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Randomized Algorithm
What is randomness
lack ofpredictability certainty

e g coin toss given a sequence we cannot predict the
next outcome with certainty Dubai

DON

Game of dice in Mahabharat
Snake ladder Mokshapatnam invent probability

First systematic study on probability
Liber de ludo aleae Book on games of chance

g ayyy y

by Gerolamo Cardano I 1564

god does not play dice with the universe
However randomness has become an

essential component in understanding
modeling and analyzing nature

sub particle physics governed by
random behavior statistical laws
Brownian motion radioactive decay
Biology mutation evolution
Economics price fluctuations in

free market economy

Story of best performing
Mutual funds are by deadpeople













































































































PROBABILITY REFRESHER Source Mitzenma her Upfal

or H T

zr
I field set of 24 mevents

H IT

r

E
z
E3

A collection F of subsets of R is called o field if
Ci R E F
Cii A EF AEF
Ciii An Az An E F A E F

In this course we will use discrete probability space
i e sample space r is finite or countably infinite
and the family F of allowable events consists of
all subsets of I f 21
In a discrete prob space probability function is

uniquely defined by probabilities of simple events

0 Events are sets
say we roll two dice
E is event first die is 6 Ez is event second die is6

Then think about events En Vez E Ez En n Ez R E











































































union bound Tp IÉ

o Inclusion exclusion principle E E

t
independence

t
is k wise independent if for any subset I E In
with 1 I 1 E K

P FEEi IT IP Ei
i EI













































































chain rule Pr Ei II Pr Ei I É Ej
Pro Er PCE 212 Pro E3 E in Ez i Pr Er I n i Ei

Repeatedly choosing random numbers acc to
a given distribution sampling

with replacement simple to code
without replacement gives slightlybetterbounds

IF
IP B I Ej IP Ej

IP B

























































































Randomness is counter intuitive
Daniel Kahneman 2002 Economics Nobel and Tversky in
Prospect theory established a cognitive basis for
human errors that arise from heuristics biases

Airplane maneuvers regression towards the mean

An extraordinary event is more likely to be followed
by an ordinary ones

source Kahneman Israeli flight instructors from
The Drunkard's Walk

Buying lottery flying airplanes

In no other branch of
mathematics it is so
easy for experts to blunder
as in probability theory
Martin Gardner

Canadian lottery Birthday paradox
É


















































































































31days in a month

Forrandomlyselected 7people they dont share same birthdate

3 x 39 x 239 x 31 37 239 35 0.48 IP ISuccess
0.52

For 10people 0 196 IP Success 0 804

BEEF
again

Excluding
siblings
or cousins

slides
Bhas arts














































































































Assumptions

You fix Door 1
Bayes theorem IP AIB IP BIA RCA IP B

flash car
behind

4 Monty
openeddoor3
showgoat

MEI EEE E

pÉÉjÉf IP B I Bysymmetry

IP AIB I I I
I IP flash car

behinddoors
Montopens 2

switch

door 3
she soar

Assume there are 106 doors
106 1 has goats 1 car

Player picks a door host

opens 106 2 doors w goat
Will a switch

image source wikipedia










































































































me

It is possibleto have

IPCAl Bnc PCAIBonC
IP Al Brey IP AlBend
but IP AIB CP AIBO

women
Druga Dryz

Mea
Doug1 Dry2

success

Faure 355,48 I 1000
1000

Dry7 219 2020 B DI BEDz2 101012200 w
A success

C M C F














































































































Discrete Random Variables Can 2
and Expectation M t

Defn A random variable X is a function
R V X r IR A discrete R.v is a R V

that takes finite or countably infinite
number of values

Defo Expectation IE X E i PEX i

Properties of expectation
Them 2.1 C linearity of Expectations
For any finite collection of discrete RVs
Xi Xz Xn with finite expectations

II É Xi EE IEC Xi

Note we don't need these Rvs to be independent

Linearity of expectations also hold for countably
infinite summations in certain cases

