
Randomization and Algebra

[These are the rough notes for the lectures on these topics covered in E0234 at IISc. Please do
not trust everything that is written. If you notice a glaring error, please let us know.]

1 Communication Complexity

Consider the following communication complexity problem between two parties: A and B.

1.1 Equality

Input: A has a string x ∈ {0, 1}n, and B has a string y ∈ {0, 1}n.
Goal: Determine with the fewest bits of communication whether x and y are equal.
One can show tyhat at least n bits are needed in any deterministic protocol. However, we will see
that with randomization we can do much better.

1.1.1 With shared randomness:

Assume: A and B have access to a shared random string z.
Protocol: Regard z as a random string in {0, 1}n. A sends a bit b = x · z mod 2. B checks if
b = y · z mod 2. Thus, if x = y, then Pr[Error] = 0; and if x 6= y, then Pr[Error] ≤ 1/2.

With k bits of such communication (using k such random strings), we have the following guar-
antees:

if x = y, then Pr[Error] = 0; if x 6= y, then Pr[Error] ≤ 2−k.

1.1.2 Without shared randomness:

There is a corresponding solution with only O(log n) bits of communication.
Idea: we show that that there exists a small set of z such that for all x and y, picking a random z
from this set works equally well.

Assume there is a linear error correcting code with encoding function Enc : {0, 1}n → {0, 1}n2
,

with the property that if x 6= y, then Enc(x) and Enc(y) differ in at least n2/10 of the coordinates.
Note that Enc(x) is obtained by multiplying row x by the generator matrix of the code. Then,
the protocol is as follows, A picks a random index i and sends b = Enc(x)[i] and the index i to B.
B checks if b = Enc(y)[i]. This requires O(log n) bits of communication and yields the following
guarantees:

if x = y, then Pr[Error] = 0; if x 6= y, then Pr[Error] ≤ 9/10

(the latter can be reduced by repetition).
Indeed, a slight modification of this idea yields a protocol with O(log n) communication and

Pr[Error] < 1/poly(n). Instead of a binary code, we work with a code over the field Fp (integers

1

mod p), for some p = Θ(n2). Let the columns of the generator matrix be the Vandermonde matrix
V. 1 That is, we pick scalars α1, . . . , αn from the field, and let the i-th column of the matrix be
[1, αi, α

2
i , . . . , α

n−1
i]T . The protocol is the similar; this time, we let Enc(x) = x ·V. Then, using the

fact that a non-zero polynomial of degree (n− 1) has at most (n− 1) roots, we conclude that

if x = y, then Pr[Error] = 0; if x 6= y, then Pr[Error] ≤ (n− 1)/n2 ≤ 1/n.

Furthermore, the communication is at most (2 log n) bits.
Building on this idea, there is a general theorem due to Ilan Newman (1991).

Theorem 1.1. For any function f : {0, 1}n×{0, 1}n → {0, 1}, if there is a communication protocol
for f with shared randomness with error ε, and c bits of communication, then there is a protocol
with private randomness and c+O(log n) bits of communication and error at most ε+ 1/n.

1.2 Freivalds’s Algorithm for verifying matrix multiplication

Input: n× n integer matrices A, B, and C.
Goal: Determine if AB = C.
Protocol: Pick a random z ∈ {0, 1}n and check if A(Bz) = C.
Guarantee:

if AB = C, then Pr[Error] = 0; if AB 6= C, then Pr[Error] ≤ 1/2.

More generally, if z is picked uniformly from Sn, for a set S of integers, then the error probability
is at most 1/|S|. Similar conclusions hold for verifying matrix multiplications over other fields.

1.3 Communication Protocol for the Greater Than function

Input: Two parties, A and B. A has x ∈ {0, 1}n and B has y ∈ {0, 1}n.
Task: Determine if y ≥ x (where x and y are treated as n-bit integers in {0, 1, . . . , 2n − 1}).

A natural randomized divide and conquer protocol would determine the most significant bit
where x and y differ with (log n) · (log log n) bits of communication, where we use k = O(log log n)
in the Equality protocol to keep the error down to � 1/ log n.

An interesting protocol of Nisan (1993)/ Feige-Peleg-Raghavan-Upfal (1990) allows us to com-
plete the task with O(log log n) bits of communication.

