· Coresets - a powerful tool for efficiently approximating various extent measures of a point set P. · Extent measures: An extent measure of P either computes certain statistics of Pitself or of a geometric shape Ce.g., sphere, box, cylinder, etc.) enclosing P. > Diameter or Kth largest distance between pairs of Points in P. - compute smallest radius of a sphere, min volume of a box, smallest width of a slab that contains P. Smallest volume borending box/ball containing Pin IR3. - Expensive in general: O(n3) time. - can we find (I+E)-approximation in O(nf(E)) time? →Q < size /50(1) coresets improved inefficient algorithm algorithm $\mu(P) \leftarrow$ TM(Q) ≥ (1-2)M(P) & Kernels for Point Sets: - le is a measure function (e.g., the width of a point set) μ: Rd → R+ U 10} and μ is monotone [P, CP => M(P,) \leq M(P Given a parameter &>0, Q = P is an &-coreset of P (n. r.t. re) if (1-E) re(P) < r(Q)

			th €												
A			via												
	Def	ine	Rt	o be	set	pan	ges.	that	t are	e co	mpl∈	emen	tog	Lalls	Σ,
	One	car	shor	⇒ ∨	c-de	m ()	(,R)	= 0	(1).						
	So	one	show	obto	rein	e-ne	t R	os	81,50	. 0	(\frac{1}{2}.	ومع کچ	<u>-</u>).		
T (- D	
												ı po	onts	of P ide il	
Th	eu '	g c	entai	ns.	> 2 l	Pl po	sinto	of:	P ins	ide.	it.				
\Rightarrow	- 9	tzum	COY	rtaei	na	poir	ut og	k #(cen e	-net) .		•		
			not									•	•		
	U						•		,						
So	any	ba	u th	nat	eno	محملا	೭ ಕ	Con	<i>lers</i>	au	Ьvi	t an	ε· f	ract	5h
of	poù	nts	of P	· V	((:))							J		
							Can	be	المربة الم	e. G	ev +	him	this	र फोरी	t
1100		' ' '			1 70	0, . ,			7001	_ _	-	7 10 -5	0, 4		•
not	~ 0	POPO	2%\mathrew (1)	rate '	· +\/	e n	rinir	กเมทา	i en	rlos.		للهم	×		
														(<u>;</u>)	
→ c	692S	ets	cap.	ture	the	(در ع	nole	str	uct	ure	of -	the	inpu	t,	
→ c	eres	sets	corp.	ture ples	the	(در ع	nole	str	uct	ure	of -	the	inpu	t,	
→ c	ones and f th	sets om re p	cap.	ture ples	the	ture	nole 2 th	str e s	nct	ure	of -	the	inpu	t,	
→ c	ones and f th	ets om ne p	cap. sam	ture ples	the cap	ture	nole the	stre s	nct	ure	of for	the p ^1	nost	t , .	
→ c	ones and the ones i.e.,	ets om ne p ets on s	capoints trad - fro	ture ples le of	the cap	ture	nole e th	str es en	nct touc	ure ture	e e	the r ~1	inpu	t, ;"	
→ c	ones f the iner, shile	ets on e p ets ans	cap. Sam soints trad - fra ando	ples le of actions	the cap	ture ture the	nole thic trace	stre s	nct touc	ure ture th	e e	the r r r	inpu	t, " bo	u)
→ c	ones f the iner, shile	ets on e p ets ans	cap. Sam soints trad - fra ando	ples le of actions	the cap	ture ture the	nole thic trace	stre s	nct touc	ure ture th	e e	the r r r	inpu	t, ;"	u)
→ c	ones f the iner, shile	ets on e p ets ans	cap. Sam soints trad - fra ando	ples le of actions	the cap	ture ture the	nole thic trace	stre s	nct touc	ure ture th	e e	the r r r	inpu	t, " bo	u)
→ c	ones f the iner, shile	ets on e p ets ans	cap. Sam soints trad - fra ando	ples le of actions	the cap	ture ture the	nole thic trace	stre s	nct touc	ure ture th	e e	the r r r	inpu	t, " bo	u)
→ c	ones f the iner, shile	ets on e p ets ans	cap. Sam soints trad - fra ando	ples le of actions	the cap	ture ture the	nole thic trace	stre s	nct touc	ure ture th	e e	the r r r	inpu	t, " bo	u)
→ c	ones f the iner, shile	ets on e p ets ans	cap. Sam soints trad - fra ando	ples le of actions	the cap	ture ture the	nole thic trace	stre s	nct touc	ure ture th	e e	the r r r	inpu	t, " bo	u)
→ c	ones f the iner, shile	ets on e p ets ans	cap. Sam soints trad - fra ando	ples le of actions	the cap	ture ture the	nole thic trace	stre s	nct touc	ure ture th	e e	the r r r	inpu	t, " bo	u)

