
 

The Monte Carlo Method M V Ch 11

Refers to a collection of tools for estimating
values through sampling and simulation

Approach to estimate it

Let X 7 be a point
chosen uniformly at
random in C l I x E l I

edu X VE I D Y I I 77

Define
Z 2 if x 4 y E z

0 otherwise

Hence IP Z I HII IT14

Assume we run the experiment m times
Zi being the value of Z at the ith run

m
let w E Zi then

i

ECW EC.E Zi E Zi Mft
Then W's 4hm w is a natural estimate for it

Applying Chernoff bounds
IP IW ITI 3 E IT IP Iw M 13 EMIT

IP IW ECW I 3 E IE w

C 2 e EW E43 2 e
MITE412

Hence large number of samples will imply
good approximation of it



The above method for it gives E d approx
by choosing E 1 and 2 e MITE 412 I 8 i e

M Z 12 Ln 218 TE

Chernoff bound for 8 approximation

J
say
indepset

J
somegraph

1
max indepset

Monte Carlo method require an efficient process
that generates a sequence of i i d Rus
Xi Xn s t E Xi V the value we want to

approximate
we then take enough samples to get an

CE 87 approximation to V

Generating a good seduence of samples is often
a nontrivial task



Application DNF counting problem
Disjunctive normal form
A Boolean formula F

Disjunction OR of clauses
Each clause is conjunction AND of literals

X n Iz n Xz v Xz Xa V XT n Xz A Xa
g Cz Cz

Easy to check satisfiability
How hard is is counting CCF the number

of satisfying assignments of F

Note deMorgan'sCNf formula law DNF formula
H H

A Uvf formula He has satisfying assignment if
there is some assignment for the variables

I
does not satisfy it which

i e H is satisfiable cc II 2h

So finding CCI is at least as hard as solving
Mo complete problem SAT

classoffunction
problems not

Complexity class p sharp P decisionproblems

Informally is the set of counting problems assoc

with the decision problems in NP



formally a problem IT E P if there is a

poly time nondeterministic tuning machine s t

for any input I the numbers of accepting
computations equals the numbers of different
solutions associated with the input I

computing CCF is P complete as hard as

any problem in P

examples of other P complete problems
counting no of HAM cycles in a graph
counting no of perfect matchings in bipartitegraph

so we don't expect to exactly compute Ccf
but will go for
FPRAS.coNaive approach

W 1 o g assume CCF 0 as it is easy to

check CCF 2 0 or not



Define Rv xp L
1 if kith iteration generates

a satisfying assignment
O otherwise

Let X EI Xk then IE X m IE Xk M YI
i IECY IEEE f A good

Applying Theorem 11 1 Y gives Ed approx
of f when my 3 2n en 48 ECF

So if ECÉÉÉÉt for te z then m

is not polynomial var n
clause Ie'd clause

ha k literal

Intuitively in this case w.h.p.netEusttfample
an exponential number of assignments
before finding the first satisfyingassignment
So for our strategy to work we need to
construct a sample space containing all

satisfying assignments and these assignments
are sufficiently dense in the sample space
to allow efficient sampling

FPRAS for DNF Counting
Let F G v Cz v V Ct
so f is satisfied if any clause Ci is satisfied
If clause Ci has li literals then there are

2n li satisfying assignments for G
let sci be the set of all satisfying assignments for G



Define t Ci a I ie Et at Sci it n e is rent

As 101 IEISCil and I scil 2n hi we know I v1 IEEE
Butsay
n einen

we want to compute f 1 It sci lg I v1 IF one

can be strict as
an assignment can satisfy

to estimate Fl more that one clause
we construct s E t with 1st f

S Ci a I ie t a E sci a Sc j for j i

assigning each satisfying assignment
to a unique Ci a tuple known

To estimate 1st we want to estimate 1st

Advantage S is relatively dense in t
As each assignment can satisfy at most t

different clauses 151 1017 Yt Cute trick
I two stage

How to sample s uniformly from v5 sampling

To choose Ci a we choose i with probability

Iifa
Then to select a we choose If uniformly at
random for each literal not in clause i Then

IPCC i a is chosen IP i is chosen IP Eisen chosen

YET Ice



Theorem Above algo is a FPRAS when

m fC3t E2 en 21837
poly t E

PI encys

Step 2A selects an element Ci a E V

uniformly at random

Define Xi to if Ci
a ES Then X E Xi

otherwise

Now IPffi a ES 3 Yt E Xi Yt

Putte CCFFu
Then by Theorem 11 7 with these samples
Xlm resp Y gives an CE 8 approximation
of CCF 3 101 resp ECE



