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EO0 234: Introduction to Randomized Algorithms, Spring 2023 Te > S . - ~ d& .
Instructors: Arindam Khan and Jaikumar Radhakrishnan J
TA: Aditya Subramanian

.
Time: Mondays & Wednesdays, 14:00-15:30, CSA112, qq/ 9 3 " y ‘a‘/

Course Description Lectures Assignments Projects

Course Description

Tentative topics: Basics of probability, Monte Carlo and Las Vegas algorithms, Karger's min-cut Algorithm, coupon collector, quicksort.
Moments and Deviation: Markov's and Chebyshev's inequality, power of sampling: a randomized algorithm for computing the median.

Concentration inequalities (Chernoff bounds), application. Balls and bins, birthday paradox, Poisson distribution, hashing, random graphs,
threshold behavior in random graphs. Lovasz local lemma and Moser-Tardos algorithm. Introduction to algebra and probability: primality

testing, verifying matrix i ial identity testing, frequency moments in streams.
Markov chains, random walks. Monte Carlo methods, coupling. VC dimensions, epsilon net, epsilon sample, PAC, and agnostic learning.

ized data structures, ized geometric algorithms.
Lectures

© Probability Refresher: Scribe notes from Toolkit, Handwritten notes.

© Lectures 1-4 (Arindam): Basics, Karger's min-cut algorithm, coupon collector, quicksort, complexity classes, Monte Carlo, and Las Vegas
algorithms. [M-U Chapter 1, 2]

Notes.
Related Links:
domized C ity Classes (. Barak).
Different min-cut algorithms,
Karger-Stein paper,
STOC?2. ministic mincut paper,

Anupam Gupta's talk on k-cut,
uicksort.

We will be teaching materials from multiple books/sources. Some of them are the following.

[M-U] Michael Mitzenmacher and Eli Upfal. Probability and computing. Cambridge university press, 2017.

[MR] Rajeev Motwani, Prabhakar Raghavan. Randomized Algorithms, Cambridge university press.

[RK] R.M. Karp, An introduction to randomized algorithms, Discrete Applied Mathematics, 34, pp. 165-201, 1991.

[BHK] Avrim Blum, John Hopcroft, and Ravindran Kannan. Foundations of Data Science, 2020.

[RV] Roman Vershynin, High-Dimensional Probability.

[DP] D.B. Dubhashi, A. Panconesi, Concentration of Measure for the Analysis of Randomized Algorithms, Cambridge University Press,
2009.

[LPW] David A. Levin, Yuval Peres, Elizabeth L. Wilmer. Markov Chains and Mixing Times.

[MIT-YZ] Yufei Zhao. Lecture Notes (The Probabilistic Methods in Combi ics), MIT, 2019.

[A-S] Noga Alon and Joel Spencer, The probabilistic melhud John Wiley & Sons, 2004.
[
[
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UW-TR] Thomas Rothvoss, Lecture Notes (P: ilistic C: i ics), U i 2019.
AC] Amit Chakrabarti, Data Stream Algorithms, 2020.

SM] S. Muthukrishnan. Data streams: Algorithms and applications. Now Publishers Inc, 2005.
Various surveys and lecture notes.
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Similar courses elsewhere:

1ISc, 2021, by Siddharth Barman and Arindam Khan. j PGS" O{F@r 'nj
Yale, 2020 , by James Aspnes.

IS¢, 2016 , by Arnab ya and Deeparnab Chakrabarty.
Yale, 2020 , by James Aspnes. .
[SH-UIUC] UIUC, 2018 , by Sariel Har-Peled. J detmiled lecture rotes
MIT, 2002 , by David Karger.

2020, by Eric Price.

UC berkeley, 2003 , by Luca Trevisan.

Columbia, 2019 , by Tim Roughgarden.

Stanford, 2020 , by Mary Wooters.

CMU, 1997 , by Avrim Blum.

Wiezmann, 2013 , by Robert Krauthgamer and Moni Naor.
UMCP, 2017 , by Aravind Srinivasan.

U lowa, 2018 , by Sriram V. P j

UBC, 2012 , by Nick Harvey.

EPFL 2014 , by Friedrich Eisenbrand.

NUS, 2019 , by Seth Gilbert.

Duke, 2013 , by Kamesh M 1

NTHU, 2012 , by Wing Kai Hon.

U Waterloo, 2019, by Gautam Kamath.

00, 2018 , by Lap Chi Lau.

U Washington, 2016 , by James Lee.

o
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Fun links:

Drunkard's Walk, Book by Leonard Mlodinow.

Veritasium Video, How We are Fooled By Probability: Regression to the Mean.

Vsauce Video, Birthday Paradox.

Numberphile Video, Monty Hall Problem.

Sunlight is way older than you think, An interesting application of Random Walks (Markov chains).
Veritasium Video, The Bayesian Trap.

MindYourDecisions Video, Buffon's Needle Problem: Pi from Probability.

o
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Assignments  —> Loctzxed. Soln,

Project Topics

For projects you need to select a project topic (to be announced later). Some reference papers will be given. You are expected to do a survey of
the results and techniques in the topic area. You can form a group of two students and send the project topic and group details by 20th February.
You need to submit a report by the last_day_of class. Finally, you need to make a presentation on the topic on the last week of classes.
Intended audience: Graduate students in computer science and mathematics with theoretical interests. Interested undergraduate students with
very strong mathematical skills. A - 4 < b
Prerequisites: Mathematical maturity and a solid background in math (elementary combinatorics, graph theory, discrete probability, algebra,
calculus) and theoretical computer science (big-O/Omega/Theta, P/NP, basic fundamental algorithms).

Grading: 40% HW, 30% Projects, 30% Fingl
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§ Whot s rorndsnuress ?
—~ Lock_ of predictabiliy / certainty.

€ 9. counrtoss: given a seduene we cannot predict the
next oubcome Wit certainky.

Dibons
Dda&n
Player Span Matches Toss won Percentage
Ricky Ponting 2002-2012 324 170 52.47
Graeme Smith 2003-2014 286 148 51.75
Stephen Fleming 1997-2007 303 147 48.51
Allan Border 1984-1994 271 132 48.70
Arjuna Ranatunga 1988-1999 249 132 53.01
Mohd. Azharuddin 1990-1999 221 125 56.56
MS Dhoni 2007-2014 256 123 48.05
Hansie Cronje 1994-2000 191 95 49.74
Sourav Ganguly 1999-2005 196 95 48.47
Imran Khan 1982-1992 187 95 50.80
- Game of_ e n Mabhasltaraod. S
C
?\)hy ddnt G .Z-ZKS?
Snake & Lodder (WMoksthwrapabrom) invent probalbility?

First systematic s—\:vxd_y o 'P'pob&dozu‘]? :
Liber de Ludo aleae (Book o gaames o clhiance)
— by Gerolomo Cardanp (& 1564)

§ Rondomizabon v Life

‘Yoo does not plasy dlice with the wniverse!
- However, randonvness fas become cun
essential component tn understanding,
mod-r?/bln.g. ande a.n.od_yw\ﬁ nacbare.
~Subpartcle physics: governed. by
rarndent betravor & statistical fauis,
— Brovonicn motesu , raducactive decay -

- Bfol.ogy C mulabhon & evolubon.

PANTHEON BOOKS

— Economics * price f—twcma_h:o-y\s T
free - market economy.

