
E0 318: Topic in Geometric Algorithms October 22, 2024

Approximate TSP using Quadtrees
Instructor: Abhiram Scribe: Abhiram

1 Introduction

This lecture will present an algorithm which provides a PTAS for the Euclidean Travelling Salesman Problem

in time O
(
n
(
1
ε log(n)

) 1
ε

)
as given by [Aro96]. The structure of the lecture will (loosely) follow Chapter 13

of [HP11].

2 A first Approach: Divide and Conquer

First we provide an exact algorithm that sets the stage for the techniques and notation we shall use.

2.1 Definitions

Consider n points, P ⊂ R2. A tour in R2 is a continuous and piece-wise differentiable map p : [0, 1]→ R2

with p(0) = p(1). The length of a tour ||p|| =
∫ 1

0
|p′(t)|dt. A TSP tour is a tour π in R2 that traverses

every node in P . The problem statement is to find a TSP path of minimum length. That is, find a TSP
path πopt such that for every TSP path π, ||π|| ≥ ||πopt||.
To solve this using divide and conquer, we shall also need to define what our sub problems will look like.
Consider a half open rectangle R = [a, b) × [c, d), a set K ⊂ ∂R of points on the boundary of the
rectangle, |K| ≤ t, even for some constant t, and σ : [|K|] → K a permutation of K. Let us use Kσ

i to
denote σ(i), omitting σ where it is not ambiguous. A subproblem TSP ∗ consists of R,K, σ and the goal

is to find |K|
2 paths π⃗ where πi begins at K2i−1 and ends at K2i such that K ⊂

⋃ |K|
2

i=1 πi and
∑ |K|

2
i=1 ||πi|| is

minimised.
For a point p ∈ R2, V (p) is the vertical line passing through p and H(p) the horizontal line passing
through p. A rectangle can be cut by an axis-aligned line L to two rectangles, on either side of the line
which we will denote RL

1 and RL
2 , dropping the L where unambiguous.

Definition 1 (Cutting Lines). The set LP = {V (p) | p ∈ P} ∪ {H(p) | p ∈ P} of all axis aligned lines
crossing points in P is called the set of Cutting Lines.

A simple heuristic is that since we are in the Euclidean metric, the shortest tour has to be straight lines
between the points.

Definition 2 (Possible Edges). E =
⋃

i,j∈P Ei,j is the set of possible edges, where Ei,j is the straight line
from i to j.

Definition 3 (Rectilinear Binary Space Partition). It is a family of rectangles R such that:

• R,S ∈ R, R ∩ S ̸= ϕ⇒ R ⊂ S or S ⊂ R.

• R ∩ P ̸= ϕ ∀R ∈ R.

• If R,S ∈ R, R ⊂ S, then ∃S ⊂ R such that S \R =
⊔

r∈S r.

• ∀ p ∈ P ∃ Rp ∈ R such that Rp ∩ P = {p}.

E0 318: Topic in Geometric Algorithms-1

Definition 4 (t-friendly). A RBSP R is said to be t-friendly with an optimal TSP tour πopt if every rectangle
R ∈ R intersects πopt at most t times.

We have the following result provided by the algorithm to come.

Theorem 5. For a constant t, if a point set P admits a minimum TSP tour πopt and a RBSP R that is
t-friendly with πopt, then we can find πopt in time nO(t).

2.2 Algorithm

First, we provide the algorithm to solve a subproblem.

Algorithm 1: Recursive Algorithm (AlgSub) for a Subproblem

Input: R,K, σ
Output: π⃗

1 if |P ∩R| = 1 then
2 Find shortest by brute force
3 end
4 Initialise best←∞
5 Initialise path
6 for L ∈ LP∩R, Knew ⊂ E ∩ L, σ1, σ2 permutations of R1, R2 do
7 Verify compatibility of the subproblems generated.
8 if compatible then
9 sum← ||AlgSub(R1, (K ∩R1) ∪Knew, σ1)||+ ||AlgSub(R2, (K ∩R2) ∪Knew, σ2)||

10 if sum < best then
11 best← sum, path← AlgSub(R1, (K ∩R1)∪Knew, σ1)∪AlgSub(R2, (K ∩R2)∪Knew, σ2)
12 end

13 end

14 end
15 return path

We assume verifying compatibility is simple, and use it as a black box. The more skeptical reading can
refer to Appendix A.

Next, to generate the first two sub-problems, we have to make a small change to the algorithm to account
for the output being a tour instead of a collection of paths. We consider the frame F of P , the smallest
rectangle containing it, and for every L ∈ LP , we look at subsets of E ∩ L of size at most t and generate
compatible permutations σ1 and σ2 (again, Appendix A). Now we again take the minimum sum of solutions
to the subproblems and report the union of the paths given as the tour πalg.

2.3 Correctness

Note that the set of all rectangles considered during a recursion of Alg 1 form a RBSP. Thus, by different
recursions, it considers different RBSPs. The correctness comes from the fact that the algorithm covers every
RBSP, so if any of them were t-friendly, we would have found it.

Lemma 6. Algorithm 1 provides the correct set of paths πopt ∩ R for the subproblems in the RBSP that is
t-friendly with πopt.

