
E0 318: Topics in Geometric Algorithms October 28, 2024

Learning-Augmented Algorithms for Online TSP
Instructor: Rahul Adhikari Scribe: Rahul Adhikari

1 Introduction

This lecture will discuss the Online version of the Travelling Salesman Problem (OLTSP). We’ll provide
online algorithms for different versions of OLTSP and also provide lower bounds for the competitive ratios.
Finally, we’ll give online algorithms based on different prediction models, which may perform better than
the worst-case ratios in online setting.

2 Problem Setup

The OLTSP takes a continuous metric space M as input and a distinguished point (the origin) o of M . The
metric space is available offline, while a set of requests x = (x1, ..., xn), where xi = (ti, pi) are shared in an
online fashion. ti denotes the arrival time of the i-th request and pi is the position of the request. The ti’s
form an ordered sequence i.e. ti ≤ tj whenever i < j.

We call the salesman as the server. The server starts at origin o at time t = 0 and serves the request xi

by visiting position pi at time no earlier than ti. The server can move with at most unit speed. Based on
the end objective, we have two variants of this problem:

• Nomadic-OLTSP (N-OLTSP): The server has to minimize the completion time to serve all pre-
sented requests.

• Homing-OLTSP (H-OLTSP): The server has to minimize the completion time to serve all the
requests and return to origin o.

The offline algorithm (call it the adversary) has access to all the requests in the beginning and it can plan
accordingly. But it also can serve a request xi only after its release time ti.
Denote the position of the server at time t by p(t) and that of the offline adversary as p∗(t). Also denote the
set of released but unserved requests at time t by Ut and optimal tour on a set of unserved requests S as TS .
Define the completion time of an online algorithm as ZALG and that of the optimal offline solution by Z∗.
We call the online algorithm ρ-competitive if ZALG ≤ ρ · Z∗ for any instance of the problem.

3 Online Algorithm for H-OLTSP

3.1 Algorithm

For H-OLTSP, we design the algorithm in a greedy framework based on the fact that the optimal also has
to return to the origin in the end. Whenever we are at the origin, we plan an optimal tour based on the set
of released unserved requests and start serving them. When a request comes while the server is on a tour,
we check if it is relatively near or far from origin. If it’s near, we ignore it until we’re back at origin again
and if it’s far, we postpone everything, directly return to o and replan the tour.
The planning of an optimal tour is done in an oracle fashion and it’s computation time is not considered in
our algorithm. Notice that computation of an optimal tour itself may take exponential time, so we can devise
polynomial time algorithms by computing the approximate tour instead (for example, using Christofide’s
heuristic) This worsens the competitive ratio by the approximation factor.

E0 318: Topics in Geometric Algorithms-1

We call this algorithm PAH (Plan-AT-Home). The following is the pseudocode for the algorithm:

Algorithm 1: Plan-At-Home (PAH)

Input: Current time t and set of current released unserved requests Ut

1 while Ut ̸= ϕ do
2 if p(t) = o then
3 Start to follow an optimal route TUt , passing through each request in Ut;
4 end
5 if The server is on a route TUt′ for some t′ < t then
6 if a request xi = (ti, pi) arrives then
7 if d(pi, o) > d(p(t), o) then
8 Go back to the origin o;
9 end

10 else
11 Move ahead on the current route TUt′ ;
12 end

13 end

14 end

15 end

We claim that the PAH algorithm is 2-competitive and it is also the best that we can do for any H-OLTSP
algorithm designed for general metric spaces.

