Depth Estimation via Sampling

Nikhilesh Rajaraman

November 2024

Range Counting

- Goal: For any query set (or range), count the number of points inside.
- We are allowed to pre-process the input set of points to make counting queries efficient.
- Sets can be halfplanes, rectangles, disks, etc. or their higher dimensional analogues.

Planar Point Location

- Goal: For any query point, count the number of lines below it.
- Again, we can pre-process the input set of lines to make counting queries efficient.

Depth Calculation

- Generalizes the range counting and point location problems.
- S: Finite set of **objects** with |S| = n.
- \mathcal{R} : Set of allowed **ranges.** (may be infinite)
- The **depth** of a range $R \in \mathcal{R}$ denoted μ_R is the number of objects in \mathcal{S} that intersect R.
- **Goal:** Given a set of n objects, pre-process them into a data structure to efficiently answer depth queries for ranges in \mathcal{R} .

Hardness of Depth Calculation

- There is an inherent trade-off between query time and space occupied by the data structure for answering depth queries.
- When \mathcal{R} consists of halfspaces in \mathbb{R}^d and objects are points, the worst case query time using m space data structures is lower bounded by $O(n/m^{1/(d+1)})$. (Arya, Mount, 2012)
- In \mathbb{R}^2 , we therefore require at least n^3 space to achieve polylogarithmic query time for halfplanes, and can only guarantee $O(n^{2/3})$ query time using linear space.

Depth Estimation

- We can get around the lower bound by looking at the approximate version of the problem instead.
- Input: Set of n objects S, set of ranges R, parameter $\varepsilon \in [0,1]$.
- **Goal:** Given a query range $R \in \mathcal{R}$, find a number α_R such that $(1 \varepsilon)\mu_R \leq \alpha_R \leq \mu_R$.
- For a fixed ε , the goal is to pre-process the set of objects into a data structure to efficiently answer depth estimation queries.
- Holy Grail: For any fixed ε , polylogarithmic query time with linear space for halfspace range counting queries.

Decision Version of Depth Estimation

- As a first step, we will look at the decision version of the depth estimation problem.
- Input: Set of n objects S, set of ranges R, parameter $\varepsilon \in [0,1]$, threshold $z \in [0,n]$.
- **Goal:** Given a query range R, output the following:
 - If $\mu_R \geq (1+\varepsilon)z$, output 1.
 - 2 If $\mu_R \leq (1-\varepsilon)z$, output 0.
 - **3** If $\mu_R \in [(1-\varepsilon)z, (1+\varepsilon)z]$, output either 0 or 1.

Depth Estimation Reduces to the Decision Version

- Claim: Depth estimation reduces to $O\left(\log\left(\varepsilon^{-1}\log(n)\right)\right)$ calls of the decision version.
- **Idea:** Use binary search over an exponentially spaced grid of thresholds.
- Let $z_i = (1 + \varepsilon)^i$ for $i \leq \log_{1+\epsilon}(n) = O(\varepsilon^{-1}\log(n))$ be the grid of thresholds.
- Let i^* be such that the decision algorithm outputs 0 with threshold z_{i^*} and outputs 1 with threshold z_{i^*-1} .
- Easy to see that the true depth lies in $[(1 \varepsilon)z_{i^*}, z_{i^*}]$, and so z_{i^*} is a valid estimate for the depth with error within an ε factor.
- i^* can be found using at most $O\left(\log\left(\varepsilon^{-1}\log(n)\right)\right)$ calls to the decision algorithm using binary search.

Range Emptiness

- We will now consider an even simpler problem that of determining whether a range is empty or not.
- **Input:** Set of *n* objects S, set of ranges R.
- **Goal:** Given a query range $R \in \mathcal{R}$, determine whether $\mu_R > 0$ or whether $\mu_R = 0$
- Range emptiness is a well studied problem for halfspace ranges in \mathbb{R}^d , there exists a linear space data structure that can answer emptiness queries in $O(\log(n))$ time. (Dobkins, Kirkpatrick, 1985)
- We will show that solving depth estimation actually reduces to the emptiness problem!