S Story of beot performing
MubnAaL fundn are by desO pesplet




ProrABILITY -REPRE—SHEF{‘. [Smcei Mitzenmacher- up{ml,]

Definition 1.1: A probability space has three components:

1. ‘a sample space 2, which is the set of all possible outcomes of the random process ——— ? ) '-'—'{ H;T}

modeled by the probability space;
2. (afamily of sets F representing theallowable events, where each set in F is a subset' > ,Z-Q'
of the sample space Q2; and >
<-f set =
3. ca probability function Pr : F — R satisfying Definition 1.2. :ﬁe'\d ’_t s og )\.¢: SL
An element of Q2 is called a simple or elementary event. Ln} ’ {T}}

Definition 1.2: A probability function is any function Pr : F — R that satisfies the
following conditions:

1. foranyevent E,0 < Pr(E) < 1; Q.

2. Pr(Q) = 1; and NP

3. for any finite or countably infinite sequence of pairwise mutually disjoint events @
Ei, By E;, ..., 0

Pr (U Ei) = ZPr(E,-).
L A collection P of subsets of £ is called. o- it d of:
() Qe
i aeF > aePF

C“") A1,Azs"'; Aﬂé ? é .Cq-’)q Ae?

= Tn Bus Course WE will use screte Vro‘balo\‘\/‘c\:, space,

i-2. sommple space 5L IS finite or countalbly Ci\—fu‘f\im,
And the family F of oMokl envenk conmsts ok
UL swbsetr of 2 L& =277,

— Th a Adsaele prob space. ?mbab‘\\/lf'} —f\N'\CU\M o)
w~gnels, d‘z,f\‘r\aa Ly probaki Ukes o? S'\"rvxP'\e evert .

° Events are sets.
Sy, We vo\\ two dice.
£ 's 2venkt fv‘xs\:‘ dre s
Then Bunk abewnk 2verts EqUE, B & —82, E10) €, 2-€E°

6 % E,1s onvent secard dhe & 6



Lemma 1.2: For any finite or countably infinite sequence of events E1, E,, . . .,
k’fl'\a)r not be

e Union bc-“nd, : Pr <U E,) < ZPI'(E,) 1::3-:::‘

i>1 i>1

o Inclusion - exclusion principle: & =32
Lemma 1.3: LetE,, ..., E, be any n events. Then
Pr (UE) ZPr(E) — Y Pr(ENE)+ Y Pr(ENE;NE)
i=1 i<j i<j<k
(=D Y Pr (ﬂE,-,) +
i1<i2<~-~<iz r=1
Definition 1.3: Two events E and F areindependent if and only if Pororse

i’r(E NF)=Pr(E) - Pr(F). indeperndence..

More generally, events Ey, E,, . .., E;, are mutually independent if and only if, for any
subset I C [1, k], -

Pr (ﬂ E,~> = [ [ PrE).

iel iel

K-waise \qé.Q,PQ-ndZJ’\CQ: A sek 05_ MU\QS E\:"é_, e, Eh
IS K-wise Cr\dap,e_nde.r\f: aj—f, ’_Fc-caamy subset T < C1. 7]

Wit | I <€ K,
P[OE ] = Tr P L&)

eI i ex



Definition 1.4: The conditional probability that event E occurs given that event F
occurs is

Pr(ENF)
Pr(F)
The conditional probability is well-defined only if Pr(F) > 0.

Pr(E | F) =

K K ey
Chauwn vule : PP(OE,;)"T_F P?-C%{,‘ 0185)
=1 =1 3=

= Re(E).Re(£21€0).Re(£312,nE2) - Re (Bl Al &0

- Re{;e_a):edxy oo sﬁnﬁ randon. numbers ac. 4
a 3wm Asteibution — Sam\PL'hS

- it ‘PZP«Qaczmeth - sSPmple b wwde
Without weplacement — giwes s'lu'gﬂut\j belfers bounds.

Theorem 1.6 [Law of Total Probability]: Ler E|, E;,

..., E, be mutually disjoint
events in the sample space 2, and let | J;_, E; = Q2. Then

Pr(B) = Y Pr(BNE;) =Y Pr(B|E) Pr(E).

i=1 i=1

Theorem 1.7 [Bayes’ Law]: Assume that E, E,, ..., E, are mutually disjoint events
in the sample space Q such that | J;_, E; = Q. Then

PeiE [ B) = Pr(E;NB)  Pr(B|E;) Pr(E))
ST TRB) TS B B PrED

- m(B1E;) P(CE))
PLCE)




° Ronmdomness s counter- intulitive :

Donwel Kabhneman (2002 Econorucs Nobel ) and. Tversky tn
Prospect theory established a Co%v\irtive, basis {ov
Pumaon eerors Bhak artse from heueistics & brases.

@) Adrplane manocuvers & wzﬁ'\oesstm tovards thelmean.,
“ A extracordinary everd S more Rikely o ke folored
by an o\ddwr\,a_r-‘j ones

CSouwrce : kadhnZmcun & Israell PP L nshrnctors  fremn
TPe Drunkard’s Waek )

@ Buy{nj‘ lottery A jabyfr\\j af_pPQau\Q.S:

Air travel resulted in 0.07 deaths for every 1 billion miles travelled compared to 212.57 for motorcycles and 7.28 for cars.
We will continue to make the skies safer and you continue to fly!

@ My dad heard this story on the radio. At Duke University, two
students had received A’s in chemistry all semester. But on the T D O‘t‘/\.&f’ b’PaV\ ) Og

night before the final exam, they were partying in another state

and didn’t get back to Duke until it was over. Their excuse to Ma_—t—\/"ZmO\:b_‘C S ib \:S o)
the professor was that they had a flat tire, and they asked if they

could take a make-up test. The professor agreed, wrote out a wY :Fo-? axpajt S to b\md&?’

test, and sent the two to separate rooms to take it. The first

question (on one side of the paper) was worth five points. os \:f\/ WO‘Oa-b{ u b’ "t\’\wy >

Then they flipped the paper over and found the second ques-
tion, worth 95 points: “which tire was it?” What was the proba- N A\
bility that both students would say the same thing? My dad - Maxrtin C\@Pd.l’le—r’ My& '

and I think it’s I in 16. Is that right?14
A\

@ Canadicun Lottery & Birthday paradox.

A few years ago Canadian lottery officials learned the importance 1
of careful counting the hard way when they decided to give back % 0.9
some unclaimed prize money that had accumulated.> They pur- 0.0.8
chased 500 automobiles as bonus prizes and programmed a com- © 0.7 |
puter to determine the winners by randomly selecting 500 numbers ‘46 0.6 i
from their list of 2.4 million subscriber numbers. The officials pub- 05 )
lished the unsorted list of 500 winning numbers, promising an auto- =
mobile for each number listed. To their embarrassment, one E 0.4 i
individual claimed (rightly) that he had won two cars. The officials © 0.3 7
were flabbergasted —with over 2 million numbers to choose from, £20.2 ml
how could the computer have randomly chosen the same number =01+ Ak 5

Hee a9 sre q |- 1 1 - r'd 1 1 1 1 1 1 1

twice? Was there a fault in their program? 00 10 20 30 40 50 60 70 80 90 100

Number of people



3|da7'.s tn @ onswrin .

Foy Pandcmlj seleckz? 7 People , 'H"'ej A Shoere same bix-tndlocke

3\ 30 29 28 27 26 2¢ &~ 6.48 = P (Success)

% -~ .= = _
2\ =\ 3 st 23 C 3 7 3 % 0-52

For 10 prople = 0-196. 5 P(Swcces) x 0.804.

