contradicting
VC Din X R to be d

ve dim of X a In E d t

For contradiction assume Ra shatters a

set s of size d

Now for every R E Ri a both R and R U a

are in R
In both cases I Is contains s n k s n R

Then I also shatters S A contradiction Dog

ve dimension component bounds
Bounds Vc Dim of a complex range space as a fanof
VC din of its simplercomponents

circle
squares
etc



Shattering dimension

Defn shatter function Given range space
s X R its shatter function its m is the
maximum number of sets that might be

created by s when restricted to subsets of
size m

Ron BIs Cm 334 Ipay
Projectionof

Shattering dimension of S is the smallest

p s t Its m 0 me for all m

Note In general its n 2

Corollary If S X R is a range space of
VC dim d then A finite B E X we have

1RIB I E ITS IBI E Y d IBI

Proof n 1131 so I Rip 1 E it 1131 BY def
of ITS

g can BYE
nd

so shattering dimension of a range space
is bounded by its re dim



Shaft Vadim

lemma If S CX R is a range space with

shattering dim p then Vadim s is o p logp

Proof Let NE X be the largest set shattered
by S and S IN 1

we have 28 9 2 É itscini Eje where cis
a constant

S E lg c P lg 8
Effigiesp z co lg c lg 8

Assuming 87 Max 2 21g c we have

p Is 312 60

Fact for u re ifEasy8 I 2 OP In OP then me 2 ulna
pg

Advantage shattering functions are sometimes
easier to compute gives good approximation
of Vc dimension



Shattering dimension of disks

Lemma consider range space s X R where
X IRI and R is the set of disks
Then shattering dim of S is 3

assume they
are in general

Proof Consider any set P of n pottsÉn the
plane and set f dip
We claim I 1 I 423

The set F contains only n sets with a single
point in them I 2 sets with 2 points in them
So fix QE F S t 1 Q1 73

Let disk D realizes Q i e Pn D Q

Shrink D till its boundary passes through
a point p
Continue shrinking until the boundary passes
through two points p d E Q

moving
centerof
Ditowards



We continuously deform D s t it has both

p d on its boundary
This can be done by moving
center of D along the

bisector line between p q

We continue till we hit a

third point S E P
ÉÉÉÉÉ

g is a unique circle passing
through p d S

Also D n P s D n P S

Thus we can specify the point set PhD by
specifying P d s xp sea Ks p a s are points
defining D and K E on states whether point
is in Q or not In the above case it is 1.1.07

There are 8 3 different subsets in F

containing more than 3 points as each

such subset maps to a c canonical disk
there are such disks each disk
defines at most 8 different subsets

similar argumentation implies that there
are at most a 2 subsets that are defined
by a pair of points that realizes the

diameter of the resulting disk

IFI it n 4 2 s 3 E 4N



PPP Insight Above argumentation gives a

powerful tool shattering dim of a range
space defined by a family of shapes is

always bounded by the number of points
that determine a family
This sometimes makes it more convenient
to work with shattering dim instead of
VC dimension

Example shattering dimension

of arbitrarily oriented

rectangles is bounded by 5

Dual shattering dimension

Ranges Points

S S O O O

00

Alternately dual shattering Its is the maximum numberofpointsthat are created when restricted 6 m sets Dual shattering din of S is
the smallest P's t T m 0 mo't t m



Claim Dual shattering dim of disks is 2

Disks intersect each other at most 2 times

n

The complexity of arrangement of
n disks is O 2 I i.e 062

To maximize Xt we need at least one

point in every intersection combination of ranges
in R

Hence number of ranges in Xtc the complexity
of arrangement of ranges in 22 0627 B

lemma consider a range space s X R
with ve dim d Then the dual range space
St R X has ve dim I 2dt

Lemma If a range space s X R has
dual shattering dimension 8 then its
vc dim is E 800

Proof The shattering dim of dual range
space s't is 8

By lemma VC dim of St 8 is 0 8 log 8
Since the dual range space to sit is s
we have from the previous lemma

VC dim S I 28 1 80 S ppg

This is very useful when shapes in R are

simple If we show the dual shattering
dim of S is 06 we also obtain ve dim is OCD



E nets and E samples

E nets are combinatorial object that
catches or intersects with every range
of sufficient size

Here Pryer is the prob that

a point chosen according
to D is in R

Note combinatorial defn
comes to the setting
when D is uniform over A

The minimum sample size that contains
an E net Cop E sample can be bounded
in terms of the VC dimension of the
range space



