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A stochastic process X t E ET is a collection
of random variables

The index t often represents time and models
the value of a RV X that changes over time

XCt or Xt state of the process at time t

If ft Xt takes values from countably infinite
set then is discrete space process

If T is a countably infinite set then is called
a discrete time process

Markov Chain A discrete time stochastic process
Xo Xi is a Markov chain if
IP Xt At 1 Xt r A t r s X t z At z s Xo Ao

IP Xt At l X t a At r

Markov property or memory less property means

State Xt only depends on proer state Xt r

but is independent of history of how the

process arrived at State Xt r Note that

it does not say XE is indeep of X o i i Xt z

just implies that any dependency of Xt on
the past is captured in the value of Xt r



We will assume discrete state space of the
Markov chain is O 1 and the

transition probability Pij IP Xe j I Xt 1 2 is

the probability that the process mores from
i to j in one step

Markov property implies that Manka chain is
uniquely defined by a transitionmatrix

Mp
Po

Pig

let pi t denote the probability that the process
is at state i at time t

F t Cpo t p t be the vector representation
of distribution of states of chain at time t

Pi t Pj Ct 1 Pj i or F t ECE 77 Mp

Define m step transition probability
Pij IP X tem j 1 Xz i E Pi K Pk

270

let Pcm be matrix defined by m step transition

probabilities Then Mpcm Mp Mp'm Mpm MF
Thus for any t 70 and my 1

Ct m F CtME



Graph Representation Directed weighted
graph self loop allowed weighted outdegree
is 1

3 t.tt x4x4tfxzx7 4xtx4 zIfn
say we are interested in prob of going from
state 0 to state 3 Just computeMyin 3 steps



Application Algorithm for 2 SAT

Satisfiability SAT problem
Given A Boolean formula of given as

conjunction AND of a set of clauses where
each clause is disjunction or of literals where
a literal is a Boolean variable or its negation
Goal Assign True t False f to the variables
s t all clauses are satisfied
K SAT Each clause has exactly k literals

Example of a 2 SAT formula
Cole V Iz n CEv23 n ch v az n Lava
One satisfying assignment 29 2 22 0 23 0 24 7

An example of unsatisfiable formula
C ou v x2 n m v25 r of v set n at v22

2 SAT algo

1M 1 probability of success
Input n number of variables

apt with an arbitrary truth assignment
2 Repeat up to 2mn times terminating if all
clauses are satisfied

Ca choose an arbitrary clause that is unsatisfied
b choose uniformly at random one of the
variables in that cause switch its value

3 If a valid truth assignment has been found
return it

4 Otherwise return the formula to be unsatisfiable



As there n variables a SAT formula has 063
distinct clauses

Let s a satisfying assignments for n variables

Ai variable assignment after i th step
Xi number of variables having same value in

Ai S

so Xi n satisfying assignment
How long does it take son to

mail.FI
Observation IP X it 1 I Xi 0 1

Now suppose I I Xi E n 1

consider an unsatisfied clause c

S must disagree with Ai on at least one

the variables in C

So if we random switch one of the
variables in C prob matches increase is z

IP X it j t 1 Xi j 3 K K for K SAT

IP X it j I I Xi j EYz Xi V X2
Ai O O

S I 0
I 1

Is Xo Xis a Mark or chain O 1

Not necessarily
Whether Xi increases depend on whether Ai
or S disagree on one or two variables in the
chosen unsatisfied clause This might depend
on past history which clauses have been

considered in the past



So we use the following Markov chain Yo Y
which is a pessimistic version of the
stochastic process Xo Xi

Yo Xo

IP Yi a 2 I Yi O I

P Y it j t I I Ti j Yz
P Y it j 1 l Yi j Yz

So expected time to reach n starting from
any point is larger for Y than X

This Markov chain models a random walk on
an directed graph G
vertices Lo n3 Oo 13