The Birthday Paradox

the birthda

@ What is the probability p(n) such that in a set
of n randomly chosen people, two people will
have the same birthday? ,

@ The probability p(n) = 1 — p(n) can be easily calculated:

n—1
_ 365 x 364 X --- x 365 —n+1 K S log(1-£5)
— = —_—— ) = K=0 365
A(n) 265 11 (1 ) e
K=0
~ e~ Zk=0 385

_n(n=1)
— e 2x365 |

@ The minimum n such that p(n) > é s about /2 X 365 X log2 ~ 23. ‘y\»(r')P .
v ¥ ol
] N
& @7

Birthday Coincidences N péc vy
ot
o

What is the chance that there are two people in the US who (a) know each
other, (b) have the same birthday, (c) their fathers have the same birthday,
(d) their grandfathers have the same birthday, and (e) their great
grandfathers have the same birthdays.

@ Estimated number of edges in the US friendship graph G, is about
|E(Gn)| = 3 x 600 x 400 x 10°.

@ The 4-fold birthday coincidence amounts to ¢, = (365)* ‘colors’. o CowusnNs .

@ Then, by the Poisson approximation result, the chance of a match is

P(T(K3,Gyp) > 0) & 1 — e 1FEI/e x99 8%. (CRAZY!)

@ The phenomenon of the law of truly large numbers (Diaconis and
Mosteller (1989)): when enormous numbers of events and people and
their interactions cumulate over time, almost any outrageous event is

bound to occur. -
o o

S)hides:
Bhas—ar B



The Monty Hall problem is a brain teaser, in the form of a probability puzzle, loosely based on the American television game show Let's
Make a Deal and named after its original host, Monty Hall. The problem was originally posed (and solved) in a letter by Steve Selvin to the
American Statistician in 1975.1'[2] |t became famous as a question from a reader's letter quoted in Marilyn vos Savant's "Ask Marilyn"

column in Parade magazine in 1990:[°]

Suppose you're on a game show, and you're given the choice of three doors: Behind
one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, : 4
who knows what's behind the doors, opens another door, say No. 3, which has a v ? ¥ 7
goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage

to switch your choice?
In search of a new car, the player

. icks a door, say 7. The game host
! [3] pic [
Vos Savant's response was that the contestant should switch to the other door.!*! Under the standard then opens one of the other doors,

assumptions, contestants who switch have a % chance of winning the car, while contestants who stick say 3, to reveal a goat and offers to
to their initial choice have only a % chance. Ij‘ thz Player switch from door 7o
oor 2.

.
Assumptions *
1. The host must always open a door that was not picked by the contestant.[°!
2. The host must always open a door to reveal a goat and never the car.

3. The host must always offer the chance to switch between the originally chosen door and the remaining closed door.

You. fix Door 1.
Boyes' theovem : P(AIB) = B (B\A) . PCAY/ PB).

<

RASL, car Moty
belind. deor 1 spened dow 3
g sheve Fork

M“— Cﬁr‘ls — A
is mg‘w@u -z

dewr > ' door 3
& show
=\ (8= L+
PCAd== W ) z_ggyw.

\?(_A\ﬁ') -:—\2—_—3—/—'2:—‘—
3, ’—D .
Swot btk

?® (Rl e Moty 6@2&3)
belird deor2 door 3

ue 2 L x Assume Breve are 108 doors.

| | l 106— 1 how caoa\r/.: & 1 C&r.
.1 uu.l .2 P\a\\/e,r 'P‘GKS a,d_aw&%o‘b‘t
opens 10¢- 2 doors wr goat
Wik w switen?

Car has a % chance of
213 0
being behind the player's

The host opens a door, the
pick and a % chance of P '

odds for the two sets don't
change but the odds move
to O for the open door and %

being behind one of the
other two doors.

for the closed door.

ﬁM}& source : U l‘-'P'_d,c&.



Car Host Total

location: opens: probability: >tay:  Switch:
1/2_ Door 2 1/6 Car | Goat
Door 1 "3
1/3 172 ~ Door 3 1/6 Car | Goat
1/3 Door 2 1 Door 3 1/3 Goat | Car
2
)
1/3 1
Door 3 —— Door 2 1/3 Goat | Car

@ Si«f\?SO‘V\’S ZParosaox‘

Simpson's paradox is a phenomenon in probability and statistics in which a trend appears in several groups of data but
disappears or reverses when the groups are combined. This result is often encountered in social-science and medical-

Batting averages v
A common example of Simpson's paradox involves the batting averages of players in professional baseball. It is possible for
one player to have a higher batting average than another player each year for a number of years, but to have a lower batting
average across all of those years. This phenomenon can occur when there are large differences in the number of at bats
between the years. Mathematician Ken Ross demonstrated this using the batting average of two baseball players, Derek
Jeter and David Justice, during the years 1995 and 1996:181[19]

T Year

; Tt is possible o have :
Batter 1995 1996 Combined

PCAlBAC) > PCALBAC)
¥ P (AlBACY) > @ (A1BNCS)

but P (AIR) < ® (AIBY)

Derek Jeter 12/48 |.250 [183/582 .314 195/630 .310

David Justice|104/411/.253  45/140 .321 149/551 .270

Wsmen e
Drug 1 'D'sz Dl'vj"l Dry 2
&S/ N
Succsy 200 o 19 LoD
Friare  |8p0 QRO 1 \ooD
Assmm

Pry1 219 /2020

= p1,8=D2
Prsy, 2 lO\O]ZZOD.\)V e ’

C=M, &£ =F,



55 Discrete Rondom Variables [on2
ond. Expectation. M-

Defn A vraondem varriable X 1S & func,"in'm
RV. X:N—=>MR. A dscrete RV. is & R.V.

that takes finite or countobly dnfinite
number og volues.

Def : ( Expectation) ®EIx]= % x. PLr=17.

@ Properhies OS: expectation -

Thny 2-1: [ lineareity of E;specba:l-icm&]
For ony fuite collection af de<screte RVs
Xa, Rz, s Xn W ftrute expectations,

E[éix-;] = 2 €%,
( Note: We derdt nedd these RVs ‘t'bbe«m&apm&eny

* lenearity o expectabions also Hold -fmﬂ Counkably
‘if\_jq:;\ﬁ'l:.e. Summathens tn Certoun Coases :
9 o0 O
TE[ é‘ Xz‘-_\ = 2 e [x,;j whenever g tE[lXL‘l] Co'nverjes.

t=1

=

—_—
Consider & series @0y, ...

o

S =K%'Q-K~ Sn: i(éa« Note Cenvergpnce O'g— gan ast reczmarily

-\ -
A sevies converges <f -there Mean  eamverognce. 0;? s\aul.
exists a number £ s.4-
arbitrarily sman £ >0, a.5, _—t et L4 = 2 Conversgat

30 ruffictaniy tagp e b S-ol-S+ = ~% . 2n(2) F
¥ . - . .

NN, lSp—tl<e bt 1oLt il L., = oo d*\’zfz”dt

27 2 a
_



Lz -2+ For any constanit ¢ and duserete

(AN}

X,

EleX] = cE(X).

De&na-4‘- QCASY)'VZ} ;S:unc,'l;\'o'v\) A -ﬁ,gnct—(o-n f: IR—> TR
1S saLld to be convex 1f, for any x4 %X, and

0<LA<L1,

F (A% + (1-2)%2) £ A £Cx) + (1-2) £&2).
lem 2.2 9f £ is twice differentiabie
funcbon then £ s comex HF £7(x)>o0.