The E net theorem

Naive approach
Let C X R be a range space with VC dim d 2

let.AE with LAI n

then there exists a combinatorial E net N

for ad of size at most 1 den NIE 7

Proof Let 62 be the projection of a on A

By Sauers Shelah theorem 122 I E not

we take a sample of re 1 denn I E7 points
of A independently uniformly at random

For each set S E 22 with Isn Al 3 E LAI there
is a corresponding set S E R

So a point in our sample is in s with prob 3 E

Then P our sample misses a given set s

I E K

There are nd such sets considers from

Applying union bound the prob that the

sample misses at least one such S is

E nd l E k nd e Ek nd e denn 1

Thus by probabilistic method there is a set N

of size k that misses no set s E R

Hence N is an E net for A Ba



Now we prove the main theorem that shows
existence of E net of size OC.dzends independent

of n

Theorem Let C X R be a range space with
VC dim d and let D be a prob distribution
on X For any 0 8 E E Hz there is an

M 0 EdenE I en f such that a random

sample from D of size rn is an E net for
with probability at least 1 S

PI
Let M be a set of m independent samples from
X acc to D

Let Er F S E Jd 1 Pig S 3 E and Isn M 1 0

i e E is the event that M is not an E net for
X W r t D

We want to show IP Ee E 8

For this we go beyond the union bound approach
Choose a second set T of M indepsamples from X

ace D

Define Ez 3 SERI Rep S E Isn M 1 0 Isnt 13Emfs

Following lemma shows Ei Ez have similar

probabilities trivial as Ez EEn

Lemma I i Fon m Z 81 E IP Ez C IPCE J E Z IP Ez

FE If event E holds there is some s s t

I s n M l 0 and Pm S1 Z E



Hence IP Ez IPCE n Ez IPCEzlEa 3 PCI Tn 513 EmtIP Ea IP Ei

Now for a fixed range S and a random sample
T the random variable 1 Tn s l has a binomial
distr B Cm Pro S

As Pro 5 Z E using Chernoff bounds
PCI Tn s l Ci 8 IEC Tng y y g e

Ez EC Tns
8 42 C m

IPC ith s't s i Iz m E e e
ME

e
Em18et e k iz

Hence from IP Ea E 2 Ez Ba

Now we bound IP Ez by prob of a lapgers event EL
EI F SE R I l S nm I O and I Sn T I 3 Em 12

Lemma 2 IP Ee E 2 IP Ez E 2 IP EI E 2 Zm
d 2 Eml

PI As M T are random samples we assume to
choose 2M random samples and partition randomly
into two equal sized sets M T

For a fixed S E R K Em12 let

Es I s n M I 0 I Sn T I I k

This event means Mut n s Z k but all these
elements were placed in T and not in M

So out of C2mm possible partitions of MUT we

choose one of 2mmk partitions where no element
of S is in M



Hence IP Es E IPCtM n s 1 0 Isn MUT I K

2mmK 2nd

Zn k m 2m31 Cm K

M M h m K 11 k
Zn 2M D zm King E Z E 2 Eml

By Sauer Shelah theorem the projection of R
one M UT has C2m d

ranges
Hence using union bounds

IP EI E zm d 2 Eml
Did

To complete the proof of E net theorem
6mi

we need to show Ip Ee E 2 zm d 2 Emt 8

for rn 8dg en E en f
edu we need C Miz 3 en Fo t d Ln Zm

Aa m E in f CMla 3 en 2 8

To finish we show Cma z d en Zn

Fact if y Klux Z e then 2Heny 3 se
Use y 2M 3 16dg en x 1 we have

4M 3 sign 3 den Zm



Application
Probably Approximately Correct PAC Learning
We are given a set of items X and to El on

o o ia prob distro D is defined on X T
y o 1

A binary classification is a subset C E X s t
all items in C are labeled 2 and in Xld are

labeled 1

The concept class C is the set of all possible
classifications defined by the problem

Learning algo has access to ORACLE C D
that produces a pair Cx Cx where se n D

and c Cx 2 if se E C and I otherwise

We also assume the classification problem is

realizable i e Fh EG Ppa hee else 0

2
probablyapproximately



Theorem Any finite concept class 7C can be
PAC learned with m Cen let Ln f samples
Proof Let E E be the correct classification
A hypothesis he is bad if Png hee etGe E

P a bad h is consistent with on random samples
E Cr Esm

Using unionbor end

PC 7 bad h is consistent with on random samples
E ICI Ci e m

E 8 as m E Cen lett en f
So we return whatever he is consistent with
all m random sample all these are non bad

By assumption as correct classification E C
at least one sucker exists

Bah

Note that can be infinite
So it is interesting that we can PAC learn C
with sample complexity independent of n

Note A concept class is efficiently PAC learnable
if the algorithm runs in time polynomial in

the size of problem Ye Ys
Here we are only interested in sample complexity
computational complexity may not necessarily be

polynomial in sample size



can we make samplecomplexity indepof Icl
Can we extend this to infinite concept classes

