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Range Counting

Goal: For any query set (or range), count the number of points inside.

We are allowed to pre-process the input set of points to make
counting queries efficient.

Sets can be halfplanes, rectangles, disks, etc. or their higher
dimensional analogues.
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Planar Point Location

Goal: For any query point, count the number of lines below it.

Again, we can pre-process the input set of lines to make counting
queries efficient.
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Depth Calculation

Generalizes the range counting and point location problems.

S : Finite set of objects with |S| = n.

R : Set of allowed ranges. (may be infinite)

The depth of a range R ∈ R - denoted µR - is the number of objects
in S that intersect R.

Goal: Given a set of n objects, pre-process them into a data structure
to efficiently answer depth queries for ranges in R.
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Hardness of Depth Calculation

There is an inherent trade-off between query time and space
occupied by the data structure for answering depth queries.

When R consists of halfspaces in Rd and objects are points, the
worst case query time using m space data structures is lower bounded
by O(n/m1/(d+1)). (Arya, Mount, 2012)

In R2, we therefore require at least n3 space to achieve
polylogarithmic query time for halfplanes, and can only guarantee
O(n2/3) query time using linear space.
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Depth Estimation

We can get around the lower bound by looking at the approximate
version of the problem instead.

Input: Set of n objects S, set of ranges R, parameter ε ∈ [0, 1].

Goal: Given a query range R ∈ R, find a number αR such that
(1− ε)µR ≤ αR ≤ µR .

For a fixed ε, the goal is to pre-process the set of objects into a data
structure to efficiently answer depth estimation queries.

Holy Grail: For any fixed ε, polylogarithmic query time with linear
space for halfspace range counting queries.
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Decision Version of Depth Estimation

As a first step, we will look at the decision version of the depth
estimation problem.

Input: Set of n objects S, set of ranges R, parameter ε ∈ [0, 1],
threshold z ∈ [0, n].

Goal: Given a query range R, output the following:
1 If µR ≥ (1 + ε)z , output 1 .
2 If µR ≤ (1− ε)z , output 0.
3 If µR ∈ [(1− ε)z , (1 + ε)z ], output either 0 or 1.
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Depth Estimation Reduces to the Decision Version

Claim: Depth estimation reduces to O
(
log

(
ε−1 log(n)

))
calls of the

decision version.

Idea: Use binary search over an exponentially spaced grid of
thresholds.

Let zi = (1 + ε)i for i ≤ log1+ϵ(n) = O(ε−1 log(n)) be the grid of
thresholds.

Let i∗ be such that the decision algorithm outputs 0 with threshold
zi∗ and outputs 1 with threshold zi∗−1.

Easy to see that the true depth lies in [(1− ε)zi∗ , zi∗ ], and so zi∗ is a
valid estimate for the depth with error within an ε factor.

i∗ can be found using at most O
(
log

(
ε−1 log(n)

))
calls to the

decision algorithm using binary search.
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Range Emptiness

We will now consider an even simpler problem - that of determining
whether a range is empty or not.

Input: Set of n objects S, set of ranges R.

Goal: Given a query range R ∈ R, determine whether µR > 0 or
whether µR = 0

Range emptiness is a well studied problem - for halfspace ranges in
Rd , there exists a linear space data structure that can answer
emptiness queries in O(log(n)) time. (Dobkins, Kirkpatrick, 1985)

We will show that solving depth estimation actually reduces to the
emptiness problem!
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From Range Emptiness to Depth Estimation

Goal: Given a query range R and a threshold z , correctly determine
whether µR ≥ (1 + ε)z or µR ≤ (1− ε)z .

Idea: If a range has low depth, the probability that it contains no
points from a random subsample of S is high, and vice versa.

Let B ⊆ S be a random sample obtained by sampling each object in
S independently with probability p = 1/z .

Let pempty be the probability that R intersects with no objects in B.

pempty =

(
1− 1

z

)µR
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From Range Emptiness to Depth Estimation

pempty =

(
1− 1

z

)µR

For a fixed threshold z , pempty is a function of only the depth µR .
Thus, we can estimate µR by estimating pempty instead.

Estimating pempty:
1 Construct i.i.d. random samples B1,B2, . . . ,BM for sufficiently large M.
2 Run emptiness queries for range R on each sample.
3 Calculate the fraction of queries that are empty.
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Depth Estimation Algorithm (Aronov, Har-Peled, 2008)

Inputs: Set of objects S, threshold z , error tolerance ε.
Data Structure:

Set M = cε−2 log(n)

Generate M i.i.d. samples B1,B2, . . . ,BM . Bi is generated by picking
each object in S with probability 1/z .

Construct M emptiness query data structures for the samples
B1,B2, . . . ,BM .

Answering a query for a range R:

Run emptiness queries for R on each of the M samples.

Calculate p̂empty = nempty/M, where nempty is the number of samples
in which R was empty.

Check if p̂empty ≤ (1− 1/z)z . If yes, output µR ≥ z . Else, output
µR < z .
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Correctness

Lemma: With high probability, the algorithm is correct whenever
µR /∈ [(1− ε)z , (1 + ε)z ].
Proof:

We will consider the case µR < (1− ε)z and show that the algorithm
outputs correctly in this case - the other case µR > (1+ ε)z is similar.

If µR < (1− ε)z , we have pempty > (1− 1/z)(1−ε)z

Only makes a mistake if p̂empty ≤ (1− 1/z)z ≤ (1 + Ω(ε))pempty

Chernoff Bound:

P {p̂empty ≥ (1 + cε)pempty} ≤ exp
(
−c ′Mε2pempty

)
Since pempty is at least a constant, setting M = Ω(ε−2 log(n)) makes
the error probability 1/poly(n), so the algorithm succeeds w.h.p.
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Space and Time Analysis for Halfplanes

Recall: Exact depth calculation for halfplanes in polylog time requires
cubic space.

Emptiness queries for halfplanes can be done in O(log(n)) time using
O(n) space. (Dobkins, Kirkpatrick, 1985)

For the decision version of depth estimation, the algorithm requires:

Space: O(ε−2n log(n))
Query Time: O(ε−2 log2(n))

For the estimation problem:

Space: O(ε−3n log2(n))
Query Time: O(ε−2 log2(n) log(ε−1 log(n)))

Overall, the algorithm achieves near-linear space and
polylogarithmic query time for fixed ε.
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