I E X É II Xi whenever Elixir convergesi I

Noteconvergenceof SainotnecessarilyÉjj ÉÉÉÉ meanconvergence of Etail
e s 1 It ft ence convergent

but letzte t x divergent

















































































































Lem 2.2 For any constant and discrete
RV X IE CX I C IE X

Def 2.4 convex function A function fi IR IR
is said to be convex if for any sea sea and
0 A E 1 f ax 1 a 22 1 A f 4 I A fEez

function then f is convex if f a 70t
et beIP for p 1 partly

convex

Them 2.4 Jensen's Inequality If f is a convex

function then I f X 7 F IE X

corollary IE X2 7 IE X

check

forusefulinequalities
https://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf














































































































Indicator Random Variables

Remember random variable X is a fr X r R
e g we can have X w 1 if WE 2,4 67

I if WE 3 53
o 5 if WE 213

Indicator random variable for indicator function
is a random variable that can take only two values

I if event E happens
O otherwise

Indicator function of an event E is denoted by Ie
Formally event E E S Also IIe

HeCWI 1 if WE E

IE W o if WE E

Event Get even number in a die now

He W 1 if WE 34,63
IIE CW 0 if WE 1,3 53

ÉÉÉ p e I plea O IDLE

Iw Prove inclusion exclusion principleusing
indicator functions
















































































































Applications of linearity of expectations

4
Probabilistic
Methods

EEEerere we put each vertex
independently

whydo wechoose
try p thenoptimize
then wenget
IECXay PCI D

III can we get a polynomial time deterministic

algorithm Hint Max cut

Prove that there is a partition in Uva v of
vertices s E H v e Vy I n bris re n ve l E l nose nuz
and tu E V2 I Nbrs re n V21 I 1 Mrs G n un

HI Better sampling
If G has 2n vertices m edges then it contains

a bipartite subgraph with 7 mm 2n 77 edges
















































































































A uniformly random permutation ti n n is expected
to have a unique fixed point

I 23 3
13 2 1

X fixedpoints in such it 21 3 1
23 I 0
3 I 2 0X IE Ink k arandomvariable that has 32

CN ECE m.FI I
I

rn

I IEEEoccurs
ornot is

ÉÉÉÉ E IE Irene
K e

É IP Tek K É I 1

Hw fixedpointsconverges to a Poisson distribution

More specifically PEX j converges to ef.jp

Estimate
IT

1 1 d 2

I














































































































Bernoulli Binomial and Geometric RV

Bernoulli Y be a RV s t Y I W P P
O W P i p

IE Y p 1 I P O P
e g one coin toss can be modeled by Bernoulli

Indicator random variables are related

Binomial X Bin n p is a random variable

taking the values O 1 2 n and

IP x K Y pk l P where Ocp 21

e g n coin toss How many heads
useful in sampling IE x IE Eyi E IE Xi np

Geometric X Geom p is a geometric RV

if X takes values 1 2 3 with IP X K p i p

e g number of coin flips till you get a first head

Theorem E x Hp for X Geom P

Define I if at least i trials are needed for success
0 otherwise

then we have X É Xi

IE x E TECXi E Ci p of p fp pt
iz n














































































































Example Coupon Collector's Problem

Suppose each box of cereal contains one of n
different coupons Once you obtain one of every
type of coupon you can send in for a prize
Assuming coupon in each box is chosen

independentlyand uniformly at random how many
boxes of cereal you need to buy before you
obtain at least one of every type of coupon

Let X be boxes bought untill we have all

types of coupons
Let Xi denote Éboxes bought while you had
exactly i 1 different coupons then clearly
X Ei Xi

when exactly c a couponsÉÉÉÉÉfÉnd
the prob of obtaining a new coupon is

Pi I if
Hence Xi is a geom RV with parameters pi
IE Xi I fix with

replacement
i IE X IE E X i É IE Xi

It n É I nitens

where HEn is Harmonic number en n t 0 I

Note E x as a x

if c sa
else it is finite I ay
















































































































Aw prove H n en n 0617

Hint

Is X concentrated
Expectation tells mean

But underlying distributions could be quite different

It t
Later we'll see the following bound using some

advanced methods such as Chernoff bounds
Poisson approximation

i

































































































Importance in Computer Science

Randomized algorithms are algorithms that make
random choices during their execution

Advantage simplicity speed

Example Given an integer array of size 2kt 1
return an element z median of the array
Best deterministic algo need to read It 1 elements