Idea: A and B build identical binary trees on the indices {1, 2, . . . , n}. The indices are listed in
increasing order from left to right. For a node v of the tree, let leftx(v) denote the subsequence of
bits under the left-child of v. (For a leaf v, the left-child and right-child are v itself). Similarly, let
rightx(v) denote the subsequence of bits under v’s right-child. Let prefixx(v) denote the substring
to the left of leftx(v).

Protocol: A and B start at the root. In general, when they are at a node v, the compare
prefixx(v), leftx(v), and rightx(v) with prefixy(v), lefty(v), and righty(v) and move to either v.parent,
v.left-child or v.right-child. The comparison is done using the Equality protocol, with k = 10
bits (say), so the error is � 1/10. Note that at all times, if A and B are at a node v, the left-most
position where x and y differ is either under v or in the prefix of v. A and B perform this for 20 log n
rounds, and in the end if they are at leaf, declare the corresponding index i to be the left-most bit
where x and y differ and declare iff xi ≤ yi.

1Vandermonde matrices are generators for Reed-Solomon code.

2

Analysis: Let ` be the leaf corresponding to the left-most position where x and y differ. We
track dt = dist(`, vt) in the tree, where vt is the vertex currently being considered by A and B at
time t.

Initially, d0 = log n. At each round, dt either increases by 1 or decreases by 1 (unless v is the
desired leaf). Thus, the protocol can be thought of as a random walk on the integer line, with an
absorbing state at 0, and probability of moving to the left at least 9/10 for all points to the right of
0. To bound the probability of error, it suffices to show that the probability of a net displacement
to the left being less than log n (the initial distance to `) is small. After 20 log n steps, we expected
the number of left moves to be at least 18 log n steps. The probability that fewer than 12 log n left
moves are made can be upper bounded by Chernoff bound as follows. [Note that that the moves
are not necessarily independent We an only claim that the at each step with probability at least
9/10, we move to the left. One can show that in this situation, we can still invoke the Chernoff
bound, e.g., by coupling our walk with a walk with independent moves (Thanks Daanish Mahajan
for pointing this out)]

Pr[X ≤ (1− ε)µ] ≤ exp(−µε2/2).

We have µ = 18 log n, ε = 1/3. So,

Pr[Error] ≤ exp(−18 log n(1/3)2/2) < 1/n.

We have so far mainly considered linear functions of the form w · z with z random: in the
application with the Vandermonde application we considered univariate polynomials of degree n−1.
The principle that polynomials of low degree are rarely zero is applicable to multivariate polynomials
as well.

2 Polynomial Identity Lemma

Lemma 2.1. Suppose P (X1, X2, . . . , Xn) is a non-zero polynomial of degree at most d over a field
F. Suppose S is a subset of F. Then,

Pr
z∈Sn

[P (z) = 0] ≤ 1/|S|.

Proof. We proceed by induction. Write

P (X) = Xk
1Pk(X2, . . . , Xn) +Xk−1

1 Pk−1(X2, . . . , Xn) + P0(X2, . . . , Xn)

where k is the highest degree with which X1 appears in any monomial. Then, “P (z) = 0” is a
subset of the event “Pk(z2, . . . , zN) = 0 and P (z) = 0”. Thus,

Pr[P (z) = 0] ≤ Pr[Pk(z2, . . . , zN) = 0] + Pr[P (Z) = 0 | Pk(z2, . . . , zN) 6= 0] ·Pr[Pk(z2, . . . , zN) 6= 0]

We may drop Pr[Pk(z2, . . . , zN) 6= 0] in the second term on the right, and use induction. Note
deg(Pk) ≤ d− k, and that for each choice of z2, . . . , zN where Pk(z2, . . . , zN) 6= 0, polynomial P (Z)
reduces to a univariate polynomial of degree k. We conclude that

Pr[P (z) = 0] ≤ (d− k)/|S|+ k/|S| = d/|S|.

We will present two applications of this lemma.

3

2.1 Perfect matchings in bipartite graphs

Consider a bipartite graph G = (V ∪W,E), where both V and W have n vertices. Construct the
n×n adjacency matrix, and replace the entry aij by aij ·Xij . Let the resulting matrix of variables
be M .

Note: The det(M) is a multivariate polynomial of degree at most n, and det(M) is a non-zero
polynomial iff G has a perfect matching. This gives us a natural algorithm:

Pick z ∈ 1, . . . , n2
n2

and determine if det(M)(z) = 0. The computation can be performed
modulo a prime p > n2. Then, if G does not have a matching, then Pr[Error] = 0. if G has a
matching, then Pr[Error] ≤ n/n2 = 1/n.