Say we are learning interval a b E IR

concept class is collection of all closed intervals
in IR C x y I n Ey U 0

let et e c be the concept to be learned
h be the hypothesis returned by our algo

Training set T is collection of n points drawn

from D

let me T if n t a b it is a tree example
else a ve example

Algo
If no sample is positive

turn trivial hypothesis
É

else return c d where c d are smallest
and largest ve examples among the samples

Q What is the prob Ala o makes an error

ALGO can only make an error on an input se

if K E a b For Nf a b it always returns 7

Case 1 Pro NE a b E E
From the above fact prob of error I E



Case 2 Pro NE a b E

É
say a a be smallest rat s t Roca a 42
and b's b be largest vals t Byebi b 42
So a E b

For simplicity assume a Cb

Of ALGO returns a bad hypothesis then error E

Now if samplepoints fell in a a and b b then we

would have returned Ce d 2 Cas b'T.TT pEdnesis
So IP badhypothesis I p sample points didn't

fall in a a Tor b b

either

The prob that a training set of n points
does not contain any examples from either
a a T on b b is

E 2 l E P E 2 e End I 8
J

by choosing n 7 Zen 8 E

E net re dim generalizes this idea



overta set of
points X

Ioof Let e E be the correct classification
For E C O CE a 1 x x

0 e aces l e age
collection of all possible sets
ofpoints of disagreementwith the correct classification

surprise minister for any e EG

Lemma Ve Dim X O e VC Din X re

For any S E X let es o e s be projection
of X C and X O e on S

we define bijection b as olds by
mapping e n s e es to oceans en s e o Eiji
then for s e x 1 Csl 10cal and s is
shattered by C if it is shattered by Ocd
Hence the range spaces have same ve dim

Hw Show for s E X S is shattered by

diffs is shattered by 014

To complete the proof of lemma we need
to show b is bijection



Take c c E C with e n s t e n s

Then Dy E S s t C y c y
W 1 o g assume c y Cly but c y y
Then y g o cons e n s

but y e oceans n s

Hence O cons e n s 0 ens ens

For the other direction if for c c E C

sit O cons e n s 0 ens ens

then F y es s t Cy c y so en s c n s
D8

Thus as VC Din X O e d there exists
m 0 de enMe Ye en Ys s t sample of size m

is e net for this range space w p 71 d

Hence w p 1 8 it has nonempty intersection
with every set 0 csc that has prob 2 E
i e A Lao can exclude any hyp w

emorpob
E
DAAs weonlyso any s farfrom comet selecthypothesisis anyway lit then IIIa

E sample provides strongest guaÉÉÉeÉ
it maintains relative probability weight
all sets RED within error of E and
needs just additional 0 Ye factor in samplesize



Relative freq
of a range

E sample theorem



Application Agnostic Learning
In PAC Learning we assumed there is a E E C
that is correct on all items in X and so

conforms with all examples in training set

But training set can have errors there
may not be any correct classification in C
9h agnostic learning the goal is find
a nearsly best classification C s t

Rg Cc Cn c Cx inf Rz hee Ccn E

L he
correct classif
may not be in 9

If the training set define an Ek sample for
C X O Cc then also has sufficiently many
examples to estimate the error prob of each
E e to within an additive error 42

Using E sample theorem agnostic learning
of a concept class with VC dim d requires

OC lined et en f samples



Applications Data mining
Estimating dense neighborhoods

very large
Given n points in IR p Cx y PE IR

Goal what fraction of points are distance
P from Cee y

Application opening new facility 1 business
aP

r ofp

i
we define range space R2 R where R
includes H Ge y E 1122 and m E IRT set of
all points inside the disk of radius r

entered at Coe y
constant

Vc Dim of the set of all disks 3

we can sample a random set of 0 Ezln
points and give fast approximate answers

to all the queries by scanning only the
sample
E sample theorem guarantees w p Z l S
we can answer all queries within C of
the correct value

we can also it for other purposes such as

approx identifying k densest disks

similar example Range searching
CHow many points are included in a query
rectangle



Mining frequent item sets

Given A set of items I a collection of
transactions To where each transaction t C J
is E I Both III IT 1 are large
Goal Find set of items that appear in

3 O fraction of transactions

Say we want to characterize freq 0 to be

frequent items fred E O E to be infrequent
Freq O E O can be ambiguous

The number of possible of transactions
subsets of I is huge

Even for transactions of size El there can

be OCI Il e of them which could befrequent

Hw Using Chernoff union bound would give
D 2 e en I Il en f 7 samples are needed

E sample does better transactions that includes

For each s E I TCS L E E T S E t

let R TCS S E I I
g
the max size of
any transaction

claim VC Drin J R l in the data set

A transaction of size e has 29 subsets
is therefore included in Zd ranges
Now consider SE J Bys Rns 1 RE R
Then IRpl E 2e ar s can belong to almost 2h

oranges



Thus no more than l transactions
can be shattered VC de'm L

Hence by E sample theorem w p Z r o
a sample of size 0 been Yg en
guarantee an item sets are accurately
determined to within 42 of their true

proportion
This is enough to identify frequent
item sets

Rademacher complexity
Bounds can depend on the training
set distribution

Generalizes to non binary functions