Return the max

success probability uniformly at
random
each time
independently

For 100numbers
jigger

of t

Here we use sampling with replacements
It is easier to analyze though sampling with
replacement might give better bounds

Power of randomness Beatingworstcaseperformance
of a single deterministic also














































































































or performanceguarantee

Foiling afadversary A lower bound on the

running time of a deterministic algorithm comes

from an input on which the algorithm fares
poorly Thus the worst case input can be

A Iidifferent for diff algorithms Az Iz

one can interpret this as an adversantchoosing
the worst case for a givenalgorithm

A randomized algorithm can be viewed as a

probability distribution on a set of deterministic
algorithm
Adversary may devise an input that foils
one or a small fraction of the deterministic
algorithms it is difficult to construct a

single input that is likely to defeat a randomlychosen algorithm

Similarly sometimes random reordering ofinput data followed by application of relativelynaive algorithm is very powerful
Quick sort example either random pivot orrandom ordering of input

Random sampling A random sample from a

population is representative of the population
as a whole Random survey

RCT














































































































Probabilistic methods we show a randomly
chosen object has some property with positive
probability then such objects exists and
we can then find them using constructive
efficient algorithm

Other applications Hashing Monte Carlo
simulations primality testing

ML related areas ML Data mining
create collect store massive data sets

Randomness helps in modeling under

standing and making predictions
based on large data sets and relates

accuracy sample size
sample complexity VC dimension
Rademacher averages
Probabilistic analysis sometimes hard to

compute problems are often easy in practice
Prob analysis sometimes give a theoretical

explanation of this phenomena In this case we

assume the input to be randomly selected ace to
some prob distr on the collection of all

possible inputs and might provide efficient
algorithms on almost all inputs
Wewillfocus on rand algo notprobanalysis

















































































































Mium Problem Global min cut

Source

Algorithms
textbook
by
Jeff

Erickson

problem They thank Dantzig

multigraph Ivi n

Goal Find a min cut cut of min cardinality

results in G being broken into two or more

components

















































































Inn via s t min cut via max flow
celebrated max flow min cut

Gomony Hu 1961 compute men cut via
Cn 1 max flow computation

In fact they constructed a cut tree also known as

Gomory Hu tree that gives all pains max flow
via G 1 max flow computation

Max flow

II III If
cia augmenting path

Edmonds Karp O v2 Augmenting path via BFS

Chen et al O E't lost

Bestpaper Foss 22

Oulton time for global min cut
Focs'zzpaper
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y

A basic operation contraction e x y

Replace Cay by a metavertex z No
selfFor re x y replace a a by u Z

replace u y by 20,2

u off 4 for a ale

Y

Implementation of contraction OG time
A B C

Eat on nisfors

Mincut 3 X

IEE.EE s IBE
Randomized min cut algorithm

Karger 93 Karger Stein 96 Karger 00
O Cmlogsn

stoer WagnerGI Montecarlo Li
AlgorithmDeterm O mm n22095 t o m

'

:

'.
















































































































SODA93
JACM 96

JAM 00














































































































Algorithm Contract me Oct time

1 It G
2 While It consists of 72 reptiles do

choose e E ECH uniformly at random
contract e i e H H le

3 Let ve v2 be vertex sets represented by the
last two vertices in H Return vi Vz

observation O Let G be a multi'graph H eeECG
TCG Emin Glee

If Cve Va cut in ale with k edges
is also a cut in G with k edges

v ayo ale

H
Theorem Contract MC outputs a min cut set
with probability at least 216 En 1

Pf Let k be the size of min cut of G we

focus on one specific such min cut C vi V2

Observation 1 vi vz
iÉÉÉÉ

put of contract me
iffnoe dgesbetween.vn vz is ever contracted














































































































let ei be the contracted edge in iteration i

and Ei be the event that ei e

let Fi Mj Ej be the event that no edges
in was contracted in the first i iterations

We have to show IP Fn z 7 Ep
first compute IP Er IP Fr ICI 1 El

As Comin G K 8 a K where 8 G is
min degree of G

IECG I EideszI 7 ME
Out ofME edges we dont want to select

k edges in C IP ET I ME
As we select e uniformly at random
we have IP E IP Fn 1 E 1 E
After first iteration we are left with Cn n
vertices min cut value 7K fromobs O
So by as above