This is an important algorithm, which can be parallelized to run in time O((log n)2) with
polynomially many processors.

2.2 Rooted tree isomorphism

Given T1, T2, two rooted unordered trees on n vertices, determine if T1 and T2 are isomorphic.
(It is possible to put the trees in a canonical form, and then check that the two canonical forms
are identical). The following randomized algorithm uses commutativity of multiplication to avoid
putting the trees in a canonical form.

To each leaf, assign a variable Xi, where i is the distance of the leaf from the root. Then, for
an internal node v at level `, inductively construct the polynomial

Pv(X) = (X` − Pv1(X))(X` − Pv2(X)) . . . (X` − Pvr(X))

where v1, . . . vr are children of the vertex v. Note that the order of the children does not matter.
For a tree T , let PT be the polynomial associated with its root.

Claim 2.2. PT1 = PT2 iff T1 and T2 are isomorphic.

Proof Idea. Use induction on the depth of the trees. Note that commutativity automatically takes
care of the reordering of the children of the nodes.

Claim 2.3. If T has L leaves and depth D, then T is a polynomial of degree at most L in D + 1
variables.

Algorithm: Pick z from {1, . . . , n2}D at random and check if PT1(z) = PT2(z).
Guarantee: if T1 is isomorphic to T2, then Pr[Error] = 0 if T1 is not isomorphic to T2, then
Pr[Error] ≤ 1/n.

Note that the scalar PT (z) can be computed inductively, starting at the leaves and moving up
the tree. As before, to keep the computation efficient, we can calculate modulo a prime � L.

3 Primality Testing

Input: A number N (n bits long).
Output: 1 if N is prime, 0 otherwise.
Let a ∈ {1, 2, . . . , N − 1}. Consider the following tests:

1. The gcd test: If gcd(a,N) is not 1, then output 0, STOP.

2. The non-trivial-square-root test:2 If a(N−1)/2 mod N not in {+1,−1}, then output 0, STOP.

2Note that Fermat’s little theorem states that if N is a prime then a(N−1) = 1 mod N , for all a ∈ [N − 1].

4

We will assume that N is not 1, is not even, and is not of the form ab (for some a, b ≥ 2).

1. Set Flag = 0.

2. Perform step (2a) to step (2d) five times.

(a) Pick a ∈ {1, 2, . . . , N − 1} uniformly at random.

(b) Perform the gcd test.

(c) Perform the non-trivial-square-root test.

(d) If a(N−1)/2 = −1, set Flag = 1.

3. If Flag = 0: output 0, STOP. else: output 1, STOP.

(The above algorithm is a slightly weaker version of the Rabin-Miller algorithm; this algorithm
appears in Victor Shoup’s book available here.)

Claim 3.1. If N is prime, then Pr[Error] ≤ 1/25.

Proof. Clearly, N cannot fail Step (b), and (c). Now, we consider failure probability due to Step
(d). If N is prime, then for exactly half the a ∈ {1, 2, . . . , N − 1} we have a(N−1)/2 = −1. Thus,
the probably that Flag = 0, even when 5 attempts were made to set it to 1, is (1/2)5.

Claim 3.2. If N is not prime, then Pr[Error] ≤ (1/2)5.

Proof. If there is no a such that a(N−1)/2 = −1, then Pr[Error] = 0. So, we assume that there
is an a such that a(N−1)/2 = −1. Fix such an a, call it c. Now, suppose N = N1 · N2, where
gcd(N1, N2) = 1 (We assumed above that N is not of the form ab(a, b ≥ 2)).

Then, consider the isomorphism ZN → ZN1 × ZN2 , where b ∈ ZN maps to (b mod N1, b
mod N2). Under this map, suppose c maps to (c1, c2).

Now, if a picked in Step 2(a) has a common factor with N , then we output 0 in Step 2(b). So,
we condition on gcd(a,N) = 1 and show that for at least half of all such a’s the square-root test
in Step (d) fails. Indeed consider the following four set (all computations are in ZN or equivalently
in ZN1 × ZN2).

S(+1,+1) : {a ∈ Z∗N : gcd(a,N) = 1, and a(N−1)/2 maps to (+1,+1)}
S(−1,−1) : {a ∈ Z∗N : gcd(a,N) = 1, and a(N−1)/2 maps to (−1,−1)}
S(−1,+1) : {a ∈ Z∗N : gcd(a,N) = 1, and a(N−1)/2 maps to (−1,+1)}
S(+1,−1) : {a ∈ Z∗N : gcd(a,N) = 1, and a(N−1)/2 maps to (+1,−1)}

We claim that all these sets have the same size. It will follow, that the probability that N
passes the square-root-of-unity test is at most (1/2) in any iteration. Then it follows that for N
not prime, Pr[Error] ≤ (1/2)5.