3.2 Competitive Ratio for PAH

Theorem 1. PAH is a 2-competitive algorithm

Proof. Firstly, notice that tn ≤ Z∗ (as adversary can end only after last request is presented) and |T ∗| ≤ Z∗

where T ∗ is the optimal tour starting from the origin, serves all requests and finishes at origin. Considering
the position of the server at tn and d(pn, o) w.r.t d(p(tn), o), the possible cases are:

1. p(tn) = o
Then the server starts a tour that serves all requests up to xn and return to origin. Hence,
ZALG ≤ tn + |TUtn

| ≤ tn + |T ∗| ≤ 2Z∗

2. Server is on some tour TUt′ at time tn and d(pn, o) > d(p(tn), o)
Then the server directly return to the origin (at time t′′, say) and plans a tour which serves all requests
up to xn. Hence,
ZALG ≤ tn + d(p(tn), o) + |TUt′′ | < tn + d(pn, o) + |TUt′′ |
But notice that, tn + d(pn, o) ≤ Z∗ as the adversary has be at point pn at a time no earlier than tn
and then return to origin. So,
ZALG ≤ Z∗ + |TUt′′ | ≤ 2Z∗

3. Server is on some tour TUt′ at time tn and d(pn, o) ≤ d(p(tn), o)
Suppose, Q is the set of requests that has been ignored since server was at origin. q is the first request
in Q served by the adversary and P ∗

Q is the optimal tour starting at point q, visiting all points in Q
and returns to o. Then, Z∗ ≤ tq + |P ∗

Q| (by definition).
Now, as d(q, o) ≤ d(p(tq), o), at time tq server must have travelled at least d(q, o) distance on route
TUt′ . So, it has to travel at most |TUt′ | − d(q, o) distance before it is back to o. Then, it will plan an
optimal tour TQ that serves all Q and return to o. Clearly, |TQ| ≤ d(q, o) + |P ∗

Q| (as going to q from o
and following P ∗

Q is also a tour that starts from o, serves Q and returns to o). So,

ZALG ≤ tq + |TUt′ | − d(q, o) + |TQ| ≤ tq + |TUt′ | − d(q, o) + d(q, o) + |P ∗
Q| = tq + |P ∗

Q|+ |TUt′ | ≤ 2Z∗

E0 318: Topics in Geometric Algorithms-2

Lemma 2. p(t) is the position of the server at time t by PAH. Then, d(p(t), o) ≤ 1
2Z

∗

Proof. If the server is on a route TUt′ and it is travelling between points a and b which correspong to some
request or the origin o, then
|T ∗| ≥ d(o, a) + d(a, b) + d(b, o) = d(a, o) + d(p(t), a) + d(p(t), b) + d(b, o)
d(p(t), o) ≤ min{d(p(t), a) + d(a, o), d(p(t), b) + d(b, o)} = 1

2 |T
∗| ≤ 1

2Z
∗

Otherwise if the server is returning to o, after terminating a route TUt′ , then a request xi = (ti, pi) can
in the interval [t′, t]. So,
d(p(t), o) ≤ d(p(ti), o) ≤ 1

2Z
∗ (by above argument)

Theorem 3. PAH with Christofides’ heuristic is 3-competitive for H-OLTSP

Proof. Christofides’ algorithm gives an 3
2 - approximation of the optimal tour.

So, ZALG ≤ tn + d(p(tn), o) + CHR(Utn ∪ {o}) ≤ Z∗ + 1
2Z

∗ + 3
2 |T

∗| ≤ 3Z∗

3.3 Lower Bounds for Competitive Ratio of H-OLTSP Algorithms

We can show that any algorithm for H-OLTSP in general metric spaces can not have competitive ratio better
than 2. This does not prove that there can not be algorithms with better competitive ratio for particular
metric spaces; just that such an algorithm will not have this performance in the general setup. For example,
on the real line, we can devise a 1.75-competitive algorithm.

Theorem 4. For any ε > 0, any ρ-competitive algorithm for H-OLTSP in general metric spaces has ρ ≥ 2−ε

Proof. Consider the space to be the boundary of the unit square [0, 1]2 ⊆ R2. The distance between two
points is defined as the length of shorter path along the boundary of the unit square. Let the (0, 0) point be
the origin o.