- · Agarnal. Har-Peled, Varadarajan introduced the notion of E-Kernel and showed it is $f(\Sigma)$ -coreset for numerous minimization problems.
 - · E-Kernel:

Figure 1. Directional width and ε -kernel.

 ε -kernel. Let \mathbb{S}^{d-1} denote the unit sphere centered at the origin in \mathbb{R}^d . For any set P of points in \mathbb{R}^d and any direction $u \in \mathbb{S}^{d-1}$, we define the *directional width* of P in direction u, denoted by $\omega(u, P)$, to be

$$\omega(u, P) = \max_{p \in P} \langle u, p \rangle - \min_{p \in P} \langle u, p \rangle,$$

where $\langle \cdot, \cdot \rangle$ is the standard inner product. Let $\varepsilon > 0$ be a parameter. A subset $Q \subseteq P$ is called an ε -kernel of P if for each $u \in \mathbb{S}^{d-1}$,

$$(1 - \varepsilon)\omega(u, P) \le \omega(u, Q).$$

- · A measure function 14 is faithful if I constant c s.t. VPC 1Rd and any constant E>0, an E-kernel of P
 - is a ce-coreset for P w.r.t. M.
 - → E.g. diameter, width, radius of the smallest enclosing bou, volume of the smallest enclosing box.
 - A common property of these 1e: 1e(p)=1e(conv(p)).
- · a-fat point set p: For a < 1, if 3 point p & IRd and
 - a hypercube e centered at the origin s.t.

can be thought of as a sgood appx of com home · Algorithms for computing Kernels: Lemma [AHV]: Let P & Rd. IPI=n s.t. vol (conv(P)) >0, and let $e = [-1, 1]^d$. One can compute in O(n) time an affine transform J s.t. J(P) is an a-fat point set (or depends on d) and s.t. QCP is an z-kernel of P iff J(Q) is an E-kernel of J(P). (via approximation to Löwner-John Ellipsoid). $\Rightarrow P \subseteq [-1,+1]^d$ that is α -fat. (1) Gpid-based Algorithms: Take largest $\delta \leq \left(\frac{2}{\sqrt{d}}\right) \alpha$, $\frac{1}{8} \in 72$. d-din grid of size 8. arbitrary For each column, choose one point from highest nonempty cell of the column and one point from lowest nonempty cell. (i) Need to maintain 2 points in each of 1/3 colo in [-1,1]? in general, a points in each of (1/8)d-1 cols in [-1,1]d. $|Q| = O\left(\frac{1}{(\alpha \epsilon)^{d-1}}\right) & can be computed in <math>O(n + \frac{1}{(\alpha \epsilon)^{d-1}})$ time. (2) NN-based Algorithms: S = sphere of radius of (Nd+1) centered at origin. $\delta = \sqrt{\varepsilon}d \leq 2$

Construct a set \Im of $O(1/8^{d-1}) = O(1/8^{d-1})/2$ points on S, s.t. $\forall x \in S, \exists y \in \Im$ s.t. $||x-y|| \leq \delta$.

Process P into data structure that can answer E-appx nearest neighbor queries. [Anya et al.]

For each point $y \in \mathcal{I}$, compute its $(\varepsilon - appr) NN$ in ∂ Return $Q = \frac{1}{2} \mathcal{O}(y) | y \in \mathcal{I}$?

· Intuition on why Q is an E-kernel of P.

For simplicity assume $\varphi(y) = \text{exact NN}$. Consider a direction u.

Let JEP be the point that max < u.p> over au pEP.

Ray emanating from J hit S' at z.

Let $y \in J$ s.t. $||x-y|| \leq \delta$.