From approximate sampling to approximatecounting

E g for FPAUS for independent sets IS

input a graph G Cv E and a parameters E

sample space all independent sets in G

output E uniform sample of the indep sets
in time poly in eh E

Q Given an f PAUS for IS can we construct
an FPRAS for counting numbers of IS

let E G Lee em

let Ei Lee ei Gi V Ei So G Gm
Let DCG i denote the set of IS of Gi
Now 11631 lrCGm Ircam 71

Ircam Dl I 4 119031

Clearly has no edges so every subset of V
is an IS I I CGo I 2h

Now we need good estimate mi for the ratios

Pi lrC
IR Gi a 1

i 1 M



Then estimate of Inca I will be 2hIT rim
whereas I I I z n I Tm

i

To evaluate errors rise the estimate we need
to bound the ratio

R TT Filmi p Defn 11 I
Thus to have an CE 87 approximation
we want PC IR 11 EE Z 1 8

Lemma Df ti E Em Pi is an 42ns 92M approx
for ri s then IP IR 11 E E 3 I 8

Lemma when m Z L O E E 1 above algo
yields an C E 12M 81M approx for Mi

Theorem Given an FPAUS for IS in any graph
G we can construct an f PRAS for IS in G

Main takeaway construct a sequence of refinements
of the problem starting with an instance that is

easy to count and ending with actual counting
problem s t the patio between the counts in
successive instances is at most poly input



The Markov Chain Monte Carlo Method

µI
III I

possibleitemsfrom
general approach to sample from a whichwewantto

sampleHow make
desired probability distribution suretheysaw a

specificdistribution

Idea Define an ergodic Markov chain whose
set of States is the sample space and whose

stationary distribution is the required
sampling distribution

Let Xo X be a run of the chain

After a sufficiently large numbers of steps m

the distribution of the state Xp stationary
distribution Cindep of Xo
We can repeat the same starting from Xp

Thus Xp Xzn Xzp can be thought as almost

independent samples from the stationary distro

of the Markov chain

Efficiency of this approach depends on

a how large p must be to ensure a suitably
good sample

b how much computation is required for
each step of the Markov chain

Simplest case construct a Markov chain
with a stationary distr that is uniform
over the state space r

Need to design a set of moves that ensures the
state space is irreducible under the Markov chain



Considers state space to be are the independent
sets Two indep sets x y are neighbors of each
other if they differ in just one vertex 0

2
This makes the state space to be irreducible
as all indep sets can reach the empty indef
set by a sequence of vertex deletions

Note just doing a random walk won't give
stationary distribution to be uniform

it converges to To due3121El and
the graph may not be regular

I

self loop



The Metropolis Algorithm
Generalizes to sample from a chain with a

nonuniform stationary distribution

Say we want to construct a Marker chain
with stationary distr In bee B where
KE I ble o and B Ebbe is finite

Ker

EIFERT
say Ty ctn
In Imin i Ey

III III 1
For example say we need to sample eachÉnÉép
set with prob proportional to a Il for constant a o

So we need IT a I l B B Sale
2 1 uniform distr
a 1 large indep sets have higher prob
A C 1 i i i smaller prob



It is a two step approach
Propose a more by choosing a vertex u to
add or delete where each vertex is chosen
with probability Im here M I v1

c step za

This choice is then acceptteItitdppob.meinC1ITy Itn

f a if the chain attempts
Here Ty it to add a vertex

I Ya if the chain attempts
to delete a vertex

Thus transition probability
Pay I min 1 Ty it for y E N Ge a y

flux transfer say tty Ca
so lemma 11.8 applies An If In It 1

Note even for a 1 B is number of IS which
can be exp n But we don't need to know B
Just Ty it is sufficient

Convergence of
Metropolis algorithm



Coupling of Markov chains Ch 12 M V

a powerful method for bounding the rate of
convergence of Marker chains

variation distance mixing time

µ
makes it in 0,13

40
340

Ho Ko Ko A 7 a

D CA 41o 13 0 70
th A 4,0 4,0 70

Lemma A sampling algorithm returns an

E uniform sample on r iff Il D U 11 E E
L

output uniform
distr distr



I
called mixing time of Markov chain

A chain is rapidly mixing if Tce poly input loge

Coupling
A general technique for boundingmixing time

useful
to

show fastersampling



we are interested in couplings that
bring the two copies of the chain to the same

state and then

Keep them in the same state by having the two

chains more identically
when two copies of the chain reach the same

state they are said to have coupled

T

g
2

Proof of Dt Cn n Ept Cy n

Let di t I w p 42 Oy Oz i id RV
I w p Yz

Xt Ye are random walks on 0 1 n starting
at se and y respectively

Ot t 2 more both up if possible
I more both down if possible



clearly if n s y then by this coupling Xt s Yt
Ft

Hence if Xt n then Yt n as well

Pt x n IP XE N E IP Yt n Pt Y N

This shows power of coupling building two
simultaneous copies of a Mark or chain using
a shared randomness can be useful to obtain
bounds on the distance to stationary