2.9, eFC'l')='z./7L4.9L x> s
¢ P >4 |paretly
X, | |F Joe P2 ConveR -

T 2.4 ( Jaensen's IY\acLua_thy) f £ is & convex

Junction then  |ELL(x)) > £(ELXD)

corollasy © ®L%2)> (EDO)

Chhedk

https://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf

S \.LSZ:F/J. inequelitieo .



e ThAcodor Randont Variables :

Remember vardem varioble X is a 2 K: L — R.
2.5, ,ve can Pove X(w)=1 £ o€ 2.4.¢2

= -1 :—f wo € 1\_3,‘5}
=-0.5 if w€E }1)

Indicotsr vanden voriable Cm' \ N cokoY ’ﬁMC_Ka‘S‘W)
S a rondermm variable Yok Coun take onls, boo valumeds

= 1 f evek F happans
— O ochernse.

lﬂd,cc_adpv—f.,mo’ﬂ&vu o§ on evenkt B is denot=d b, ﬂE’
FPormallly ., event € < 52 . akso Tg

D@ =1 f weE
Neg() =0 if LOHE

Event : Gk even rutorber in aadhe 70U,

fe () =13f W& 12,46}
g P)=0 & we {4,355}

Expectabion:
ELUe) = w(e). 4 + w(ecl . o= r[e].

HRO T Peeve tncumsion - 2xclusisn ?f’\‘nolp\e_ usTng
inducaksr functens.
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Applicationo G’S, Rinearity, 0@ expectabiona |

Let G = (V, E) be a graph with n vertices and e edges. Then it contains a e=xc
bipartite subgraph of at least % edges.

Let T C V be a random subset given by P[x € T] = % An edge {x, y} is a crossing if PfOb l “s hé

exactly one of x, y arein T'.
@/@ Metirods |

Denote by Xy, the random indicator for x, y being a crossing, and set
A 0

o 2 w5 X= Y Xy
R {xyl€E we pwk each vertex
Since E[Xx,] = %, by linearity of expectation we have M@Mj
EIX]= ) E[Xyl= % ohy do we dneode > 7
{x.y}€E oy P & then ofP‘\xiwize, .
Consequently, there exists a choice of 7" with at least % crossing edges, which form a Hren W2'U '3215
bipartite graph. [ Ry l= P\ -FD.

Hie: Can we gk a poly moriok —Lime. detzraminustic
= olgorithm 7 Cihnt: Max-cnk].

KWt Prsove thakt there s A& 'Pa-"‘b:‘b\:@" VaOVa =V d%
= verticeso sk YveV,, |[Nbes ()0 Vil € INbs@Inv,]
ard’ VNEV,, INbrsCue) A Ve ] £ [Nevs () V)

R Petter smp'\,«:na :
p— . . '
= I£ G hovw 2n veriices & m ed.5esS then 'k comvtasins

o bipartite Svdoa'r’a?e\, b = o/ C2n-1) 2&?5.

>



& A ‘u.rv:fm"m\y randon P@pm‘,\ta-tﬁsm F7: Cnd— [n]) «s expected.
to Buave a uvrnidme fixed. poink :

tz2z3 3

\2 2 O

X:#f\:x@?dr\ts e sucbe - 21@® 1
Z ndicakor Revdam Variable (\Rv) : 221 o©

2 ﬂ“’(& =X A rordsm Variable thak Swwo 212 O

=1 2 volme 1 or O, ace. o whether a 321 1

Spec: fled. evank & occurs O not s

E[x) = ﬁ_:[ 2, ﬂ'ﬂiﬁ?'—'s—] coled RV for E.

/,‘\' - K=t
U&ﬁ"“w i 1> E ﬂrr(mcsj

Ke
o~ o~

= 2, P (wlkr=x) = i -~ =1
K=t Kee

o :ﬂ:—ﬁxe&. ?o'u\.h conversgs 4 a Passown &st‘mbu‘bcsm,
Mere 5\”"‘"’?‘%“7/ PLX = J3 CShva_sra?J ‘o —— ~ (J\)

Buffon's needle: rule a surface with parallel lines a distance d apart. What is the
probability that a randomly dropped needle of length # < d crosses a line?

Consider dropping any (continuous) curve of length # onto the surface. Imagine .
dividing up the curve into N straight line segments, each of length /N . Let X; be the
indicator for the i-th segment crossing a line. Then if X is the total number of times the TR

curve crosses a line, & 2 )
E[X]=E[) X;] = ) E[Xi] = N - E[X1]. (=

That is to say, the expected number of crossings is proportional to the length of the curve

(and independent of the shape). /
o N 0 /
Now we need to fix the constant of proportionality. Take the curve to be a circle of
diameter d. Almost surely, this curve will cross a line twice. The length of the circle is zd,
so a curve of length £ crosses a hne = tlmes -

Now observe that a straight needle of length # < d can cross a line either O or 1 times.

So the probability it crosses a line is precisely this expectation value %.



§ Bernouwll, Binomial and Geomebric RV :

Bopnowlli : Y be & RV s.b- Y= §1 wp. P

o wr (1-p).
ELY)=p.1+ (\-P).O =¢
€-9. one Cosin sS can be modelz) b‘ Bemmsullt -
- Indilcaotnsry randem varialo\les cwe pelakz) .

Binonmuwal: X:= Bin(n,p)is & rvandom variable
taKCns the values 0,1.2,...m ond

P(x=k)= ()P (1-p)" " where 0<p<t.

2.g. N eoln Poss. oo many heads ?
use ful 1n sa«r\phqj IEL%]) = lEté?(j éh:[_?(‘] =npP

Geomebric : X:= Geom (P) is & geomebrc RY
1§ X takes valueog 1,2,3,.. with [P(X=k) = P(\"‘P)')H.

e g. number of Coln fLps Hillyow set a frest hed.

TResrem @ ELR) = :L/P¢ Fovr X : = Gesm (P,
mﬁ% i 1 .Lf ok least i triaddls are needed. for swicess |
Xy = .
O otherrnse

T®en, we tarve X = 2741.

\_ I

J
=2ELx)=g ®'lxd= 20 e 7= £, (%Y =, T

\>'1 .)?/O



Example : Coupon Collectors Problem.

§up1>ose eac~ box 07C ceveol contadns one cj e
A ffeecant COUPONS . Once yosu obtaim one G}evexy
type cf Coupon , you Can send. in fo’va'pzm'-ze

Assurm'mj Counpown In €ach, baox 1s Cliosen fv;d.efer\-
—dz;f\);gy and. mfmomly at randosm . e TN
boxes o§ cereal Yow nNeed. Yo bu\)' bef-mpe, Now

obtadin at \east one o;’ every 4:7Pe, o-} COULN

° |leX X be #Hboxes boux%:t unt it we have al\
Trpes of ccsmpms

Let X{ denote #:boxe.s bought hole Had

e,xacbly (v-1) dxﬁex’enﬂ: caupcms then dearly
% X .

l' - 4

$—9~ —
MY 7§; . x

ARan e_xacl:\yQ 1) Coupons Have beon Lound.