We first observe that all sets are non-empty. Clearly, 1 maps to (+1,+1), −1 maps to (−1,−1).

As c(N−1)/2 = −1 mod N , we have c
(N−1)/2
1 = −1 mod N1 and c(N−1)/2 = −1 mod N2. Thus,

(c
(N−1)/2
1 , 1) = (−1,+1) and (1, c

(N−1)/2
2) = (+1,−1). Hence, c1 ∈ S(−1,+1) and c2 ∈ S(+1,−1).

Now, note that S(+1,+1) is a subgroup of Z∗N , and the other three sets are its cosets. Thus,
all sets have the same size.

5

https://www.shoup.net/ntb/ntb-v2.pdf

Running time: We perform computations of the form ab mod N using repeated squaring.
Thus, all steps can be executed in polynomial time.

4 Roots of quadratic equations, mod p

Input: A polynomial of the form A(X) = X2 + bX + c mod p an odd prime.
Output: A factorization of A(X) = (X − α)(X − β), or “A(X) is irreducible”.

We can check if A(X) has the form (X − α)2, by checking if b/2 is a root of A(X). So in the
following we only distinguish between polynomials with distinct roots, and irreducible polynomials.

1. Pick numbers r ∈ {1, . . . , p− 1} and s ∈ {0, . . . , p− 1}, uniformly at random.

2. Consider the quadratic polynomial B(X) = A(rX + s).

3. Compute X(p−1)/2− 1 mod B(X). The result is a polynomial of degree at most 1. If it is of
the form kX + `; check if α = −`/k and β = −b− `/k are roots of A(X). Otherwise, output
“A(X) is irreducible”.

Suppose A(X) is of the form (X−α)(X−β), for distinct α, β ∈ Fp. Note that the roots of B are
(α−s)/r and (β−s)/r. Now, c = 1/r is uniformly distributed in {1, 2, . . . , p−1}, and for each choice
of r, when s is chosen at random, d = s/r is uniformly distributed over {0, 1, . . . , p− 1}. Thus, the
two roots of B are: γ = cα+d and δ = cβ+d, where (c, d) ranges over (1, . . . , p−1)×(0, . . . , p−1);
then, (γ, δ) ranges over all p(p − 1) pairs of distinct elements in Fp. In particular, the probability
that only one of them is the root of X(p−1)/2 − 1 is precisely:

= [2 · (p− 1)

2
· (p+ 1)

2
]/[p(p− 1)] = (p+ 1)/(2p) > 1/2.

Whenever, this happens, we recover γ or δ by solving the linear equation.
The main computation X(p−1)/2 mod B(X) can be performed by repeated squaring in polyno-

mial time in n (the bit-length of p).

5 The Goldreich-Levin list-decoding algorithm

Recall the problem from HW 3: We are given a parity function on n boolean variables: χS :
{0, 1}n → {0, 1}, where S ⊆ [n], i.e., χS =

∑
i∈S xi mod 2. We have access to a function f :

{0, 1}n → {0, 1} that computes χS for at least a 1/2 + ε fraction of the inputs, i.e., Pr[f(x) =
χS(x)] ≥ 1

2 + ε, for some constant ε > 0. Goal was to determine S.

Idea 1: i ∈ S iff χS(ei) = 1, where ei = (0, . . . , 0, 1, 0, . . . , 0) has a 1 only in its i-th coordinate.
Note that χS(x) = f(x+ ei) + f(x) with probability at least 2ε, where x is a uniformly chosen

string in {0, 1}n. So, if ε ≥ 1/4 + δ, then we have a randomized estimator for χS(x) that is correct
with probability at least 1/2 + 2δ. To compute χS(ei), we use this estimator t times independently
and take the majority vote. Then, the probability that χi(S) is decoded incorrectly is at most
exp(−2(2δ)2t).

We take, t = (1/δ2) log n and ensure that Pr[Error] < 1/n2. Thus, we recover S with probability
1− 1/n. This was the homework problem.