If $\varphi(y) = J$, then $J \in Q$ and $\max \langle u, p \rangle - \max \langle u, q \rangle = 0$ $\varphi \in P$ $q \in Q$

Otherwise. $p(y) \neq J$. Let B be d-din bou of radius ||y-J|| centered at y.

Let Z E dB that is hit by pay from y in der-u. W. R. are projections (see fig.)

Since. P(y) is closer to J, P(y) lies inside B. $\langle u.\phi(y)\rangle \geq \langle u,z\rangle$ further. <u.5> - <u,0(y)> < <2. geometry Hence, max $\langle u, p \rangle - \max \langle u, d \rangle \leq \langle u, d \rangle - \langle u, \phi(y) \rangle \leq d \leq p \in \mathbb{R}$ Similarly, min <u,p>-min <u,q>> - α z. PEP Hence, w(u,Q)> w(u,P)-2dE. Since de c conv (P), w(u.P) > 20 Hence, w(u,Q)>, (1-E) w(u, O) for any direction u. -> Chan showed that Q(y) for all y ∈ I can be computed in a total time O(n+1/2d-1) time [using appx Voponor diagrams). · Theorem [chan]: Given a set of n points in TRd and parameter 2>0, one can compute an 2-kernel of P of size O(/s(d-1)/2) in time O(n+/sd-\frac{2}{5}). -> So if a faithful measure 1e can be computed in O(n)-time. Then, by above than compute an (%)-kernel @ and then use $O(n^2)$ - algo. $\Rightarrow O(n + \frac{1}{5d - 3/2} + \frac{1}{5a(d-1)/2})$ time algo.

· Exact diameter computation takes O(12) time. Above approach computes it in near-linear time. O copesets for Clustering: Clustering: Given a set P of n points in TRd. KE ZI. Partition P into K subsets (clusters) P1, P2, ..., PK st. certain objective is minimized 7 K-center - centered clustering: di: max 1 (Pi) K-line-center summed clustering: doj: \$2, p. (Pi) " K-median > K-means Generalized cluster: (f, s). · K-center: AOB SCP 9-din subspace = a a a b: for q & d aeA, $\mu(f,S) = \max d(p,f).$ b€ B7 p€ S The red figure is the Minkowski sum of blue and green figures. Ball of radius & Define B(f,r) to be f \(B(0,r) \) centered at 0 \rightarrow ball of radius r if f = point (q=0) \rightarrow cylinder of radius r if f = line (Q=1)→ slab of width 2r if f = hyperplane. (9=2) · Define & = 2 (f, Pr), ..., (fk, Pk)} a k-clustering (of dim q) if each fi is a q-din subspace and P= UPi. μ(c) = max μ(fi, Pi), popt (P, k, q) = mine μ(c). Let Capt (p, k, q) be the opt clustering

. Additive & Multiplicative coresets: QCP is an E-coreset of P (mersure) if for every K-clustering C = {(f, Q,), ..., (fk, Qk)} of Q with Pi = p(fi; Qi), $P \subseteq \bigcup_{i=1}^{n} \mathcal{B}(f_i, P_i + \mathcal{E}_{\mu}(\mathcal{C}))$ - additive small expansion coresets of bour for Q or $P \subseteq \bigcup_{i=1}^{k} B(f_i, (1+2)r_i)$ Cover P. - multiplicative coresets. · Additive coreset: family of K balls $P^* = P_{opt}(P, K, 0), B = \{B_1, ..., B_K\}$ of radius pt that cover P. -> Draw d-dim grid with side length Ext (2d). -> O(1/2d) of these goidcells intersect the balls in B. -> for each such cell of with POD # \$, select a point PEPAD arbitrarily. -> One can show that these O(*/2d) points form an additive correset. · To estimate r*, one can run greedy & get & [r*, zp*] 2 draw grids with side length Ext/(4d). More complicated constructions give better corests. 7 Thm: Let P be a set of n points in TRd, 0< E< 1/2. I a mult &- corresets of size O(K!/Edk) of Pfor K-center. . See Feldman's survey for other constructions/applications: - uniform sampling [Braverman et al., FOCS'22] + importance sampling -Grids - Greedy construction [Feldman-Rus, Neur IPS 16].