-thepraob a-afobtmmr\j A new coupon s
Pro= 1 - 1t

—_—

n

Hence, Xi 18 o grom RY with parameter .-
=% 1 "

=

—
—

- —_— + oyt
t Nn—1v+41 _ m,e%mmmgf\t
L E[x)= B[ £ %) = & ELA)
| =1 (=t
A N )
=t n-1+1 : J

where H@) is Haemowic number

= bn+6Q1)
Nole. : _l- 0 500 | else it de. a1 _ w3
= - fcas ela ks Afind én"_ Z3



[vn: preve: HN = 2u(O+8Q)
Hink:

1 1
fx)=— f(x)=—
X X
1\ =1 1\
LT
: 1
12 e 12 y f(x) = |—x—|
13 i 13
Vo) e o)
1/(n+1) % r 1/(n+1) :

f f t f
1 2 3 coon-l n n+l 1
(a) Approximating 1/x from above.

2 3

n—1 n n+l

(b) Approximating 1/x from below.

Figure 2.1: Approximating the area above and below f(x) = 1/x. ]

° iIs )( cencentrakey 7
— Ex?gd-ak\"m tels Mmean.
Buk underiying Alsteilbubons condd be gquite diflerent-

cojmam =

N

L}

aker ae’'\\ 3ee Bhe —Fo\\cm\‘nj Lound uLS'tna seMMe
advanced. metihods swch o Chemoff bounds &
Passsn a\??voxfmah‘-sn.

Theorem 5.13: Let X be the number of coupons observed before obtaining one of each

of n types of coupons. Then, for any constant c, \

lim Pr[X > nlnn+cn]=1—e"°". __L—
n—oo

wlaan
This theorem states that, for large n, the number of coupons required should be very

close to nIn n. For example, over 98% of the time the number of coupons required lies

between nlnn — 4n and nlnn 4 4n. This is an example of assharp threshold, where
the random variable is closely concentrated around its mean.



g Importonce in Computer Sesence

- Randomized. aaij'rthxs are G\Ljovi't\rums Bat make
vandowL chelezs ohminﬁ thel exeecution.

— Ad_van}?aﬁe, : ginf\PQ,:Qj_'{y7 speed. .

Random number generation is a process which, often by means of a random number generator (RNG), generates a sequence of
numbers or symbols that cannot be reasonably predicted better than by a random chance. Random number generators can be truly
random hardware random-number generators (HRNGS), which generate random numbers as a function of current value of some physical
environment attribute that is constantly changing in a manner that is practically impossible to model, or pseudorandom number
generators (PRNGS), which generate numbers that look random, but are actually deterministic, and can be reproduced if the state of the
PRNG is known.

Example : Given an in'baaex* arary cf st2e 2Kt1,
retioen cur element = median cg the axrary.

— Rest deteerminisbe adLao need. to read. Q’\—\-t) elerments,
— Randsnwzed algo : Choose 100 numbers randomly,

Retuurrn the max . \
-~ .~ v
Suwecess probobility 2 vriforrnly b
K4 ) rondem,
oy svie number - et = PN
- el
SwyY pM S | “"A—QW‘ j
frv 100 numbers @ 7 ‘1':'::-?-3\: oL
|
(3)—> 0.

Here, e use m{:ﬁ.«}:f vt vqoflacemznﬂ:s.
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replacement W%@\t FNve beter boundo.

. Beatin e ¥
o P dorness - g viost axz pv far manaz
owex oé’_ ean of a sins\? dekermund st olge.
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In the mid-1950s, U. S. Air Force researcher Theodore E. Harris and retired U. S.

Army general Frank S. Ross wrote a classified report studying the rail network
that linked the Soviet Union to its satellite countries in Eastern Europe. The
network was modeled as a graph with 44 vertices, representing geographic
regions, and 105 edges, representing links between those regions in the rail
network. Each edge was given a weight, representing the rate at which material
could be shipped from one region to the next. Essentially by trial and error, they
determined both the maximum amount of stuff that could be moved from Russia
into Europe, as well as the cheapest way to disrupt the network by removing
links (or in less abstract terms, blowing up train tracks), which they called
“the bottleneck”. Their report, which included the drawing of the network in
Figure 10.1, was only declassified in 1999."

'T learned this story from Alexander Schrijver’s fascinating survey “On the history of
combinatorial optimization (till 1960)”; the Harris-Ross report was declassified at Schrijver’s
request. Ford and Fulkerson (who we will meet shortly) credit Harris for formulating the

-1373
SECRET %327

Fig. 7 — Trotfic pattern: entire
network ovoiloble

Nete 11X at Division 9, Poland

Figure 10.1. Harris and Ross’s map of the Warsaw Pact rail network. (See Image Credits at the end of
the book.)

Qiven @ G:=(V, E) connected, undivecte)
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Erck son

Goal : Find o mun-ant- Cowb of and, candinality)
where a cub is A set of edges whose removal
vesulls e § being broken ndo two o more

compsnenks .
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Maximum Flow and Minimum-Cost Flow in Almost-Linear Time

Li Chen*
Georgia Tech
lichen@gatech.edu

Yang P. Liut
Stanford University
yangpliu@stanford.edu

Rasmus Kyng'
ETH Zurich
kyng@inf.ethz.ch

Sushant Sachdeva¥
University of Toronto

Maximilian Probst Gutenberg!
ETH Zurich
maxprobst@ethz.ch

Richard Peng
University of Waterloo §
y5peng@uwaterloo.ca

April 26, 2022

Abstract

it flows on
and S

We give an algorithm that computes exact maximum flows and minimum
directed graphs with m edges and polynomially bounded integral demands, cos apacitics
in m*eM) time. Our algorithm builds the flow through a sequence of m!+°(}) approximate
undirected minimum-ratio cycles, each of which is computed and processed in amortized m*()
time using a new dynamic graph data structure.

Our framework extends to algorithms running in m!*°® time for computing flows that
minimize general edge-separable convex functions to high accuracy. This gives almost-linear
time algorithms for several problems including entropy-regularized optimal transport, matrix
scaling, p-norm flows, and p-norm isotonic regression on arbitrary directed acyclic graphs.

e

1+o

[V agu\ﬁwxan-binﬁ ‘?“’H"—]
O (VEZ) [ Angmenting path ua BFS)

Aog U D,

Best paper FoCS 22

sachdeva@cs.toronto.edu
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Researchers Achieve ‘Absurdly Fast’
Algorithm for Network Flow

Computer scientists can now solve a decades-old problem in practically

the time it takes to write it down.
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Breaking the Cubic Barrier for All-Pairs Max-Flow:
Gomory-Hu Tree in Nearly Quadratic Time

Amir Abboud®  Robert Krauthgamer!  Jason Li*  Debmalya Panigrahit

Thatchaphol Saranurak¥ Ohad Trabelsi!