At time t = 0 issue requests in all points of S = {(0, i/n), (1, i/n), (i/n, 0), (i/n, 1)|i ∈ {0, 1, , 2, ..., n}}. Note
that the adversary can serve all these requests with an anti-clockwise loop along the boundary, so Z∗ = 4.
Now we claim that for some δ, 0 ≤ δ ≤ 2, at time 2 + δ, the server must be in one of the two points at
distance 2− δ from the origin.
Say the function f : [0, 2] → [0, 2] denotes the distance of server from (1, 1) at time 2 + x. Consider,
g(x) = f(x) − x. Note that g(0) = f(0) ≥ 0 (as it is distance from point (1, 1) at time t = 2) and
g(2) = f(2) − 2 ≤ 0 (as maximum distance from (1, 1) on the boundary can be 2). As g is continuous, by
Intermediate Value Theorem, g(x) = 0 =⇒ f(x) = x for some δ ∈ [0, 2] i.e. server is at distance δ from
(1, 1) (2− δ from origin) at time 2 + δ. Hence, our claim is proven.
Take the smallest such δ and call the point p(2+δ) as a (WLOG a is at distance 2−δ from o in the clockwise
sense). So, at t = 2+ δ server has served requests on segment [o, a] (call it T1) and it might also have served
requests on segment S2 : [a, b] and S1 : [c, o] where b = (x2, y2) and c = (x3, y3). Now, server must have
travelled on S1 and S2 twice, so |T |+ 2(|S1|+ |S2|) ≤ 2 + δ =⇒ |S1|+ |S2| ≤ δ =⇒ |T |+ |S1|+ |S2| ≤ 2.

E0 318: Topics in Geometric Algorithms-3

Call rest of the square i.e. [b, c] as T2, then |T2| ≥ 2.
At time t = 2 + δ, generate requests on every points of S lying in the segment T1. This ends the sequence
of requests. Now notice that the adversary can still finish it with the anti-clockwise tour, it reaches point a,
at time t = 2 + δ (as a is at distance 2− δ from o moving clockwise) and after that it starts moving on T1,
so it can serve every request generated at t = 2 + δ. So, Z∗ = 4.
Whereas, the online server has to serve requests on the whole square and then return to o. It can either go
to c′ (the point before c) clockwise and then move anti-clockwise to finish at o or it can move anti-clockwise
to reach o′ (point before o) and then move clockwise finishing at o. In both cases,
ZALG = (2 + δ) + 2(2− 1/n) + (2− δ) = 8− 2/n
Hence, ρ = 2− 1

2n , so for arbitrarily small ε > 0, we can make ρ = 2− ε by choosing sufficiently large n.

4 Prediction-based Algorithms for H-OLTSP

4.1 Prediction-based Algorithms

To beat the the theoretical bound of 2-competitiveness for H-OLTSP, we can take implement algorithms
which also take a certain prediction as input. Based on the error in our prediction ε, we’ll get competitive
ratio c(ε) as a function of it. We’ll aim to maintain three qualities for our algorithms:

• Consistency: Our algorithm is said to be α-consistent if c(0) = α
Consistency denotes if our prediction is perfectly accurate, whether our algorithm performs well.

• Robustness: An algorithm is said to be β-robust if c(ε) ≤ β for any ε
Robustness maintains worst-case bounds even if our prediction is terribly wrong.

• Smoothness: An α-consistent algorithm is f(ε)-smooth if ZALG ≤ α ·Z∗ + f(ε) for some continuous
function f with f(0) = 0
Smoothness denotes that the performance of the algorithm does not degrade significantly if our pre-
diction is slightly inaccurate.

We will discuss algorithms based on three different prediction models. The first two model attempt to predict
the whole sequence of requests, whereas the last model tries to predict the arrival time of the final request.
The three models are following:

1. This is sequence prediction without identity i.e. we predict a sequence of arbitrary length. In this case,
we design an algorithm that is (1 + λ)-consistent and (3 + 2/λ)-robust, where λ ∈ (0, 1] denotes the
confidence level in this prediction.

2. In the second model, length of the sequence of requests n is known beforehand and we predict a
sequence with identity. We give a min{3, 1 + (2εtime + 4εpos)/Z

OPT }-competitive algorithm, where
εtime is the maximum difference between issue time of a request and its corresponding prediction i.e.
εtime = maxi∈[n] |t̂n − tn| and εpos is the total error in predicted and actual requests over all requests
i.e. εpos =

∑
i d(p̂i, pi)

3. In the final prediction model, we predict the arrival time of the last request and the error in the
prediction is denoted by εlast = |t̂n − tn|. In this case, we give a min{4, 2.5ZOPT + εlast}-competitive
polynomial time algorithm.