IE Caler I z K 1 edges
might reduce
due to selfP Ez I Fi 7 1 EY 1 g loopreduction

Similarly Note
I can

2 increase
IP Ei I fi a I KEI Fitz Ifdoesnot

theanalysis














































































































i IP Fn z P C En z n Fn3 É IEEn21Fn z IP Fn 3
IP En z I Fn 3 IP En31Fn 4 IP Ez I Fa IP Fa

c E III
E if is 4 t net

o Power of repetitions
Run contract MC
the min cut overt for G Denn times output

IP failure after all run
IPof failure in one run

d e
indigence

Ci Ing
men Denn

i se e e e for 270f e Zen n

Iz o as n x On4 time

so successprob is boostedfrom 2 to l I Ed

Highprobability works w p 1 0 Yc for c o

In general let i p be IPof failure on
g pg

la

one run we repeat of en n times
e

clan

to get tea probof failure
As long as polyEm Runtime remains

polynomial we are happy

Does it work for the weightedgraphs
Yes choose an edge for contraction w probability
proportional to the weight of the edge














































































































Q Can we get faster algorithm

Intuition In the beginning we make less error

IP Fn 2 IP En z I Fn 3 IP En31Fn4 IP EzIFa IP Fr

II Cr Ea E E C E I ng
larger faller

Imma Let c be a min cut stop contraction when
exactly t vertices are left Then
P no edgeof C is contracted Eta

É an i

Approacht Informal
contract till we are left with t vertices
Then run usual contract me on these t vertices
for l parallel puns return the best cut

Note In the previous algo we had used t n l Ocean

In Try to optimize l t say l och t o ca

then use parallel runs if needed to obtain

8 m3 algorithm with high probability ofsuccess
insteadof 0 na from Karger'salgo














































































































o Karger Stein faster algorithm
Use above idea recursively

Take t fate then III LEIF I biz Facts

Algorithm Fast cut G

Input Graph G V E with n vertices m edges
1 If a has two meta vertices corresponding to SJ

output CS 5 cgzeeeztgktea.fr
2 For two times independently

Run Contract MC until 72 1 meta vertices remain

Let G and Ga be two resultant multigraphs
3 Recursively run Fast cut on a Ga
4 Return the best of Fast cut G Fast Cut az

Ige
levees

recession

tree
062

ay
ay

Etta 2 logan1 YazGi Giz 922














































































































Theorem Fast cut has runtime Octlogn
contractions n f 1 for step2

Each contraction takes on time

steps due to contracting takes Oct time

There are two recursive calls

n 2 T f 0 N 0 n'log n
depthof search is o log n each steptakes 0cm time

Theorem Fast cut has success probability r Ylogn
Fca denote the success probability of fast cut G
PG 1 IP Both Fast cut CG Fast cut Caz fail

I 1 IP one branch is successful

Now a branch is successful when the contract Mc

for n Wz e steps do not contract any edge in
the min cut i e 7,212 from Fact I and
the recursive step is successful w p P Yz 1

Hence par 1 L E P Eta
1 C1 IP f 7 For simplicity

Pen p E ICP E

using induction some algebraic manipulations
one can show PG 4

eogn
Hw














































































































Intuition behind the recurrence

Pen PCHE PCHEF
pens par I Coz

Replace n by It i e t logan
then post p at n I at D

Take flt p rt p n

Then fat f t r I Lf t 17
Intuitively then

of If

Ez fat I E By integrating

At E pen I few tr Ign
The number of leaves in the recursion tree Oct

One can view this as another way of repeating
contract MC Oct times to amplify success probability
However runs are no more independent
Different puns reuse same contraction step
This saves a lot of runtime and prob of success
drops little constant to Ign
Now we can repeat the algorithm Oclog n times
we get o Gk logan time with success probability

Repeat 0 logan times1 l P G S O C successpros n In

Karger Stein is one of those algorithms from THE
Book has many extensions e.g see the Stoc 20paper
on K cut by Gupta Lee Li














































































































Algorithm ÉÉÉÉ a sea an

Input A set of n distinct numbers s

Output The elements of S sorted in

increasing order
afjeg.at

1 If ISI E 1 return S Else continue
2 choose an element 7 pirot uniformly at

random from S

3 Bycomparing each element of S with 3
determine the set L of elements smaller
than y and the set R of elements greater
than y