Example Shuffling cards D

n cards are being shuffled
At each step a card is

chosétidependently
and uniformly at random and put on the

top of the deck n states
dye clam distance 1

Can be modeled as Markov chain where the
state is the current order of the feckconsider the following coupling
Given two copies Xt and Yt of the chain in
different states choose a position j E n

uniformly at random and simultaneously
choose the j th card from the top more it

to the top
This is a valid coupling as each chain
individually acts as the original shuffling
Markov chain



However as the chains start from diff state
j th card might be different in them So we

may not bring both the chains towards same

state

Alternate coupling Choose j E En unif at random
Obtain Xt from Xt bymoving j th cand on top2 2

a 3
let the Ap card by C 3 i

a

To obtain Yt i from Yt move the card w value
C to the top
This is a valid coupling as in both chains

prob a specific card is moved to top Yn

With this coupling if same card C moves to
the top it remains in the same position in

both the chains

so two copies are coupled once every card
has been moved to the top at least once

This is coupon collector's problem
Now IP a specific card is not moved to Hp

after n en n cm step
y f

n en n ch
g e Cen n e e

Union bound IPC 3 a card not moved to Lop
at least once e c

Take C en Ye e c E



so after men n t n en Ye steps prob that
the chains have not coupled is E E

so coupling lemma imply the variation dist
between the uniform distribution and the

distr of the state of the chain after hence
steps is bounded above by E

Message Quick coupling Good mixing

Application Independent sets of fixed size

Consider Markov chain whose states are indep
sets of size exactly K

Define more re W X t

choose v E Xt and we v indep unit at random

If WE Xt and Xt u u w is indep set then

Xt Xt U U w
XE V w

Otherwise Xtt Xt

if KE n 20 21
Hw Show this chain is ergodic EX 12 11

We show that this chain is rapidly mixing
whenever K E N 30 3

H K Mz then

for knain it is disconnected



coupling on Ze Xt Yt

For coupling choose v E Xt we v un if at random
and perform more mere no Xt

for transition of Yt
if at Yt perform more men w

Ite

if v4 Yt perform more m C w Yt where
v is unif chosen at random from Yt Xt

let de I Xt Ytl measure the difference'ÉÉÉÉÉn
the two independent sets after t steps

We'll see It changes by at most 1 and de is
more likely to decrease than increase

VE Xt Case I V E Xt n Yt
Then It remains same if no chain moves or if
both mores then he gets deleted w is added
in both W Exe w YA
Then de increases only if one of the chains more
the other does not

Say X y moves ye dont

either w E ye but w E Xe
or a f N Yt v1 but w GN xx v1

when It moves Xe dont it is analogous
Xtdoesnot move It doesnot more

Thus w must be a reft ex or afeighbor of
a vertex in set XE Ye U Ye Xt



fromTt Xt

i e u

U E Xt Yt

moves mere w Xt m o I Ye
As v4 Ye V Xt if both mores de decreases
Cos both will have w in it

This happens when w is not in Ctu Te or their

neighbors v v

If both does not more It remains same

If one mores say Xt other does not Yt then
w is in Ye ne on its neighbors
So de can not increase in this case

stream

Suppose de O Now dtt de 1 means at t
v chosen from Xt n Yt and w Ithchosen s t
there is a transition in exactly one of the
chains

Thus w must be afertex or a neighbor of
a vertex inset cat

more

Cdte de ti Ide o e KÉd ÉÉÉÉÉ
ee

T T
P WE N

P QE ext a
XE NT V Y X



If det de 1 then at time t v E ÉÉt
it is sufficient to consider the case when

w is neither a vertex nor a neighbor of a

vertex in Xe U Ye V.V

IP dtt dt il dt o It n cktd.tn2 0 1

Hence for de 0

Elder I de de t iPÉdÉIIÉt
IP Itt de 7

I at KII 2dt.no E N Kt dy 2 0 1

de 1 N C 3K dt 2 Otl
kn

s dt i n 34370 1 C de o

i e de 71

Once de 0 both chains follow same path
so IE Attn I do 0 0

Using property of conditional expectation
IE Cdt a IE IECdtt I de

E IECdt I N 3K 370 1
kn

IE Cdt I NGKZLC.IT



By induction
IE Cdt I do 1 NGK Z.TL J.t
Since do I k de 70

P de 71 E IE de By Markov

s k Ci nok ELC J.tl
k e

t Cn 3K 3 0 7 kn

o Ke t Cn 3K 37 0 1 kn e e et N 3K 3710 1 kn z ke I

ten K 370 17 I knew Ket I ECE EKELLETT

So whenever n 3K 37 o 1 70

i e K I 2 30 3 RHS or the variation
distance converges to 0

i e E I kn In CK E is rapidly
n 3k 3 copy

the chain

mixing

BE

check out lecture notes of Aspres for
practice problems r