4.2 Model 1

Given a prediction of requests x̂, we find an optimal tour T̂ on x̂. Then we set a confidence level λ ∈ (0, 1]
for the prediction. Low λ denotes that we trust this prediction. Now we follow the algorithm PAH while
t < λ|T̂ |, we also modify our PAH framework making it reach the origin exactly at time λ|T̂ | if the planned
route is too long. Then, we start following our prediction and complete the tour T̂ . Finally we run PAH

E0 318: Topics in Geometric Algorithms-4

algorithm to complete any requests in x \ x̂. Following is a pseudo-code for the algorithm:

Algorithm 2: Learning-Augmented Routing Without Identity (LAR-NID)

Input: Current time t, a sequence prediction x̂, confidence level λ ∈ (0, 1], set of current released
unserved requests Ut

1 Compute an optimal tour T̂ to serve all the requests in x̂ and return to o;

2 while t < λ|T̂ | do
3 if p(t) = o then
4 Compute an optimal route TUt

, to serve all requests in Ut and return to o;

5 if t+ |TUt | > λ|T̂ | then
6 Find the moment tback s.t. tback + d(p(tback, o)) = λ|T̂ |;
7 Modify TUt

into a tour T ′
Ut

by sending the server back to o at time tback along the

shortest path;
8 Start following route T ′

Ut
;

9 end
10 else
11 Start following route TUt

;
12 end

13 end
14 if The server is on a route TUt′ for some t′ < t then
15 if a request xi = (ti, pi) arrives then
16 if d(pi, o) > d(p(t), o) then
17 Go back to the origin o;
18 end
19 else
20 Move ahead on the current route TUt′ ;
21 end

22 end

23 end

24 end

25 while t ≥ λ|T̂ | do
26 Wait until Ut ̸= ϕ;

27 Follow T̂ until the server is back to o;
28 Follow PAH(t, Ut);

29 end

Lemma 5. The LAR-NID algorithm is (1.5 + λ)-consistent

Proof. Say the prediction is perfect, x = x̂ and |T̂ | = ZOPT . Server follows PAH till λ|T̂ | and follows the
predicted route if Uλ|T̂ | ̸= ϕ, otherwise it waits.

• If Uλ|T̂ | ̸= ϕ, then

ZALG = λ|T̂ |+ |T̂ | ≤ (1 + λ)ZOPT

• Otherwise suppose it waits till tj (tj = mint{t > λ|T̂ | : Ut ̸= ϕ}). Suppose the adversary is moving
during this time. But as some request is yet to come and adversary has to be at the requested point
at that time and then return to origin, the most it can gain is 1

2Z
OPT . So, tj − λ|T̂ | ≤ 1

2Z
OPT

Hence, ZALG = λ|T̂ |+ (tj − λ|T̂ |) + |T̂ | ≤ (1.5 + λ)|T̂ |

Lemma 6. The LAR-NID algorithm is (3 + 2/λ)− robust

E0 318: Topics in Geometric Algorithms-5

Proof. Clearly, ti ≤ ZOPT for any i and |TUt | ≤ ZOPT for any t. Now, consider the cases:

1. If the server finishes before λ|T̂ |
then it was following the PAH algorithm throughout, which is 2-competitive. So, ZALG ≤ 2ZOPT

2. It did not finish before λ|T̂ |. Then there might be some unserved request at time λ|T̂ | or some request

might arrive after time λ|T̂ |. Then, we know, ZOPT ≥ λ|T̂ |
2 (as it follows PAH before λ|T̂ | and PAH is

2-competitive). We have 4 subcases:

(a) Uλ|T̂ | ̸= ϕ, tn > (1 + λ)|T̂ |
Then it follows PAH after (1 + λ)|T̂ | =⇒ ZALG ≤ 2ZOPT