4 Output Random QS L 3 Rand ones R

Worst case O N consider S n n t 1

mpg 3 enecan haresen cen i too
However if pivot splits s in a balanced way
cen C I t c Miaa OG for a 1

we get con o Cn lg n
i can we find good pints often

without
replacement














































































































Option 7 choose pivots uniformly at random
Here expectation is over random choices of
pivots randomized algo

Option 2 use deterministic algorithm use

first element aspitbut take a random

ordering of input Crand ordering of input

In this case analysis of randomized Quick sort
and probabilistic analysis of deterministic
Quick sort under random inputs are essentially
same We focus on the rand algo

secretary problem

Them 2.11 Expected number of comparisons
made by Random Quick sort is 2h2mn OEn

Pf Let ya ya yn be the same values as the
input values sea sea sen but sorted in in crea

sing order 724
X 52,51 33 4 47,2 3,513

For i j Let Xij be a random variable that
takes on value 1 if y and yj are compared
at some point in the algorithm 0 otherwise














































































































Hence total no of comparisons X ftp.xij

EEXT IE IEIE i it Xi
Clin of exp

Xij is a Bernoulli RV

i E Xij PLY Yj arecompared Pij

Kyidea Yi and yj are compared if either

y or yj is the first pivot selected from the set

Yij 2 Yi Yi ti Yj it
77 Y 7 72 7473 46

T

Pfof key idea If y or yj is the first pivot
selected from this set then Yi and yj
are in same sublist and hence will be
compared

ye YE Yi Y ji tnotherwise they are

separated into distinct sublists Tomptarsons
and so will not be compared BE














































































































As pivots are chosen independently and uniformly
at random All members are equally likely
to be selected

Pij glitz
i EXT FIFI.tn ita

É substituting K j its

Izmit Lrearranging sums

int kik
htt K E 2n Kt i htt

Cn ti E E n K E 2n a is 2

2n 2 H En 4h I 0 nlogn Ers

Thin 2.12 Deals with probabilistic analysis

Alternate analysis Backwards Analysis
of Quick sort

very useful technique in many areas including
computational geometry randomized incremental

construction

O what is the expected number of comparisons
in Quick sort














































































































Let Tin be the expected number ofcomparisons
on an array of length n

Now if we choose ith smallest element yn then

L R has sizes i n n n resp
we select y o p Yn Fifi n

so we obtain the following recurrence

TCM IE IP Yi is chosen Cn 1 T i i T n is

In If I Cn 1 T i i T n is TCO O

Now consider an iterative run of quick sort cost
consider array x y y soft g comparison

32 it 38 Boat 3 4 7

F
iii

ok 0 0 0

g
t o

BA Ott I

µj o By
Ott

73 FIELD Ye
T

t I 0 0 0
o p o

t 99,0
0 0

elements chosen in order Ya 76,71 45172 47,73 78
25 32,10 31 12 38 15 40














































































































This can be thought of an equivalent Dart Game

1 Initially there is a dart board of n consecutive
empty squares arranged in a row

2 For n iterations
Throw a dart at a uniformly random
empty square and

pay cost consecutiveempty squares to the left
right of the dart

Note After we throw the first dart the empty
segment to left to right can be treated

as two separate independent games

There may no longer be a dart hitting the

left segment every round but conditioned
on a dart hitting the left segment
the square it hits is still uniformly random

HI show cost of this dart game is same as

the comparisons for quick sort

Evan the paid cost at a round is only
specific to the present state does not depend
on the history i e how this state was reached














































































































Consider the following reversedÉFÉgame
1 Start with a full board of marked square
2 For n iterations unmask a random square
each iteration pay cost consecutive

empty squares to the left right of the unmarked
square

Observation 2 for any specific sequence of chosen
squaresin the original game reversing the

sequence in the reversed dart game arrives

at the same cost per pound and thus total cost

HWI verify cost of original game YaY Y 75727773487

Backward game with seq 78737772757,7674

Both sequence permutationÉ Éi ob yn in their respective gameso they contribute the same amount to the
expected costs of each game

Advantage Reversed game is much easier to
analyze














































































































Think of cost being contribution from empty square

In an iteration when does a empty square
contribute to the cost for this iteration