August 5, 2022

Abstract

In 1961, Gomory and Hu showed that the All-Pairs Max-Flow problem of computing the
max-flow between all (}) pairs of vertices in an undirected graph can be solved using only n.— 1
calls to any (single-pair) max-flow algorithm. Even assuming a linear-time max-flow algorithm,
thi s & running time of O(mn), which is O(n?) when m = 6(n?). While subsequent work
has improved this bound for various special graplielassesynosubeubicstime algoritlilias been
obtained in the last 60 years for gencral graphs, k this longstanding barrier by giving
an O(n?)-time algorithm on general, weighted Combined with & popular complexity
assumption, we establish a counter-intuitive separation: all-pairs max-flows arc strictly easicr
to compute than all-pairs shortest-paths

Our algorithm produces quivalent tree, known as the Gomory-Hu tree, from which
the max-flow value for any pair can be retrieved in near-constant time. For unweighted graphs,
we refine our techniques further to produce a Gomory-Hu tree in the time of a poly-logarithmic
number of calls to any max-flow algorithm. This shows an equivalence between the all-pairs and
single-pair max-flow problems, and is optimal up to poly-logarithmic factors. Using the recently
announced m'*°M-time max-flow algorithm (Chen et al., March 2022), ovr Gomory-Hu tree
algorithm for unweighted graphs also runs in m*+*()-time.

focs'22 poper

All-Pairs Minimum
De d 3 Fanigrar

Cuts in Nearly Quadratic Time

ICS: Thursday, 22 December 2022 10:00 AM-11:30 AM

YouTt > Link

Abstract: In 1961, Gomory and Hu showed the surprising result that minimum cut
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A New Approach to the Minimum Cut Problem

SOPA" 13
TACM ‘AL

DAVID R. KARGER

Massachusetts Institute of Technology, Cambridge, Massachusetts
AND

CLIFFORD STEIN

Dartmouth College, Hanover, New Hampshire

Abstract. This paper presents a new approach to finding minimum cuts in undirected graphs. The
fundamental principle is simple: the edges in a graph’s minimum cut form an extremely small fraction of
the graph’s edges. Using this idea, we give a randomized, strongly polynomial algorithm that finds the
minimum cut.in.an arbitrarily weighted undirected graph with high probability. The algorithm runs in
O(n’log’n) time, a significant improvement over the previous O(mn) time bounds based on maximum
flows. It is simple and intuitive and uses no complex data structures. Our algorithm can be parallelized to
run in RN6 with n? processors; this gives the first proof that the minimum cut problem can be solved in
RN@. The algorithm does more than find a single minimum cut; it finds all of them.

With minor modifications, our algorithm solves two other problems of interest. Our algorithm finds
all cuts with value within a multiplicative factor of a of the minimum cut’s in expected O(n>*) time,
or in RN with n>* processors. The problem of finding a minimum multiway cut of a graph into r
pieces is solved in expected O(n2 ) time, or in RN€ with n2C~ 1 processors. The “trace” of the
algorithm’s execution on these two problems forms a new compact data structure for representing all
small cuts and all multiway cuts in a graph. This data structure can be efficiently transformed into the
more standard cactus representation for minimum cuts.

Minimum Cuts in Near-Linear Time

David R. Karger* m o)
February 1, 2008

Abstract

We significantly improve known time bounds for solving the minimum cut problem on undirected
graphs. We use a “semi-duality” between minimum cuts and maximum spanning tree packings combined
with our previously developed random sampling techniques. We give a randomized algorithm that finds
a minimum cut in an m-edge, n-vertex graph with high probability (in O(mlog®n) time. We also give
a simpler randomized algorithm that finds all minimum cuts with high probability in O(n?logn) time.
This variant has an optimal RAC parallelization. Both variants improve on the previous best time bound
of O(n®log®n). Other applications of the tree-packing approach are new, nearly tight bounds on the
number of near minimum cuts a graph may have and a new data structure for representing them in a
space-efficient manner.

Deterministic Mincut in Almost-Linear Time

Jason Li*
Carnegie Mellon University

June 11, 2021

Abstract

We present a deterministic (global) mincut algorithm for weighted, undirected graphs that runs in
m! () time, answering an open question of Karger from the 1990s. To obtain our result; we de-randomize
the construction of the skeleton graph in Karger’s near-linear time mincut algorithm, which is its only
randomized component. In particular, we partially de-randomize the well-known Benczur-Karger graph
sparsification technique by random sampling, which we accomplish by the method of pessimistic estima-
tors. Our main technical component is designing an efficient pessimistic estimator to capture the cuts of
a graph, which involves harnessing the expander decomposition framework introduced in recent work by
Goranci et al. (SODA 2021). As a side-effect, we obtain a structural representation of all approximate
mincuts in a graph, which may have future applications.
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3. RZCUJ’S\\[Z@ vw Fast-cokb on G & G,
4, Rebuen dhe best b’g Fast-cnb (GO % Fast-Ck (G,

K o OG) 4G a
“\»“‘Yﬁ, "*‘;J”yﬂ o) ra %}G) g \Cwl Vo Do
W S/ o (0
i v Can . Gy, Gz ’é__) Reyveld
o



Fresren: Fast-cnE Pan yeunbine OC_nL,QoﬁvL)-

H# contractions = o — 1’:_\_;_1 (v step2)

Each contbraction tokkes OER) 2me.

> steps due to cankbrackMC tokes OGE) HLme.
There are bad yYecurrsive Calle.

Tev = 2(T(Z5) +00™) = O (" rogm),

[*’ deptin of search is 0(Regi), eacl. step takeo O fine:]

Thesrem : Fast-cut bvo success probabtlby Q2 C/Lﬁw).

lekt PG) dencte Hhe swccess r‘rvo\oalof\,:-\,—r c§ Fost-cnt (Q).

Plr)= 1L — PL Both Fast-ank (G)) & Fast-ank (G, ) P\ )

2.
1 — (1 — PLone braonch is .SLACCQ_S.SfAL:)>. .

New & bvranc t's SV\C—CZ..SS\fv\JL ; When Yhe conbyrackt MC
the min-ck (e =1/, fonn Fack 17] and

the wecuesive step s successfidl wp. Py +1)
Hen &
“r pe= 11— (1— L PR <))
o 1- (- $e(R)) D stnplicdy]
2
> pe= P (R~ 4P GO -

us{ng induction & Ssme AL@e,lo'pfuCc, M)FV\LWHM
one caun sheos P> 4/,0»5”_ (W)



e Tntbtuitiov belhind the recurrence -

P = ’PC_'\/\[E) _ 2(\_ Ce Cf\@)}z

N 3 2
PO = P (V) - - 2 [p s T
Repface, m by gzt | he., t= Rogp 7.

T BT - e (w5 = — 1 et
Take ¢ = =
F&Y = pzt) =p .

Then, Lcp) - f(6-1) = — X D{‘r(_’c'(ﬂl

- ~ '
= S‘z'ﬁs—;—cu: 5 — &= 5 LBy inegrding)
~ L
= 3°C’c)=4?=> pen)= Ao A— "”D‘C\oa”‘)

The nunber o?? Leowes trn. the vecursion tree @ B (7).

One can e Hus as ancther v\')arvdz Og. frazpea:b.}\j
ConbrackMC 6 G) Emes to amplify success probabiliby
Honwever, »une aye mo mmove u\depe_ndar\,{:

D;fferent wun? veuse Some condracton stes.

TS Scwenr a Lot 0;32 yuntime . and 'Pf'o\o_o;} succe s
= : L

vops Utle [ costant 4o ""5"”1'
Now e cou vepeak e algoribun OC_Qpﬁ ) Xames,
we 6@97 OQY\?'LDSLVL) Aze. wovbHa Swiccesc Precbabi ity -
2,0 &

1— (1—Pe)Ped" = L. fapeai © (e o

Y 3uecen pvd 'L—-—‘.s/h'_‘

° ka-w«iar'— Stedn s one of those mlss?lw Feory THE
RoOoK. 5 AN ey .e_x’(",ens{o-vw , 2T See e STDC’ZO'\Da{;eP
on Rrank by Gupka, Lee, L.



