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Amplification
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Chebyshev's inequality
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Now Fi is a Bernoulli RV with prob 3
4

Hence the van fi p i p 3
16

Hence IP f 427 E 431 32

we want 2 E i e K 31g

In fact later we'll see o log Ye pans

are sufficient

Geometric Distribution

X is Geom P IE EX Yp var x Cfl
Hw what can we say about concentration

of coupon collector using Chebyshev

Randomized Median

A 11

Median A is a number Z

i A i Z 37,72 Li ACi E Z 772



Consider sorted order an az f an

t I

pick a sample of size 234

o o Sort them find their
medianL

34 I

consider two numbers L u

around the median 79far
Throw away elements L T t

Run it on the rest n'la elements

We'll use hypergeometric distribution for
sampling Different analysis than M T
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