(b) Uλ|T̂ | ̸= ϕ, tn ≤ (1 + λ)|T̂ |
ZALG ≤ λ|T̂ |+ |T̂ |+ |TU(1+λ)|T̂ |)

| ≤ 2ZOPT + (2/λ)ZOPT + ZOPT = (3 + 2/λ)ZOPT

(c) Uλ|T̂ | = ϕ, tn > tj + |T̂ |
Then it follows PAH after tj + |T̂ | =⇒ ZALG ≤ 2ZOPT

(d) Uλ|T̂ | = ϕ, tn ≤ tj + |T̂ |
Then, we have λ|T̂ | < tn < ZOPT . Server starts its last route at tj + |T̂ |.
Hence, ZALG ≤ tj + |T̂ |+ |TUtj+|T̂ |

| ≤ ZOPT + (1/λ)ZOPT + ZOPT = (2 + 1/λ)ZOPT

Lemma 5 and lemma 6 implies the following theorem

Theorem 7. The LAR-NID algorithm is (1.5 + λ)-consistent and (3 + 2/λ)-robust but not smooth.

4.3 Model 2

In this model, we have access to the number of requests n, so we can give a sequence prediction with identity
(a prediction x̂ of size n). We first give the LAR-TRUST algorithm and show that although it has consistency
and smoothness, it is not robust. Then we can modify it to give the LAR-ID algorithm which follows LAR-
TRUST till the penultimate request. When final request arrives, it compares between the predicted route
and a greedy route and takes the shorter one.
In the LAR-TRUST algorithm,the server first finds an optimal tour over the predicted set of requests T̂ ,
then starts following it. If a request xi arrives, the server modifies the remaining tour by inserting xi after
x̂i. The server also waits at the predicted i-th request p̂i until the actual i-th request arrives.
The following is a pseudocode describing the LAR-TRUST algorithm:

Algorithm 3: Learning-Augmented Routing Trust (LAR-TRUST)

Input: Current time t, number of requests n, a sequence prediction x̂, set of current released
unserved requests Ut

1 Compute an optimal route T̂ = (x̂1, ..., x̂n) to serve the requests in x̂ and return to o, where x̂i is the

i-th predicted request in T̂ ;

2 Start following the route T̂ ;
3 while i = 1, 2, ..., n do
4 if t = ti then

5 Update the route T̂ by adding the request xi after the predicted request x̂i;
6 end
7 if p(t) = p̂i and t < ti then
8 Wait at p̂i until time ti;
9 end

10 end

E0 318: Topics in Geometric Algorithms-6

Now we modify the algorithm by setting a binary trust value F (for F = 0, we trust the algorithm and
for F = 1, we do not). We follow the LAR-TRUST algorithm until the last request arrives i.e. tn. Then we
compute two routes: r1 which takes server back to origin and serves the remaining unserved requests and r2
which is rest of the T̂ tour. If r1 is shorter, we set F = 1 and follow r1, otherwise we follow r2.
The following is a pseudocode describing the LAR-ID algorithm:

Algorithm 4: Learning-Augmented Routing With Identity (LAR-ID)

Input: Current time t, number of requests n, a sequence prediction x̂, set of current released
unserved requests Ut

1 Intialize F = 0;

2 Compute an optimal route T̂ = (x̂1, ..., x̂n) to serve the requests in x̂ and return to o, where x̂i is the

i-th predicted request in T̂ ;

3 Start following the route T̂ ;
4 while F = 0 do
5 Follow LAR-TRUST for i = 1, 2, ..., n− 1;
6 if t = tn then

7 r1 ← the remaining distance of following T̂ ;
8 Compute a route TUtn

to start, serve Utn and finish at o;
9 r2 ← d(p(t), o) + |TUtn

|;
10 if r1 > r2 then
11 Go back to o;
12 F = 1;

13 end
14 else

15 Continue on route T̂ ;
16 end

17 end

18 end
19 while F = 1 do
20 Start to follow TUtn

;
21 end

Lemma 8. The LAR-TRUST algorithm is (1 + (2εtime + 4εpos)/Z
OPT)-competitive

Proof. Suppose, Tx is the optimal route for serving x and Tx̂ is the optimal route for serving x̂. Notice that
in the algorithm the requests in x are visited in the the order of visiting x̂ in route Tx̂. So, define:

• |Tx| = ZOPT

• Z∗
x̂ if the requests in x̂ are visited following order of Tx.