Quick sort

AJLao-wz'ﬁﬂ.lm, Ran Ao &S (s). )L_“( '22, e 3K
Input © A set of Astnet numbers S
Oukpunt: The elements 5'5 S sorted w

. - s
anweas-m.ﬁ orde. z%f;’%qu
~
L/A/

1. If IS1=1, retuwn S. Else cothnue .

2. choose an @ement B (pivot) wniformly ok
vYandom feom S,

2. By cmmpar:inj cach element 2f S with Z.
deternune the seb | of elements smalier
-l:han\é and the sebt P\G'f el@n_enkxﬁwea-}er

4. OW' RCLndGTV\(QS C L) 3 / Rand:yw»CQSCRl

Woerst casz © B ). Consider = 3w, n-, - , 13,

-;\S

) »ww -0 +06
Honever if pivet sPUts S in a badance?d way,
c(r)= e (B y+ QC?L(Q;\)) +6G) o o> L.

we gzt c)= olnlgmw). ook
- Can we DC.MJ\ aood, fP'tvb'b of-’te_m,7 re,(;\p\ouv\enf,



s Ophion 1. Chwoosz pivots u-rujac'r’rr\)‘/\a, oX vrandom .
tere, expectation ts ovee vandom choices of
pivots: (Pandonuieed ol%o)

- Option 2. Use dekervunistic &\Ljovl"t\/rm & use
feest @lement as pivot; bud take oo randem

ordering of tnpul. (rand ovdering off Anpnt)

In tus case, aﬂd«\ysis c‘; randeonu22d Ruacksaoet
andk peobabilstic analysis 6f determiunsstic
Quicksoet under randem vnpuds are esentaadl,
Same. \We focus ow the van?d. ohsp

Secve fary P*rzslol\@’“

Thm 21\ Expected number of wmpam‘so-m\s
made by Random Quickseet 18 2,41 +O@).

Pf. el v, ¥, -+ Dn b2 the same vallues as the
wpul values x, X, ..., x, bub sortzd v increa-
sing order. o o4 QL/ L
=42.5,4,3Y “v=41,2,3,8),
P '1<‘j > Lek Xij be a random varioble Haat
tokes on value 1L if vy and Y are compare)
at seme pount o the al\jof—*i'thm & O oberrnise.



ne~ |

Hence, fotzl oo of compaeisons X = éé Xij:
=) d-l’H

- EIX] = p&[é g Xij) = né,'% |EE7<.] Clin of 2xp.),

(=t j=(t (=t )=i+1

X.:'J is & Bernouly RV.

LD = PLYL Y areconpard) = P

Key dea: S and. c.a_o are combpared iﬂ elLther
%;”cm %; 18 the fi\os% pivet selected Aomn the set
YU = {%CJ %‘1’1'( S ] %33’ ot R Ay %, Xy A Xg-

e \ 5 5 #F 6 U

V) 9 B s (Fe

T

Pfof key idea: <L 4 (er ;) is the fiest piuot
selected feormn Bus set, -L-ham G o 44
are in same swolist, and tence o\ be

C’-OW\Pa.V-‘*a,a . ~ | , ‘\/
Otherwise they owe L e A
epavraked wnkd dishincet sublUsts Comrcamsons

w%mmmmw& B



As pivets are chosen indz_‘pz:'\d@blb\g and wfarmﬂy
at varndom. Al members are equally Likely

to be selected.  py - 2

Jg-1+1
n-f n 2
ELx])= 2, 2, ——
=1 :):|'+1(J"""1)
22 Lobshtut
= — substituting X =4-i+1
1= =2 K 3 J ]
y\i. n+l =K 2 [_ 3
= —  Lvrearranging SUms
K=2 1=\ K 3 3
= '\2’ Ch +1_K)—2—-‘ :i Z,SK... n-2,m-|,n
RK=2 K 2 2,,5:4..,}?'\—2_,'7—(,
= '\Z,Ch‘\"l—“)‘,zi‘ - 2Zr ; BT Kt l&n+1
K=1 ’ Kén-1
-~ 2 -y 2 : +1.
I R
= (2n+2) () —4An. = O(nlogn). =
Thw 212 1 Deadds with \:mobab'wush'c analyS\'S'
® Alternate anadys's @ Baddsards Arelyysis

°f Quicksoet
Very useful techrique in many areas inclndiing
Compurkocaanal Jeemebry ( vand-orized. theremenkal
Censtruction),

Q. WAk 'S the 2xPpect®d number c—g CONP I SONY
. Quicksert,



artsons
Th) be the ex?e.cted. m.ur\be,\“ogcmr\?

Lek n

o an Aoy o-; RensfE. n. C%{)
Nowo 'ﬂF we choose 1. smoukest clement then
L & R 2o
L we seleck Yy

sveey  (v-1) & (n-1), Tesp,

w-P.

/.

. \ ence. :
So we obtoin e —{;\\omv\j recury:

g ) ‘ "l ;_‘)'k“'\")l

1=

&

(=

T

™o [Cn—“)"' TC(._‘)-\-'\'(n-‘\)J' T =0.
TG\Q = i—\;

der an Verative run of quicksoet
Now Conswaer

Consder cxr;my X s e

bad!

X2,

Ky

X3

22

40

1S

12

3\

lo|2S

38

7e

Ya Y2 Vs

" ()

Y7

Y2

4

(Y4>] Ye

Yg| Vs

Y7

pd

Ya

Ys

76 yg

Yz

|)‘t @ 72
RNAFARIRARA A E
EARA WA RARA A
| Y| ve| %l Yal vs| ve | 72 (Zs)

element chosen (n ordery -

7o

Y4

Vs

s

%o | Ya|@s) ve | ¥

Y| Vg

73

Y2

FARREARAR

Y3

>

Y, V3 Vg Vs Mg Yz Vg

\

\

0|

3+4 =7
+2=3
ox2=2
o+0 =0
o+l =1
O+l =|
o+0=0
O+0 =0

Ya, Y.G/y(/\/sz}lp_,\/q,73, 78.
25,3%2,10, 21,12, 28,15 ,40.



1. Tnihialdy, there Is & Aart boara og_ n consecutve,
2mpty squares, axwomaad_ N & roWw .
2. For n iterations -
TR oo St ok oo wvxfm«mly YARNA S

ermpty square, ond
Pow coot = s consecxtve empty squares to e \e s
g vighb of the Jdaet

Note : After we tarow Hae fivst daet . the amply

seqment t» Reht & o wightb counle brested
as byvo separate independenk fames .

There may no longer be o~ daet Pudtrng the
‘&&f‘t %%”"’"&’\—t ervepy round. , buk condibone
on a Aart *\’A.i-\r\'\‘rﬁ e \eft saM,

the square R e 208 = JE SN ~g WLV § w—s:mmb yandemn

E_N_“_ Shew  csat cj; tus daoet Fame \S sae o)
bre #—‘ CGYY\?M\‘SUV\S ':S:UV' q‘/u)c,{:gcwt‘

Obseyveton 1 The porid st ak oo vouad s only

S'Peo?fﬁ‘c_ t the Ppresent state. (Does var depend
on bre Austory, e . few bas Steke W veaded)




_— Backniarct

Consider bre —Fo\\ovo\‘nﬁ reversed Jdoet eme.

1. Staet nwith & i board of mowrked. square.

2. vy 0 Herakions 1 Lmarvrk a randon square
ench iveration & poy cot = # censeadive
ety squares 42 the \efe & right 0% ‘e Unmar ke
Square,

Observatien Q: e any S?ZQI/FC. sequence o—[— cheoun
guares th e original FAM, 'Y'—Zme_vsfns DBe
seqmence. in the reversed dart game ammwes

at B same caot p=r vound. C and B - Cdrt)

HW - Verify cet of mo{%fino\l. %m ,:\/4\/6\/0/5\/2\/7\/:578’_]

Back ward. 66-0\0\/\2 Oen e | [73y3 Y7 Yz Vs Y, e 74]

Obsevvabsn 3 - Bost, sequence C:?CrmV\tA"t\éM)

OCcur Witk prob, 1/,\, in Heir respectve Farme,
o Bren, Cortribute e seame amowt & te
Erprcke?d ceb of eadh FAame.

