
 Coresets a powerful tool for efficiently approximating
various extent measures of a point set P

Extent measures An extent measure of P either computes
certain statistics of P itself or of a geometric shape
e g sphere box cylinder etc enclosing P

Diameter or Kth largest distance between pairs of
Points in P

compute smallest radius of a sphere min volume of a
box smallest width of a slab that contains P

Smallest volume bounding box ball containing P in IR

Expensive in general 0 m time
can we find CHEI approximation in O nf E time

p or size 40111
coresets

is I'm
µ Q 1 E HCP

Kernels for Point sets

re is a measure function e.g the width of a point set

re Rd IR U 0

and µ is monotone P C P2 MCP µ P2

Given a parameter E 70 Q P is an E core set

of P ro.pt µ if I E M P µ Q



Problem with E nets E samples
Approach via VC dimension

Define R to be set panges that are complementof balls
One can show VC dim X R 0 1

So one can obtain E net R of size 0 log

If an enclosing ball g for R contains Ʃ PI poindzffep.ee
Then g contains E PI points of P inside it

g must contain a point of R ane net

g does not enclose all points of R

So any ball that encloses R covers all but an E fraction
of points of P W
However remaining points can be quite far thus this will
not approximate the minimum enclosing ball

coresets capture the whole structure of the input
random samples capture the structure for most

of the points
Copesets trade off geometric emoor

i.e an E fraction of the radius of the enclosing ball

while random samples trade off statistical error

hold for all except for an E fraction of the input



Agarwal Har Peled Varadarajan introduced the

notion of E Kernel and showed it is f E corset

for numerous minimization problems

Ee

A measure function µ is faithful if constant e s t

P Rd and any constant 0 an E kernel of P
is a CE coreset for P w.pt µ

E g diameter width radius of the smallest

enclosing ball volume of the smallest enclosing box

A common property of these re peep re conv P

Iat ftse For α 1 if point p E Rd and

a hypercube e centered at the origin s

t.ptα e conv P pte



can bethoughtof as a

Algorithms for computing kernels Agood appx of convenu

Lemma AHV Let P Rd IPI ns.t roe conv P 0

and let e 1 1 d One can compute in O n time

an affine transform J s t TCP is an α fat point set
α depends on d and s t QEP is an E kernel of P
iff T Q is an E kernel of ICP

via approximation to Lowner John Ellipsoid

P 1 1 d that is α fat

1 5
Grid based Algorithms
Take largest 8 α 48 72

d dim grid of size 8
For each column choose one p É
from highest nonempty cell of the

1 column and one point from lowest

nonempty cell

Need to maintain 2 points in each of cob in 7 I
in general 2 points in each of g

d cols in 7 7 d

101 0 1 can be computed in O n time

NN based Algorithms
S sphere of radius of Cvd 1 centered at origin

8 Ex



construct a set J
i

r

of 78 1 78 1712
points on S S t

xES YET
sit I x y I 8

Process P into data structure that can answer

E appx nearest neighbor queries Arya et al

For each point y E J compute its E appx NN in P
Y a Cy

Return Q 24 Y 1 YET

Intuition on why Q is an E Kernel of P
Forsimplicity assume y exact NN

Consider a direction re

Let TEP be the point that max

it u P over an p E P

Ray emanating from o hits
p at x

Let YET sit 112 911 8

If d y 0 then of Q and

7 CUP maxcu.gs 0
9EQ

Otherwise y Let B be d dim ball of
radius 11 y 011 centered at y

Let E 0B that is hit by pay from y in dir u

W h are projections see fig



Since Y is closer to 0 Qly lies inside B

Cu 9 4 LU Z

further cu.GS CU OCD α Ʃ Effie
Hence nygcu.RS off Lu d cu.rs CU OCD Ede

similarly zip C P ngfcu.gs αe

Hence W 4 Q WCU P 228

Since αe c conv P W U 0 2 α

Hence W U Q 1 E w n D for any direction U

Chan showed that 0 y for all ye I can be

computed in a total time 0 nx d 1 time

using appx Voronoi diagrams

Theorem Chan Given a set of n points in Rd and

parameter Ʃ 0 one can compute an E kernel

of P of size 0 d 1712 in time n d

So if a faithful measure µ can be computed
in OCR time

Then by above them compute an E kernel and

then use 0cm also O n 2 a time ago



Exact diameter computation takes 0cm time

Above approach computes it in near linear time

Core sets for Clustering

Clustering Given a set P of n points in Rd KE It
Partition P into K subsets clusters Pa Pa Pk s t
certain objective is minimized

centered clustering obj 191kt Pi I center

summed clustering obj µ Pi k median
K means

Generalized
Enter cluster f S

A B
9 dim subspadee C P

for q d a b
AEA

f S Mp
d p f bEB

Define BCf.rs to be f BCO 5 Bad L

ball of radius p if f point 9 0

cylinder of radius p if f line 9 1

slab of width 2n if f hyperplane 9 2

Define Cfa Pi fk.PK a k clustering of dim d
if each fi is a d dim subspace and P Pi

M C 19 M fi Pi Popt P K C mine µ C

Let Copt p d be the optclustering



9 O K center covering P by K balls

1 k line center i K cylinders
p us

d 1 k hyperplane center e k slabs

Greedy 2 appx for K center
Pick an arbitrary point u make it a center 0 2nF
for next CK 1 iterations
pick the point furthest away from current set of centers
add this point to the set of centers
let ki be the set of centers at the end of iteration i

IF FEY d p Ui i Ui be such selected point p
Vi Vi_ Ui

we return UK

a

a

Roof P 82 PK

The distance between any pair of centers Pk

For contradiction assume Pk 2 P OPT radius

consider OPT that covers P with K balls of radius P

By Δ inequality any two points in a ball are at dist 2ft

Thus none of these balls can cover two points of UK 2

Hence all points in Uti can be covered by K balls
as Until K 1 contradiction



Additive Multiplicative coresets

Q P is an E coreset of P methyl if for every k clustering
f Q fk.dk of with Pi te fr Qi

P 13 fi Pi Epe C additive small expansion
coresets

P E B f It E ri multiplicative
forest

coresets

Additive copeset

Popt P K 0 B B B family of K balls
of radius p that
cover P

Draw d dim grid with side length EP d

Kd of these gridcells intersect the balls in B

for each such cell 8 with P no select a point
P Pro arbitrarily
One can show that these 0 Kd points form an
additive coreset

To estimate it one can run greedy get PE 20 7
draw grids with side length EP ad

More complicated constructions give better coresets I

Thm Let p be a set of n points in 1Rd dec

a mult E coresets of size OCK Edk of P for k center

See Feldman's survey for other constructions applications
uniform sampling Braverman et al FOLS 22

importance sampling
Grids

Greedy construction Feldman Rus Neur IPS 16