From Range Emptiness to Depth Estimation

- Goal: Given a query range R and a threshold z, correctly determine whether $\mu_R \geq (1+\varepsilon)z$ or $\mu_R \leq (1-\varepsilon)z$.
- Idea: If a range has low depth, the probability that it contains no points from a random subsample of S is high, and vice versa.
- Let $B \subseteq S$ be a random sample obtained by sampling each object in S independently with probability p = 1/z.
- Let p_{empty} be the probability that R intersects with no objects in B.

$$p_{\mathsf{empty}} = \left(1 - \frac{1}{z}\right)^{\mu_R}$$

From Range Emptiness to Depth Estimation

$$p_{\mathsf{empty}} = \left(1 - \frac{1}{z}\right)^{\mu_R}$$

- For a fixed threshold z, p_{empty} is a function of only the depth μ_R . Thus, we can **estimate** μ_R by estimating p_{empty} instead.
- Estimating *p*_{empty}:
 - **1** Construct i.i.d. random samples B_1, B_2, \ldots, B_M for sufficiently large M.
 - ② Run emptiness queries for range R on each sample.
 - Oral Calculate the fraction of queries that are empty.

Depth Estimation Algorithm (Aronov, Har-Peled, 2008)

Inputs: Set of objects S, threshold z, error tolerance ε .

Data Structure:

- Set $M = c\varepsilon^{-2}\log(n)$
- Generate M i.i.d. samples B_1, B_2, \ldots, B_M . B_i is generated by picking each object in S with probability 1/z.
- Construct M emptiness query data structures for the samples B_1, B_2, \ldots, B_M .

Answering a query for a range R:

- Run emptiness queries for R on each of the M samples.
- Calculate $\hat{p}_{empty} = n_{empty}/M$, where n_{empty} is the number of samples in which R was empty.
- Check if $\hat{p}_{\text{empty}} \leq (1 1/z)^z$. If yes, output $\mu_R \geq z$. Else, output $\mu_R < z$.

Correctness

Lemma: With high probability, the algorithm is correct whenever $\mu_R \notin [(1-\varepsilon)z, (1+\varepsilon)z]$.

Proof:

- We will consider the case $\mu_R < (1-\varepsilon)z$ and show that the algorithm outputs correctly in this case the other case $\mu_R > (1+\varepsilon)z$ is similar.
- If $\mu_R < (1-\varepsilon)z$, we have $p_{\text{empty}} > (1-1/z)^{(1-\varepsilon)z}$
- ullet Only makes a mistake if $\hat{p}_{\mathsf{empty}} \leq (1-1/z)^z \leq (1+\Omega(arepsilon)) p_{\mathsf{empty}}$
- Chernoff Bound:

$$\mathbb{P}\left\{\hat{p}_{\mathsf{empty}} \geq (1 + c\varepsilon)p_{\mathsf{empty}}\right\} \leq \exp\left(-c' M\varepsilon^2 p_{\mathsf{empty}}\right)$$

• Since p_{empty} is at least a constant, setting $M = \Omega(\varepsilon^{-2} \log(n))$ makes the error probability 1/poly(n), so the algorithm succeeds w.h.p.

Space and Time Analysis for Halfplanes

- Recall: Exact depth calculation for halfplanes in polylog time requires cubic space.
- Emptiness queries for halfplanes can be done in $O(\log(n))$ time using O(n) space. (Dobkins, Kirkpatrick, 1985)
- For the decision version of depth estimation, the algorithm requires:
 - Space: $O(\varepsilon^{-2} n \log(n))$ • Query Time: $O(\varepsilon^{-2} \log^2(n))$
- For the estimation problem:
 - Space: $O(\varepsilon^{-3} n \log^2(n))$ • Query Time: $O(\varepsilon^{-2} \log^2(n) \log(\varepsilon^{-1} \log(n)))$
- Overall, the algorithm achieves **near-linear** space and **polylogarithmic** query time for fixed ε .

References and Resources

- Geometric Approximation Algorithms S. Har-Peled
- Tight Lower Bounds for Halfspace Range Searching S. Arya, D.M. Mount, 2012
- A linear algorithm for determining the separation of convex polyhedra
 D.P. Dobkin, D.G. Kirkpatrick, 1985
- On approximating the depth and related problems B.Aronov, S. Har-Peled, 2008