
E0 234 : Homework 1

Deadline : 27th January 2025, 11am

Instructions

• Please write your answers using LATEX. Handwritten answers will not be accepted.

• You are forbidden from consulting the internet. You are strongly encouraged to work on the problems
on your own.

• You may discuss these problems with another student. However, you must write your own solutions
and must mention your collaborator’s name. Otherwise, it will be considered as plagiarism.

• Academic dishonesty/plagiarism will be dealt with severe punishment.

• Late submissions are accepted only with prior approval (on or before the day of posting of HW) or a
medical certificate.

1. Inclusion-Exclusion using Indicator Functions.
Let 1A be the indicator random variable of the event A, i.e.,

1A(w) =

{
1, if ω ∈ A,

0, if ω ∈ Ac,
(1)

for each ω in the sample space. Note that Pr[A] = E[1A]. Show the following:

• 1A + 1Ac = 1;

• 1A∩B = 1A · 1B ;

• 1A∪B = 1A + 1B − 1A · 1B ;

• More generally, if B =
⋃n

i=1 Ai then 1B = 1−
∏n

i=1(1− 1Ai
).

Suppose x1, x2, . . . , xn such that 0 ≤ xi ≤ 1; for J ⊆ [n], let xJ =
∏

i∈J xi. Let p(x1, x2, . . . , xn) =∏n
i=1(1− xi). Show the following:

p(x1, x2, . . . , xn) =
∑
S⊆[n]

(−1)|S|xS ;

p(x1, x2, . . . , xn) ≤
∑

S⊆[n],|S|≤k

(−1)|S|xS (k even);

p(x1, x2, . . . , xn) ≥
∑

S⊆[n],|S|≤k

(−1)|S|xS (k odd).

1

Conclude from these, using linearity of expectation, that

Pr[

n⋃
i=1

Ai] =
∑
i

Pr[Ai]−
∑
i<j

Pr[Ai ∩Aj] + · · ·+ (−1)n+1 Pr[A1 ∩ · · · ∩An];

Pr[

n⋃
i=1

Ai] ≥
∑
i

Pr[Ai]−
∑
i<j

Pr[Ai ∩Aj] + · · ·+ (−1)k+1
∑

i1<i2<···<ik

Pr[Ai1 ∩ · · · ∩Aik], (k even);

Pr[

n⋃
i=1

Ai] ≤
∑
i

Pr[Ai]−
∑
i<j

Pr[Ai ∩Aj] + · · ·+ (−1)k+1
∑

i1<i2<···<ik

Pr[Ai1 ∩ · · · ∩Aik], (k odd).

2. Min-cuts with vertex merging.
Consider the randomized min-cut algorithm presented in the class. Suppose that at each step, instead
of choosing a random edge for contraction, two vertices are chosen at random and are merged into
a single vertex. Show that there exist graphs for which the probability that this algorithm finds a
min-cut is exponentially small in the number of vertices.

3. Improved Karger’s Algorithm (M-U 1.25). Consider the following algorithm for min cut. Starting
with a graph with n vertices, first contract the graph down to k vertices using the randomized edge-
contraction method discussed in class. Make copies of this reduced graph with k vertices, and now
run the randomized min cut algorithm on this reduced graph ℓ times, independently. Determine the
total number of edge contractions performed by this algorithm, and bound the probability of finding
a min-cut in at least one of the ℓ runs.

Optimize (as much as you can) values of k and ℓ for the variation above that maximize the probability
of finding a minimum cut while using the same number of edge contractions as running the original
Karger’s algorithm twice.

4. Randomized Quicksort.
Consider the following way to pick a random permutation π of the set of n (> 2) integers In :=
{1, 2, . . . , n}:

• Run Randomized Quicksort.

• Let T be the recursion tree corresponding to the execution of Randomized Quicksort.

• Let π be the permutation induced by the level-order traversal of T (i.e., the nodes are visited in
the increasing order of level numbers and in a left-to-right order within each level).

Is π uniformly distributed over the space of all permutations of the elements in In? Explain your answer.

Recommended practice problems (not for grading)

1. Fixed Points in a Permutation.
A permutation on the numbers [n] := {1, 2, . . . , n} can be represented as a function π : [n] → [n],
where π(i) is the position of i in the ordering given by the permutation. A fixed point of a permutation
π : [n] → [n] is an index x for which π(x) = x. We showed in the class that the expected number of
fixed points of a permutation (chosen uniformly at random from the set of all permutations) is one.
Now show that the number of fixed points converges to Poisson distribution with λ = 1.
(Hint. Let Xn be the number of fixed points in a permutation. First, show that the number of

permutations without fixed points (also called derangements) for n elements is n!(
∑n

i=0
(−1)i

i!). Use

this to show Pr[Xn = j] = 1
j!

∑(n−j)
k=0

(−1)k

k! , and this converges to 1
j!e .

2

2. Splitting Graphs.
In class, we gave a randomized algorithm that if a graph G has m edges then it contains a bipartite
subgraph with at least m/2 edges. Can we derandomize it, i.e., give a deterministic algorithm with the
same guarantee?

Now we wish to prove a stronger guarantee that if the graph G has 2n vertices and m edges then it
contains a bipartite subgraph with at least mn/(2n− 1) edges. If G has 2n+ 1 vertices and m edges
then it contains a bipartite subgraph with at least m(n+ 1)/2n+ 1 edges.

3. Distinct Min Cuts.
Consider the randomized min cut algorithm presented in the class. We showed that, for any graph G
with n vertices, the probability that the algorithm finds a specific min cut C of G is at least 2/n(n−1).

• What can we say about the maximum number of distinct min cuts that a graph G can have?

• Give an example of a graph (with n vertices) with maximum number of distinct min cuts.

• Use the randomized edge contraction algorithm to find all the global min cuts in any graph G.

4. Min k-cut.
Given an unweighted and undirected graph G := (V,E), a 3-cut is a partition of V into three nonempty
sets A,B,C. The size of the cut is the number of edges connecting vertices from different sets. Extend
the randomized min cut algorithm presented in the class to give an algorithm to find a minimum 3-cut.
Extend your answer to provide an algorithm for the case of minimum k-cuts for any constant integer
k ≥ 3 and show its probability of success.

5. Concentration of Quicksort (M-U 4.21).
We prove that the Randomized Quicksort algorithm sorts a set of n numbers in time O(n log n) with
high probability. Consider the following view of Randomized Quicksort. Every point in the algorithm
where it decides on a pivot element is called a node. Suppose the size of the set to be sorted at a
particular node is s. The node is called good if the pivot element divides the set into two parts, each
of size not exceeding 2s/3. Otherwise, the node is called bad. The nodes can be thought of as forming
a tree in which the root node has the whole set to be sorted and its children have the two sets formed
after the first pivot step and so on.

(a) Show that the number of good nodes on any path from the root to a leaf in this tree is not greater
than c log2 n, where c is some positive constant.

(b) Show that, with high probability (greater than 1− 1/n2), the number of nodes on a given root to
leaf path of the tree is not greater than c′ log2 n, where c′ is another constant.

(c) Show that, with high probability (greater than 1 − 1/n), the number of nodes on the longest
root-to-leaf path is not greater than c′ log2 n. (Hint: How many nodes are there in the tree?)

(d) Use your answers to show that the running time of Quicksort is O(n log n) with probability at
least 1− 1/n.

6. Book: Mitzenmacher-Upfal (2nd edition): 2.13, 2.18, 2.20, 2.22, 2.23, 2.26, 2.32.

3