Unfortunately, we do not have such a large ε. In fact, for ε < 1/4, more than one χS may be
compatible with f . So it is unreasonable to expect to recover S exactly. It turns out, however, that

6

there are at most O(1/ε2) such S that agree with a fixed f for a fraction 1/2 +ε of the inputs. Can
we efficiently produce the list of all such functions given oracle access to f? This is the list-decoding
problem.

Idea 2: The difficulty we have now arises from the union bound to take care of errors from two
probes. If somehow we could guess the values of one of the probes in a systematic way, then we
need to account for the error from only one probe, not both.

1. Fix an S that agrees with f on at least 1/2 + ε fraction of the inputs x ∈ {0, 1}n.

2. Pick vectors v1, v2, . . . , vt at random from {0, 1}n. Guess the value of χS on v1, v2, . . . , vt, say
(a1, a2, . . . , at), each in {0, 1}. Extend the guess to every vector in the subspace spanned by
v1, . . . , vt. Let the vectors in this subspace be vT for T ⊂ [t] and let the correspond value be
aT , that is, aT =

∑
i∈T ai.

3. Now, to estimate χS(ei), we take the majority of the values
{aT + f(vT + ei) : T a non-empty subset of [t]}; call this majority value G(i). By computing
G(1), . . . , G(n) using this strategy, for each choice of a = (a1, a2, . . . , at), we output a set Sa.
Let P = Sa : a ∈ {0, 1}t.

Claim 5.1. Pr[Sa ∈ P] ≥ 1− n/(ε2(2t − 1)).

We will choose t about log(n/ε4) and claim that particular, the probability that some set S
compatible with f fails to appear in P is at most 1/10.

Proof. Note that the vectors in {vT : T ⊂ [t], T not empty} are pairwise independent, and each is
uniformly distributed in {0, 1}n. Thus, the values bT = χS(vT)+f(ei+vT) are pairwise independent
and Pr[bT = χS(ei)] ≥ 1/2 + ε. We we have that the number of agreements among the N = 2t − 1
samples has expectation ≥ Np = N/2 + εN and variance = Npq ≤ N . By Chebyshev’s inequality,

Pr[error in decoding χS(ei)] ≤ N/(εN)2 ≤ 1/(ε2N).

The probability that χS(ei) is decoded incorrectly for some i is at most n/(ε2N).
Now, among our guesses for a = (a1, a2, . . . , at) is the choice a = (χS(v1), χS(v2), . . . , χS(vt)).

Thus, Pr[S is not in P] ≤ n/(ε2N).
We set t = log(10n/ε4+1) (so thatN = 10n/ε4), and conclude that the probability that P misses

an S for which χS is compatible with f is at most (1/ε2)(n/ε2)(1/N) = (1/ε2)(n/ε2)ε4/(10n) ≤
1/10.

Now, the set P might contain some spurious sets. For each candidate solution, we verify that
it agrees with f by picking 10 log n vectors v and checking that the candidate and f agree on at
least a 1/2 + ε fraction of them.

Thus, overall, we compute f on 2t − 1 + 10 log n vectors. The running time of the algorithm is
poly(n, 1/ε).

7

Algorithm 1: Algorithm summary (following a suggestion of Dhruv in class)

Input: Function f : {0, 1}n → {0, 1}; we have oracle access to f .
Output: Short list of sets P , that with high probability contains every S for which

Pr[f(x) = χS(x)] ≥ 1/2 + ε.
1 P ← ∅.
2 Pick v1, . . . , vt at random from {0, 1}n.
3 Construct (vT : T ⊂ [t], T 6= ∅) where vT =

∑
i∈T vi. There are 2t such vectors in the

sequence (we don’t assume they are distinct).
4 for each choice of a = (a1, a2, . . . , at) do
5 Construct (aT =

∑
i∈T ai : T ⊂ [t], T not empty).

/* aT are our guesses for χS(vT). */

6 Let S ← ∅.
7 for i = 1, 2, . . . , n do
8 Compute ci = Majority(bT = aT + f(vT + ei) : T ⊂ [t], T 6= ∅).
9 if ci = 1 then

10 Add i to S.

11 Add S to P (note that for each choice of a, we add one set S to P .

12 return P

8

	Communication Complexity
	Equality
	With shared randomness:
	Without shared randomness:

	Freivalds's Algorithm for verifying matrix multiplication
	Communication Protocol for the Greater Than function

	Polynomial Identity Lemma
	Perfect matchings in bipartite graphs
	Rooted tree isomorphism

	Primality Testing
	Roots of quadratic equations, mod p
	The Goldreich-Levin list-decoding algorithm

