O Randomness & Algebra:

• 9f
$$x = y$$
 then $P[Error] = 0$.
9f $x \neq y$ then $P[Error] \leq \frac{1}{2}$
If $w \neq 0$, $P[wz = 0 \pmod{2}] \leq \frac{1}{2}$.

· Theorem (Newman):

f: $\{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$ If there is a protocol w, shared randomness, error \mathcal{E}_{-} communication c, then there is a protocol with private randomness, communication $(+O(\log n))$ and error $\leq \mathcal{E} + \frac{1}{n}$.

$$P_{w}(x) = \sum_{i=0}^{n-1} w_i \cdot x^i \mod p_{minep}$$

$$2R \ge p > l$$

$$+_1$$
A picks $y \in l \circ, ..., l-1$, at random.
Sends $j = P_x(j)$.

$$\bigcirc \ P[\text{Error}] \leq \frac{n-1}{l+1} .$$
Communication: log l bits of randomness.
 $O(\log l) , n P_{X}(j).$

• Freevald's matrix product verification: Clain: AB = C E = C E = T r = r r = r r = r r = r A(B(r)) = C(r)Union bound: $P(Error) \leq \frac{1}{|S|}$.

 $# mult : O(n^2)$.

· Randomized Algorithm (8th March):

Last time:

$$w \in \{0, 1\}^n$$

 $w \neq 0 \Rightarrow IP$ [$w \cdot Z = 0 (mod 2)$] $\leq \frac{1}{2}$.
 $Z \in \{0, 1\}^n$
 v

Application :

- (1) A common protocol with public randomness. where A & B can determine if their strings $x, y \in \{0, 1\}^n$ are equal w communication = K bits, $P[Error] \leq \frac{1}{2}^{K}$.
- (2) Protocol with private randomness for the equality problem.

Communication = $O(\log n)$ bits. Error $\leq \frac{1}{n}$.

(3) Freivald's algorithm for verifying matrix multiplication.

• To verify if AB=C, check ABZ=Cz for $z \in \{0,1\}^n$ $AB=C \Rightarrow P[Error]=0$ $AB \neq C \Rightarrow P[Error] \leq \frac{1}{2}$ · Another communication problem:

Assume $x \neq y$. Goal: Determine if x < y or y < x, where x & y are treated as integers in $\{0, 1, 2, ..., 2^n - 1\}$.

Naive approach:
Check equality & do "divide-and-conduct" (DnC).
DnC: log n rounds of communication.
Need
$$K = \log \log n$$
 bits of communication per
round to get $V_{2K} \approx \frac{1}{\log n}$ error prob to use
union bound over all rounds.

Total = O(logn) × loglogn.

Interesting: We can do it using O(logn) bits.

· An O (log n) - bit protocol.

Assume N.1. o.g. n is power of 2

DnC can be thought of a walk along the tree.

· For a node v of the tree prefix, (x), left, (x), right v (x) prefix, (y), left, (y), right v (y)

· Analysis: Let I be the left most leaf where X & y differ.

Track dist (v, L) EAR A BCD A BCD A

Claim: If dist
$$(v_{t+1}, l) > 0$$
, then
 $P[dist (v_{t+1}, l) = dist (v_{t+2}, l) - 1] \ge 1 - \frac{1}{2^{k}}$
 ≥ 0.9

$$T = 20 \log n.$$

 $IP [dist (v_t, l) > 0] \leq \frac{1}{n} (Chernoff)$

- Gopecting 16 logn net movement, we want only logn.
- · W.Z is a polynomial of degree 1 in Z1, Z2,..., Zn.
- · Polynomial Identity Lemma: (Schwartz-Zippel, Demillo, Lipton, Ore, ..]

Let $p(Z_1, Z_2, ..., Z_n)$ be a nonzero polynomial over a field \mathbb{F} of total degree $\leq d$ [Every monomial $Z_1^{e_1} Z_2^{e_2} ... Z_n^{e_n}$ with nonzero coefficients satisfies $\sum_{i=1}^{s} e_i \leq d$]. Then $IP \left[p(Z_1, ..., Z_n) = 0 \right] \leq \frac{d}{|S|}$. $(Z_1, ... Z_n) \in S^n$ $(S \subseteq IF)$