42

Edge Ci it 2 for i O n I

Zj RV representing number of steps to Peach or

starting from state j hj E Zj

from ho weObservation Ln 0 he h IT always more to
h in one step

For 2 SAT h Z E number of steps to
X to fully match 5 when

starting from Ao that
matches S in j locations

j j w p Yz it Z
i I 1 Zi



E Zj E 2 it Zj i I Ci t Zj

hj
h hj I for i E j E n l

Also fin 0 ho h t l

we can show inductively for 0 C j E n 1

hj hj 2J 1

Base j o Aa h ho 1 we get
fro h I h 2 O t 1

Induction
we have hj h HEI 11

hj a 2 hj hj a 2
induct

2hj Chg 2cg 7 2 2

hj 2J L
n 1

Hence ho h I hz t l t 3 Zi 7 n
i 0

Hence for a satisfying formula expected
numbers of steps to find a satisfying
formula is m2

So Using Markov

IP Zo 7mn23 nm z Im

Using powers of repetitions we can improve
further



Them
If is satisfiable
Algo returns correct assignment w p I 2 m

If is unsatisfiable trivial

Algo is always correct 2mn211111
2 2 m segments

TH Let be satisfiable
Divide the execution into segments of
2h2 steps each
In each segment prob of success Yz

using Markov

So the prob Also fails after m segments
is CIM

Hw Think about deterministic polytime
algos for 2 SAT

Extending 2 SAT Algo we study 3 SAT

3 SAT Algorithm



3 SAT is NP hand so we don't expect rn to

be polynomial in n

Similar to 2 SAT we obtain following
IP X it j 1 Xi j 3 Yz Xi numbersof

variables ha ing
Xiu j i 1 Xi j E 43 saffes.valuein

0 O 1
Me Cx vXzVX3
IP Yi a I l Yi O I g O 0

more likelyIPC Y j t 2 I Yi j Yz to go down
P Y it j 1 I y j 43

than up

this gives set of equations
his O

hj 2hjz hjz 1 I 2 j E n I

ho hit 1

Hw Use induction to show

hj hj n t 2J 12 3

which implies

by 2 2 25 2 3 n j
ho 2

2
a 3h 0 27

This is quite bad as there are only 2h
possible assignments



can we improve
Observations

1 If we choose an initial assignment uniformly
at random then the number of variables
that match s has a binomial distribution
with mean 72
2 We are more likely to go to 0 than n
So better to restart the process if we

are not successful after some time

Schoning's Algorithm

Random restart hill climbing
let a be the prob that after 3m steps we

reach S after starting from a random assign

dj be prob that after 3m steps we reach

s or some other satisfying assignment
after starting from an assignment that

has exactly j variables that do not agree
with S



S Oh
and cktj mores up in a sequence of
Cj tan mores Jfk 3 3 it

8we are interested in j t 2k 32

Now consider special case k j then 3J E 32

so d 3 Jj 3 t for k j

E E E I E I
where c B 1st I 0 1222

follows from Stirling formula for m 0

Atm E Em I 2 Atm me

Hence I

3 fmgttmonessIfIumesn
has a

It 5 E E E
É É5ÉÉÉÉjici C I

1 Z t.j.EC jam CHET

Eat



Assuming 0 is satisfiable the number of
random assignments the process tries

before finding a satisfying assignment
is a geometric Rv with parameter q

Expected number of assignments tried Ya
Each assignment uses 3m steps

IE number of steps until a solution isfound

Iq 3m Exponential E
timehypothesis

I It 3N 0 nk 4 37
sE

This is a Monte Carlo algorithm
setting m 2B the prob that no

assignment is found is 2 B using
similar arguments as in 25 AT analysis Do

for k SAT same analysis leads to 2 on k a

Classification of states

8



A Markov chain is irreducible if all States

belong to one communicating class

Its graph representation is a strongly connected

Recurrent transient States

Let Pig denote prob that starting at state is
the first transition to state j occurs at

time t

Pity IP Xt j and for 1 E S E t 1 Xs j l Xo i

A state i is recent if psst
L

i trans if I

A Markov chain is recurrent if every state
in the chain is recurrent

Denote hi j Et Pity the expected time
1 31

to first reach j from state i

Is hi finite in a recurrent chain
C Note state i is visited infinitely often

No

A recurrent state i is positive recurrent

if hi X otherwise it is null recurrent

3 the not returning
state 1 after t steps42 43 a t

Yz IT J
j j 1



Hence state 1 is recurrent

B it pr not returning
after t i steps

Be returning
on t th step

I I

hi É t Pit É Ia which is unbounded

For null recurrent states it is necessary to
have infinite number of States

Lemma In a finite Markov chain

1 at least one state is recurrent and
2 all recurrent states are positive recurrent