• |Tx̂| = Z ′
x̂

• ZALG is time to serve requests in x following order of Tx̂.

Say the server waits at the origin for time εtime then starts following Tx, but whenever the server is at xi

it takes the shortest path to x̂i and returns to xi. Notice that as Tx ensures that the server is can every

E0 318: Topics in Geometric Algorithms-7

request xi, waiting εtime at origin ensures that we reach at every xi at least εtime late. Now as the service
time gap between any xi and x̂i is at most εtime, we can service all requests in x̂i in this route. But, Z∗

x̂ is
the optimal route to serve x̂ in order of Tx. Hence, Z∗

x̂ ≤ ZOPT + εtime + 2εpos.
Also, Z ′

x̂ ≤ Z∗
x̂ (As Z ′

x̂ is the optimal route of serve requests in x̂ in any order)

Now, we follow Tx̂ after waiting at origin for εtime and visit xi along the shortest route after x̂i and return
to it. Notice that, this route also visits xi in order of Tx̂.
Hence, ZALG ≤ Z ′

x̂ + εtime + 2εpos ≤ Z∗
x̂ + εtime + 2εpos ≤ ZOPT + 2εtime + 4εpos

So, the competitive ratio is 1 + (2εtime + 4εpos)/Z
OPT i.e. the LAR-TRUST algorithm is 1 consistent,

(2εtime + 4εpos)-smooth but not robust.

Theorem 9. The LAR-ID algorithm is min{3, 1 + (2εtime + 4εpos)/Z
OPT }-competitive

Proof. • If r1 ≤ r2
Hence, the errors are small and the server continues on T̂ . Then it follows the LAR-TRUST algorithm
throughout. So, by lemma 8, ZALG ≤ ZOPT + 2εtime + 4εpos

• If r1 > r2
Server goes back to the origin and designs a new route. It reaches origin at time tn + d(p(tn), o) and
it starts to follow a route TUtn

. Hence, ZALG = tn + d(p(tn), o) + |TUtn
| ≤ tn + tn + |TUtn

| ≤ 3ZOPT

The LAR-ID algorithm chooses the faster route.
Hence, the competitive ratio is min{3, 1 + (2εtime + 4εpos)/Z

OPT }

4.4 Model 3

This model gives a prediction of the arrival time of the last request and we design the LAR-LAST algorithm
based on it. The idea of this algorithm is to ensure that the server arrives at the origin at the predicted
time t̂n and follows a modified PAH algorithm for rest of the execution. We use a similar gadget as used
in the LAR-NID algorithm. Whenever the server is at origin it plans an approximate route TUt

based on
Christofides heuristics, over the current set of released unserved requests and return to o. If the route is too
long (t < t̂n < t+ |TUt |), the server stops it at some tback to return to origin and arrive exactly at time t̂n.

In the modified PAH framework, we return to the origin o whenever a new request arrives during a tour,
irrespective of relative distance of the request. Call this algorithm REDESIGN. We can show that lemma 2
and theorem 3 holds for REDESIGN algorithm too. The proof is similar to that of PAH algorithm.

Lemma 10. p(t) is the position of a server at time t by REDESIGN. Then, d(p(t), o) ≤ 1
2Z

OPT for all t.

Theorem 11. REDESIGN is a 3-competitive polynomial-time algorithm for H-OLTSP using Christofides’
heuristics.