 $\frac{\operatorname{Proof}:}{P(\Xi) = \Pr(\Xi, ..., \Xi_n) \Xi_n^{K} + \Pr_{K-1}(\Xi_2, ..., \Xi_n) \Xi_n^{K-1} + \Pr_{K-1}(\Xi_2, ..., \Xi_n) \Xi_n^{K-1} + ... + \Pr(\Xi_2, ..., \Xi_n).$ event $P(\Xi) = 0 \subseteq \left\{ \left(\Pr_{K}(\Xi_2, ..., \Xi_n) = 0 \right) \right\} \text{ or } \left\{ \left[\left(\Pr_{K}(\Xi_2, ..., \Xi_n) \neq 0 \right) \right\} \text{ or } \Pr(\Xi) = 0 \right] \right\}.$

$$P[p(\overline{z})=0] \in P[p(\overline{z}_{z},..,z_{n})=0] + P[-.]$$

$$\leq \frac{d-k}{|s|} + P[P(\overline{z})=0|P_{k}(\overline{z}_{z},..,z_{n})]$$

$$\neq 0$$

$$\leq \frac{d-k}{|s|} + \frac{k}{|s|} \begin{bmatrix} uvivariate \\ nenzero polynomial \\ of degree k \end{bmatrix}$$

$$= \frac{d}{|s|}.$$

det $(M) = polynomial in \{X_{ij}\}$ of total degree $\leq n$. · Ghas a matching iff det (M) is a nonzero polynomial,

Substitute for Xij random values from {1,2,...,n2}, then from polynomial identity lemma;

$$|P[E_{r}] \leq \frac{n}{n^2} = \frac{1}{n}$$

• Note: det (M) can be computed efficiently in parallel.

MATCHING E RNC.

O Application: Tree isomorphism.

T1 & T2 are unordered rooted trees.

If vis a leaf then Pr = Zi. at level i

For a node:

$$(\overline{z_i} - \overline{p_{v_1}})$$

 $(\overline{z_i} - \overline{p_{v_2}})$
 $(\overline{z_i} - \overline{p_{v_2}})$
 $(\overline{z_i} - \overline{p_{v_i}})$

- · Unique factorization of polynomials implies $P_{T_1} = P_{T_2}$ iff $T_1 \subseteq T_2$.
 - Degree (PT) < #nodes = n.
 - Pick $Z_1, Z_2, \ldots, Z_n \in \{0, \ldots, n^2\}$
- [We don't need to open the polynomial & compute. We doi't efficiently like a circuit].
 - O(1) amount comm. with shared randomness. V.

• If
$$N = a^b (a, b \ge 2)$$

then output 0.

else output 0.

Fermat's little theorem :
If N is prime then

$$a^{N-1} \equiv 1 \pmod{N}$$

for all $a \in [N-1]$

)

- Flag = 0.
- Flag = 0.
- Pick
$$a \in \{1, 2, ..., N-1\}$$
 uniformly $b = a^{(N-1)/2}$
- if $a^{N-1} \neq 1$ then output 0.
- if $a^{(N-1)/2} \neq \pm 1$ then output 0.
- if $a^{(N-1)/2} \neq \pm 1$ then output 0.
- if $a^{(N-1)/2} = -1$ then $\text{Flag} = 1$.
- if $a^{(N-1)/2} = -1$ then $\text{Flag} = 1$.
- if $a^{(N-1)/2} = -1$ then $\text{Flag} = 1$.
- if $a^{(N-1)/2} = -1$ then $\text{Flag} = 1$.
- if $a^{(N-1)/2} = -1$ then $\text{Flag} = 1$.

• Proof of correctness:
Claim: If N is prime then
$$P[Error) \leq \frac{1}{2^{5}}$$
.
• We can only make error in the
third step $w.q. = \frac{1}{2}$
Claim: If N is composite then
 $P[Error] \leq \frac{1}{2^{5}}$.
Suppose $\exists a \in \{1, 2, ..., N-1\}$ s.t. $a^{\frac{N-1}{2}} = -1 \pmod{N}$
[otherwise, there is no error].
This implies that for at least faul of b st:
 $b^{N-1} = 1 \pmod{N}$, $b^{(N-1)/2} \neq \pm 1 \pmod{N}$.
[at $N = N_1 \times N_2$ s.t. $gcd(N_1, N_2) = 1$.
 $withis is actually
 $m = \frac{1}{2}$, $withis = \frac{1}{2}$
 $withis is actually
 $a \mapsto (a \mod N_1, a \mod N_2)$.
 $1 \mapsto (1, 1)$
 $-1 \mapsto (-1, -1)$.
 $a = (a_1, a_2)$
 $a^{(N-1)/2} = (a_1^{(N-1)/2}, a_2^{(N-1)/2}) = (-1, -1)$.$$

$$(\alpha_{1},1) \rightarrow \alpha_{1}$$
 is to power $\frac{N-1}{2}$ will give $(-1,1)$.
Similarly, $(1,\alpha_{2})$, (2^{N-1}) , $(2^{N-1}) = (-1,1)$, $(2^{N-1}) = (1,-1)$.

- Solving quadratic equations (mod p): $x^{2}+bx+c=0.$
- There is no known deterministic polytime algorithm.

(1, ..., p-1) $\alpha^2, (-\alpha)^2$

quadratic residues & nonresidues moder.