I t I
T T T

W empty square contributes when one of itstwo neighbor neighbor marked squares are
unmarked font of current i marked squares

Hence for each empty square probability that it
contributes to the cost on this round 42
By linearity of expectations p

emptysquares

IE cost of ith iteration e Cn i I 27 2

Hence Total cost E IRI 2

2n I 2n 2n Hn 2n Its














































































































Typesof randomized algorithms
Monte Carlo algorithm mostly correct
probably correct guaranteed runtime
e g Karger's min cut algorithm
Las vegas algorithm
always correct expected runtime
e g randomized quicksopt

success amplification improveprob ofsuccess
For Mc Perform k independent runs of Mo algo
Prob of success amplifies from p to 1 CI p

For LV Perform any independent puns of Lv algo
of KIEETT time where ECT is expected Lupien time

improves runtime

Lv Mc transformation
Run LV algo for KIE T times halt where T
is the runtime of LV

from Markov's ineq
IP T K IEET L HR we'll see this later

This MC version has men time KIEET and
success probability i 4K

Similarly success prob can be amplified byrepetitions
















































































































One sided vs two sided errors

Randomizedalgorithms for decision problems can be
false biased always correct when it returns false
truesedbia i i true

Based on this we can define algorithms to have
one sided or two sided errors

AI p i Ci p amplification worked for
algorithms with one sided error

Find a strategy for amplifying success
for algorithms with two sided errors

Randomized complexity classes
pitiminates

RP C Randomized Poly time
consists of all languages

L that have a poly time
randomized algo A s t

If u L A alwaysrejects se
If K E L A accepts w p 742
co RP ComplementofRT
If U E L A always accepts x

j
f REL A reefctsw.p.si

So RP Co RPcorresponds to Mc algos w one sided error

Of a problem admits Lv algo then we can convert it
to me agr w one sided error

Note Yz is just a placeholder we can make it any constant 0
think about amplificationof prob of success
























































ZPP Zero error probabilistic polynomial time
If K E L A Alys accepts x
If a L A always rejects se runs in ext poly time

corresponds to Las Vegas algorithm
Here as we need zero error we cant use Mc algorithms

Theorem ZP P RP n Co RP e l

If K E RP n G RP then N E ZPP
Other direction is more tricky

BPP Bounded error probabilistic polynomial time
If K E L A accepts a w p 7,3 4
If 2 L A accepts a w p g ya

Both sided
error

Known RP E NP CORP E Co NP

Conjecture BPP E NP BPP P

Polynomial Identity Testing PI T is in BPP also co RP
but not known to be in P Cary G y I cey4

Best resource for learning about complexity classes

Computational complexity by Arora Barak

Ch 7 Randomized computation



335 HATEomments and BDeviation

variance and moments of a random e

K th moment of a Rr x is IE Xk likeporkthandyggtive

variance of X van X E X IE X IE x2 CECXD
covariance of RVs X Y
Cor X Y IE EX EX Y EY

Th m 3.2 Van X y Var X Var y 2 CorCXY

If X Y are indep then Cor x y 0 and Thm 3.2
is like linearity of expectation
Them 3.3 E X Y IE X IE Y for indep X Y

Theorem 3.1 Markov's inequality
For a nonnegative random variable X t t o

Pr X t E ELI or Pr X ZE EX E I

ÉÉ
Define fees o for act

1 for a t

Define gGe Ht
Fact 1 gGe Z f x

Fact 2 E f x O PFCX C E I PP X t Pp X t

Pp X t IE f X Fact 2

E E CS CX Fact I

IE X E

E IE XT Scaling



Theorem 3.2 Chebyshev's inequality
For any a 0 Pll X EX I a I V9E

96 w log assume EX 0

var X L By scaling
f so IE x2 L

Define fee O fork Ict
I for la t 9 6 Ez

Pr IX I E IE f x

E IE g x As 9672 feel
E E IE X2 E 1

Application
Xi to ites

th coin flip is head X Xi denote heads
in n coin flips

i IEEX Np V2 Var X E var Xi n 4
Markov IP X7,374 E EH 3 4 3simfuseometings

Chebyshev IP X 374 E IP IX EX 1774
m I v9.42 ing en

isend