Using this, we can show that LAR-LAST is a min{4, 2.5 + εlast/Z
OPT }-competitive polynomial time

algorithm. The following is a pseudocode describing the LAR-LAST algorithm:

E0 318: Topics in Geometric Algorithms-8

Algorithm 5: Learning-Augmented Routing with Last Arrival Time (LAR-LAST)

Input: Current time t, predicted last time t̂n and set of current released unserved requests Ut

1 while Ut ̸= ϕ do
2 if p(t) = o then
3 Start to follow an approximate route TUt

, to serve every request in Ut and return to o;

4 if t < t̂n and t+ |TUt
| > t̂n then

5 Find the moment tback such that tback + d(p(tback, o)) = t̂n;
6 Modify TUt into T ′

Ut
by sending the server back to o at time tback along the shortest path;

7 Start following T ′
Ut
;

8 end
9 else

10 Start following TUt
;

11 end

12 end
13 if The server is on a route TUt′ for some t′ < t then
14 if a request xi = (ti, pi) arrives then
15 Go back to the origin o;
16 end

17 end

18 end

Theorem 12. The LAR-LAST algorithm is a min{4, 2.5 + εlast/Z
OPT }-competitive polynomial time algo-

rithm, where εlast = |t̂n − tn|

Proof. Depending on whether the last request arrives earlier or later than our prediction, we have two cases:

1. t̂n ≤ tn
Server will return to origin at time tn and then complete a final tour.
Hence, ZALG = tn + d(p(tn), o) + |TUtn

| ≤ ZOPT + 0.5ZOPT + 1.5ZOPT = 3ZOPT

also, d(p(tn), o) ≤ |t̂n − tn| = εlast. So, Z
ALG ≤ 2.5ZOPT + εlast

2. t̂n > tn
In this case, server will be back to origin by t̂n and the complete a final tour. So, ZALG ≤ t̂n + |TUt̂n

|.
Now suppose tL is the last time before t̂n, when a route TL was planned and T ′L is the new route if it
was adjusted by the gadget (TL = T ′L if TL can return before t̂n). So, tL + |T ′L| ≤ t̂n. Now we have
3 subcases:

(a) If tL + |TL| ≤ t̂n
Then we return to o by t̂n time and there is no readjustment. So, our algorithm essentially
performs like the REDESIGN algorithm. Hence, ZALG ≤ 3ZOPT .

(b) If tL + |TL| > t̂n and tn ≤ tL
In this case, the TL tour contained the last request and we would have been done if we continued
with it. But as the route is too long, our algorithm finds some tback and using T ′L route, returns
back to o at t̂n. In this process, it incurs a loss of at most 2d(p(tback), o).
Hence, ZALG ≤ 3ZOPT + 2d(p(tback), o) ≤ 4ZOPT (Using lemma 10)

(c) If tL + |TL| > t̂n and tn > tL
In this case, our tour TL does not contain tn and the route is too long. So the server return at t̂n
and starts the last tour TUt̂n

. Hence, ZALG ≤ t̂n+|TUt̂n
| = tL+|T ′L|+|TUt̂n

| ≤ tn+|T ′L|+|TUt̂n
| ≤

ZOPT + 1.5ZOPT + 1.5ZOPT = 4ZOPT

also, ZALG ≤ t̂n + |TUt̂n
| = tn + εlast + |TUt̂n

| ≤ ZOPT + εlast + 1.5ZOPT = 2.5ZOPT + εlast

E0 318: Topics in Geometric Algorithms-9

References

1. Hsiao-Yu Hu, Hao-Ting Wei, Meng-Hsi Li, Kai-Min Chung, Chung-Shou Liao. Online TSP with
Predictions, pages 6-12, Jun 2022.

2. Giorgio Ausiello, Esteban Feuerstein, Stefano Leonardi, Leen Stougie, and Maurizio Talamo. Algo-
rithms for the on-line travelling salesman. Algorithmica, 29(4):560–581, Apr 2001.

E0 318: Topics in Geometric Algorithms-10

https://arxiv.org/abs/2206.15364
https://arxiv.org/abs/2206.15364
https://www.researchgate.net/publication/2861107_Algorithms_for_the_On-line_Travelling_Salesman
https://www.researchgate.net/publication/2861107_Algorithms_for_the_On-line_Travelling_Salesman

	Introduction
	Problem Setup
	Online Algorithm for H-OLTSP
	Algorithm
	Competitive Ratio for PAH
	Lower Bounds for Competitive Ratio of H-OLTSP Algorithms

	Prediction-based Algorithms for H-OLTSP
	Prediction-based Algorithms
	Model 1
	Model 2
	Model 3