- Q. there to solve $x^2 - C \stackrel{?}{=} 0$.

$$x^{2}-c = (x-\alpha)(x-\beta)$$

{0, 1, 2, ..., $b-1$ }

$$A(\alpha) = \chi^{(P-1)/2} - 1.$$

$$B(\alpha) = \chi^{(P-1)/2} + 1.$$
Compute $gcd(\chi - \alpha, \chi^{(P-1)/2} - 1)$

$$\begin{pmatrix} n \\ (\chi - \alpha) \end{pmatrix} if \beta \text{ is not a root of } A(\alpha).$$

$$\delta \alpha \text{ is not a root of } A(\alpha).$$

$$\delta \alpha \text{ is not a root of } A(\alpha).$$

$$\kappa \leftarrow r \times + \delta. \quad r. \times \sim Ep-1].$$

$$(\alpha - \alpha)(\alpha - \beta).$$

$$r^{2}\left(\chi-\left(\frac{\chi-3}{r}\right)\right)\left(\chi+\left(\frac{\beta-3}{r}\right)\right)$$

rot+ s = d or β. ← this is one root.

We are finding, $\frac{\alpha - s}{r} = l_1 \cdot \frac{\beta - s}{r} = l_2$

i.e.,
$$d = r \ell_1 + s$$
, $\beta = r \ell_2 + s$.
 $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \ell_1 & 1 \\ \ell_2 & 1 \end{pmatrix} \begin{pmatrix} r \\ s \end{pmatrix}$.
 M' .
As $\ell_1 \neq \ell_2$, M is non-singular.

· Randomized Algorithms :

Given: Access to $f: \{0, 1\}^n \rightarrow \{0, 1\}$ $P[f(\alpha) = \pi_s(\alpha)] \geqslant \frac{1}{2} + \varepsilon, \varepsilon > 0.$

Goal: Determine S.

 $If \geq \frac{1}{4}, then S is unique for the table$ = 9f both S & S' agree w. f > 3/4. So the set of the set of

Compute $X_S(e_1), X_S(e_2), ..., X_S(e_r).$

Goal: Given access to f, list all such S in time poly $(n, \frac{1}{\epsilon})$.

Goldreich-Levin Theorem.

• Algorithm:

 $(t \approx log \left(\frac{n}{e^2}\right)).$

Pick V1, V2, ..., Vt uniformly at random from 20,13?

for $T \subseteq [t]$, define $V_T = \underset{i \in T}{\underset{i \in T}{\underbrace{V_1 : (2^{t} vectors are)}}}$

• Guess bits $\overline{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_t)$, $\in \{0, 1\}^t$ Define $\alpha_T = \xi_1 \alpha_1$

• To compute
$$x_s(e_i)$$
:
 $p_{jority} \{a_{\tau} + f(v_{\tau} + e_i): T \leq Ct\}, \}$
 $q \qquad q \qquad T \neq \phi$
 $\chi_{1,2,3} \qquad \chi_{1,4,7}$

Claim: If $T \neq \phi$, then $V_T \in \{0, 1\}^n$.

<u>Clain</u>: If $T \neq T$, then v_T, v_T are independent. (pairwise)

[Note they are not mutually independent. V213, V223, V21,23. - are not parmise indep but not mutually indep.).

• If
$$\overline{a} = (\chi_{S}(v_{1}), \chi_{S}(v_{2}), ..., \chi_{S}(v_{t}))$$

then $b_{T} = a_{T} + f(v_{t} + e_{i})$
are pairwise independent.
 $\& P[b_{T} = \chi_{S}(e_{i})] \ge \frac{1}{2} + \varepsilon.$
 $IE[# number of b_{T}'s$
 $IP[Majority is incorrect, i.e. $f = \frac{N}{2} + \varepsilon N.$
 $may(b_{T}) \ne \chi_{S}(e_{i})]$
 $Vap < n.$$

n variables]

By Chebyshev. $\leq \frac{Var}{Dev^2} \leq \frac{N}{(EN)^2}$. Set $t = log(\frac{10n}{E4} + 1)$. $\frac{Var}{E} \leq \frac{N}{(EN)^2}$. $\frac{1}{E^4N}$.

So
$$N = \frac{10n}{\epsilon^4} \Rightarrow \mathbb{P}\left[\text{Error}\right] = \frac{1}{\epsilon^2 N} = \frac{\epsilon^2}{10n}$$

By union bound if

$$a = (X_{S}(v_{1}), X_{S}(v_{2}), ..., X_{S}(v_{t})).$$

IP [Maj denotes each $X_{S}(e_{i})$ correctly]
 $\geq 1 - \frac{e^{2}}{ho}.$
 $\overline{a} :=$
Cycle through all choices of $(a_{1}, ..., a_{t}).$
For each compute Majority (b_{T}) & determine
an S.
Let $P = hS: S$ is generated for some choice \overline{a}_{i}^{2} .

Claim: S good if $P[X_S(x) = f(x)] \ge \frac{1}{2} + \varepsilon$, $P[\forall good S, S \in P] \ge \frac{9}{10}$.