Advanta 52 ¢ Reversed Fame 1S mueh easiey A

anodyze |



Theak of cot betng conbribubion from enpty squave

= M an erativu | e deen o aw\?'\'} soQuware
ConbribLbe ‘@ the cot Tov s tteravthion 7

Hence , Jor Rach @mgt, square. proLabiily taak Wk
Contribubes *v e caxt on Hus vround <

= 2/;.
By Rhearits, of z;o?zc:l:aébfm :

FE[CO'*O:} D = P ?\:er'acb.‘mf) < (n-1). -i; — ‘_zi_"_._.z,
ttence, Total coxt < é

n )
= Q_ni— — 21 =

= v = ZnH,—- 2,



é Types og randemized aijPi—U/mA :

— Monte Carle algoetbhma (mostly, covrect)
Probadly covrect Sua_ﬁantzed_ vuntiwne .
2.9, Kar'jzm's nun et aﬂ_avvi:twvx,

— Las Veges ﬁﬂ.ﬁd\(’f‘b\/\y\/\,
ab,o% covveck 5 expected_ vuntime .
2.9. vandoruzed. duieKSort:

§ Success amplificabion: impPave preb. of suemss
For= MC = Perform K independent gums 05_ MC a&jo
'Ppob.of sSuccess aa—r\?%lj:r“e.s o p b 11— C_'I——PD’Q-
Fow LV Pe,rajﬂmf—-m wmany independent runs c§ Lv ijo
s KIELT) Lme , vhere E[T] is expected LV euntime.
Tproves muntiane

c LV — MC 'I:wans-Fo-pmod:fUn:

Run LV also foeo KIE[T] mes 2 Bodk, wwhere T

s the runbhme 0’§~ LV.

Markev's 1M29
I'PET_> R\E'E'T_j')< ﬁ/& [ — 2’| See s later

Ths MC version fuan vuntiae K ELTD and
Success probabi Wty C1- %),

s Siea larly, swccess prob. con be a\m?\,‘«f\‘@ by na?e,’c\’hsv&



e One-sided. vs bBsSo-sided. eyror :
Qar\cbsw:gzol ad.amoi:twv\/.) J%r-v deciston Pwololew\s can be :
False-biased : alivars corveck when ik veburns false.

.. btrue-

True - brased. : ” .
Based. on Bus ne can define adLjer:hm.s —+> ave
one -sided or bao- sided. errrors .

1 sV

e

p— - C\-—-\D')\< ounr\?'\/:'f\‘mb‘sm Worker) Jor

Fad & s"cnm"ca@a -S:aw oxm?th/'uj sweeen

Sor  algpritims Wik o sided. SeTS
\ain 1n Feras

° Raund.onuzed. Qdelexi’Ey cAasses: of primaltty.

RP C Randomized Poly time)

PSPACE
— consists of- alL «Q'a-yuca-u&ﬁes

L that lave o poly- Liwe
rand.enwzed. oJLﬁo A st

c9f gL, A A ays weaecrs ~.
c3f e L, A accepts wp 2%

Co-RP (Complement of RE)
- 9f xe L, A ways acceplts «.
s L, A ryects wp 2%

So. RP/Co-RP comrasponds to MC algas w. ome-sided ervor.

f9’f’ o~ problem adaids v NG then e con convert
b Me ANgo w. Sne-sided e~y ).

Note s /5, s juxt a placeo\der. ne con make X Sy Constznt > 0.
Ctink obonk W«Fm’c\s\ao;yﬁ v Ol. Gf swece)



2PP ( Bero-ervroyr probablilishic. Polynonual Zinme)

*9f xe L, A waoys accepts «.

*9f xE L, A days vecks ac,} vuaa S 2xe. poly-tGne.
- Cowvesponds to Las Vegas a\p_@znn-l:wvu

LHerz, v we n2@d 2ero- 2rror. we cant yse MC Ny Ky <)

TPesvrenn t ZPP = RP N Co-RFP- @“@

CH e R N GRP, e e ZPF
Otuerdirectien (S wove tricky | )

BPP ( Bownded ~exror prebablilUstic Poly nonud ol Zine)

. e L, A accept ~-P 3
f == £ 2. B obh - stded,
3 £, A QLCZPL‘S?L(A-.P_S\/‘F. JE—

T Knowon: RP S NP, GRP S GNP
Cd*\\’)zc,hme, T BPPp S NP ?  BPP=P?

- Polynenuall Tdentity Testig CPIT) is ivi BPP Lals cs-RP),
but not Knovan to be o p.

C?(-o-r) (x- ) ,_i_ Qx’ty")
Post vessurce %V/emmj abonk Cmve\cz)(\\'f-, NAansses:

— Compniataemal  Complerity by ArsTa- Barak
Can 7- Rond.onvuzed C,ovnpvxt“-'b:m’"]-



32 Moments ond Deviation. Qﬁg_)

- Varionce and. moments of a random vaeiable.
- K Y momenk o;f oo RV X is IE[_XK]. Mfgf&ffﬁ:,ﬁw

- voriance o X Vae(x) = E[( x— BGV] = & (x*]-E0IT
- covariance &f RVs X&Y ¢
Cov (R,Y)= E[ (X -EX) (Y-EY)].
c Thm 22: Var[X+Y])= Var (X) +Var(Y) + 2 Cov Cx>Y)
* 9f X, Y ave indep than Cov (K,¥) =0 aad Thm 32
ts ke Lineority 0‘5 e;cpac:batfmq_

- TRm 3.3: ELX- Y] = ELX). BLY] for tndep %Y.

Theorem 3.1 [Markev's inequality]
For oo nownegabrve random voriable X , ¥ >0

R-(x2¢) < ELAD  mx>emx) < EL
t- . .

%) Define £(o) = {o Lo xLt

A f) L for 2t 7
e ———  Tefine g(=)= U
Fock 1. g@&) 2 f=).
Fact 2. ELf(x)) = O-Re(x<b) ¥ 1. Bex>2k] =Re(x>t],
Pelx>t] = EIFOxY) € Fack 2]
< €ECL500) (€ack 1)

e[ x/t)
‘1E‘ ELx]. [scaling)

Il

I



Thesrem 3-2 [ anebyshev's inequalikyj
For any a>0, Plix-Ex|(>a) <« Varlx)

2

.
: 3(-"‘) w2_03 assume. TEX =0
/;_g‘x) VaerX=1, CBy SCaJLw@)
ng e’ | So, TE[x*]=1.
Dofine $@)= O forix| <t 5 ()= Zﬁ
=1 For 2% ’

Pel1xI2t) =’ [£(>)]
cela) (A 2003 §6U]

- E[__— :;— ﬂ-:LXZ'J b f]_

- A'PPUC.OJ‘:EU’T\ :
x;-_—{/i if th com Pl is hed , X = SX. dencte - heads
O else. T n covn fLps.

VEBOXY = np =2, Var(x)= & var(Xi)=n- I~

Markov: P (X 30 EX N2 _Z
sw‘z\ﬁsb v"‘;fv ¢ “) < I

c»\zb)/shzv‘(PCX =v4)s P(Ix—-EX > >"4)

- (va)> — sy

\,a-
vaW“'\wo /| \,