Periodicity

i

If the chain starts at O after odd resp
even number of moves it is at odd resp even
States

IP Xt s j I XE j 7 0 unless 215

Defy A state j in a discrete time Markov
chain is periodic if there exists an integer
0 1 S t IP X s j I Xt j 0 unless D IS

a chain is periodic if any of its states is

periodic

Aperiodic not periodic o i



Def An aperiodic positive recurrent state
is an ergodic state

A Markov chain is ergodic if all its states
are ergodic

Icemen
Fifi nite.in ducible aperiodic Markov chain
is an ergodic chain

Example The Gambler's Ruin

Fair gambling game between two players
In each round a player wins I E w p 42
and looses 1 E W P 42
The state of the system at time t is
the number of E's won by player one

The game stops when player 1 wins la E or

looses a Z What is the prob player 1 wins

ez E

ED
Then h and ez are recurrent states

All other States are transient as there
is a nonzero prob of reaching h and ez

Let Pit be prob that after t steps the chain
is at state i Then for h i ez eggPit 0

recurfent detail of



of
Let d be the prob that the game endsÉÉÉ
player 1 winning ez E we call the chain was

absorbed into state ez Then

Em Pet d Efim Pet i d

let wt be the gain of player 1 after t steps
Then E wt O for any t by induction fake
Thus IE wt EEPit 0

I
and Em E not lad h l d O

a Fez
Stationary Distributions

A stationary distribution or equilibrium
distr of a Markov chain is a prob distr

I s t I IT Mpe transition matrix
fundamental thin of Mc

O All States are ergodic

me

If we run the chain long enough the initial state
is not important and prob of being in state i



Note for bipartite periodic case there is no

stationary distribution It toggles between

two partitions in consecutive steps



Random walks on undirected graphs
finite undirectedconnected

C

t

y

I 2 3 y g

Éi

Imma t A random walk on an undirected

graph G is aperiodic if a is not bipartite

For the remainder of the section we assume

G to be not bipartite i e aperiodic to
use theorem 7.7

Lea 2 A random walk on G converges to
a stationary

distribution There
To

hare hitting time from u to u Expected
time to reach state re starting at re

commute time hunt here Mfd



Defn cover time The corers time of G is the
maximum over all vertices re E v of the

expected b me to visit all of the nodes in
the graph by a random walk starting from re

Lemma 3 If Cu u E E the commute time

ha v t h v u 21 E l

s Lemma 4 The covers time of G is bounded
above by 21 El CtVI 1

Proof choose T a spanning tree of G

Starting from any vertex V consider an

Eulerian tours on the spanning tree in which
every edge is traversed once in each

direction
o o o

follow DFS o

O o ZG 1 edges
9let Uo U Ozu z be the sequence of the

vertices starting from U

214 3
corers time I Hui Viti

i o

ha hy n

Y Eti em 3 edges in T

E 21 El IV I 1 Ba



relates cover time hitting time

Matthew's theorem The cover time cg of
graph G with n vertices is bounded by
Cn 1 MILE hav E Ca E H Cn 1

MEEE hun

where H n E Yi en n the harmonic number

Application An s t connectivity algorithm
Given G V E n I v1 m let s t E V

Goal Determine if there is path
connecting s and t

Can be done by BFS DFS in Ocm n time
but needs IG space

steps fan counter o fi gu bite
y
presentvertex
read some adj List

This only needs o clog n bits which is tosetagreethen
necessary to store vertex indices read t got
For technical simplicity assume a has no

nets

bipartite connected components to apply
hem2 But can be extended to general graphs



Theorem If there is no s t path A Lao is correct
Else if there exists an s t path ALGO fails
w p I 42

Ioof From Lemma 4 cover time I 2mn n

m e nq jso expected time t to reach t from s

is almost 23

Thus by Markov prob of failure
PC T 22m37 E Eff I to

This can be thought of a distributed algo
If we give some local memory to each vertex
it can store the parent the first time u read

the vertex The the s 7 path can be reconstructed