Proof: Let’s assume for the sake of contradiction that the algorithm is incorrect for some subproblem.
Let R,K, σ be a minimal subproblem for which we get an incorrect answer. The Algorithm returns some
π⃗alg ̸= πopt ∩ R. If ||π⃗alg|| < ||πopt ∩ R||, then replacing that section of πopt with π⃗alg will give a shorter
TSP tour, contradicting optimality of πopt. Alternatively, if ||πopt ∩ R|| is lesser, then since there exists a

E0 318: Topic in Geometric Algorithms-2

t-friendly RBSP, there is a line L ∈ LP∩R which splits R into 2 valid subproblems for Knew = πopt ∩R ∩ L
with the orders σ1, σ2 induced by πopt. Since they are valid subproblems, they have to be considered while
solving the subproblem for R. This contradicts that the Algorithm chooses the lowest value among all the
subproblems. Thus, by contradiction, the algorithm will find πopt. □

2.4 Runtime

We will use memoisation so that we only need to solve each subproblem once. Thus, the total runtime is
the number of subproblems multiplied by the time taken to solve a sub problem given the solution to each
smaller subproblem.

Time to solve a Subproblem

For each rectangle R we consider, A line segment can intersect a rectangle at most twice. E has nC2 edges,
so |E ∩ R| ≤ 2 nC2 points, out of which we choose at most t points for K. Ignoring ”compatibility” to get
a generous upper bound, we assume all |K|! permutations can be taken. Then, the number of subproblems
for each rectangle R is at most

t∑
i=0

2 (nC2)
i i! ≤ 2n2tt!

Thus, for each of the 2n lines in LP∩R we consider as many subproblems for both the rectangles generated
and find the minimum of the sum of the answers. Thus, we can update a cell in time nO(t). Remember that
the base case is just an enumeration on t+ 1 points and can be solved by brute force in time tO(t).

Number of Subproblems

This leaves the last matter to address, a matter that would have the moderately invested reader on the edge
of their seat, eating their hat, wondering why (We say ”moderately” because we expect the heavily invested
reader to have noticed this, work it out, and found the answer for themselves). The matter is the following:
Why do we only consider lines from LR∩P for generating subrectangles of R. The answer is simple, consid-
ering every line would leave us with a lot of redundancy. Consider two lines L1, L2 such that the points in
the two subrectangles are the same. Let us name the subrectangles generated by L1 to be R1

1 and R2
1 and

those generate by L2 to be R1
2 and R2

2. Then, An edge e ∈ E intersects L1 ⇔ e = ab, a ∈ P ∩ R1
1, b ∈ R2

1.
But P ∩R1

1 = P ∩R1
2 and P ∩R2

1 = P ∩R2
2. Which means e intersects L2 as well. By a symmetric argument,

we conclude that there is a 1-1 correspondence between E ∩ L1 and E ∩ L2. Through this correspondence,
we can translate every pair of subproblems generated by L1 to a pair of subproblems generated by L2 and
vice versa. Thus, for every set of lines with the same P ∩ R1, we need only one representative line to be
considered. LP,R has a representive line for each set.
I go through the trouble of this entire justification for the simple result this gives: Any rectangle of a sub-
problem must be made of 2 vertical and 2 horizontal lines from LP . Thus, there are only n4 rectangles that
need to be considered. This coupled with the number of subproblems per rectangle shown above tells us
that the total number of subproblems is ≤ 2n4+2tt! = nO(t). Multiplying this with the time taken to solve a
subproblem, we get the total runtime to be nO(t). □

If we are able to comment on the existence of t-friendly RBSPs, we will be able to get a polynomial
exact algorithm. Alternatively, if we can show that there is a TSP tour πt which has a t-friendly RBSP, and
||πt|| ≤ (1+ 1

t)||πopt||, then we can set t = θ(1ε) and get a PTAS. However, both these questions have proven
hard to answer. By making slight improvements to the algorithm, we can accomplish the second objective.
We will present that approach in the next section.

E0 318: Topic in Geometric Algorithms-3

3 A Randomised PTAS using Sliding Quad Trees and Portals

Now we present the main algorithm of the lecture. In place of the the RBSP, we shall use a hierarchical
quadtree, in place of E, we will use fixed ”portals” on the sides of each square. We will then show the
analysis that by choice of the number of portals, we can bring a multiplicative error within (1 + ε) taking

only time O
(
n
(
1
ε log(n)

) 1
ε

)
.

3.1 Definitions

Definition 7 (Snapping). Given a point set P and a grid G, the snapping function ρP,G : P → G maps
each point of P to its closest grid point in G. The snapped point set PG is the range {g ∈ G | g =
ρP,G(p) for some p ∈ P} of ρP,G.

Definition 8 (Hierarchical Quad Tree). A collection of concentric grids T⃗ of decreasing breadth. Ti has
breadth 2−i. More precisely, Ti = {V ((2−ij, 0)) | j ∈ Z} ∪ {H((0, 2−ij)) | j ∈ Z}. Each cell of a grid
is split into 4 in the next grid. A shift of a HQT by a vector z⃗ ∈ R2 is the new set of grids T ′

i =
{V ((z1 + 2−ij, z2)) | j ∈ Z} ∪ {H((z1, z2 + 2−ij)) | j ∈ Z}. That is, the origin of the concentric grids is
shifted to z⃗.

3.2 Algorithm

We begin by picking a constant ε > 0.
First we scale and shift the point set P to fit in [0, 1)2, while having diameter > 1

2 . We perform an affine
scaling, with both axes scaling by the same ratio, so that distances in the scaled set are proportional to
distances in the original set. Thus, we can now work with the scaled set. Let us abuse notation a bit, and
call the scaled set P , suggesting that P was scaled to begin with.
Next, we snap P to a very fine grid. let E =

⌈
32
ε

⌉
. Let G be the grid of width 1

nE . We snap P to G and
find πsnap, a TSP tour on PG (Details on how are coming right up). Then, from each p ∈ PG, we go to each
point in ρ−1

P,G(p) and back to give a TSP tour of P .
Now for portals, for each grid cell in Ti, we place m equidistant portals on each side of the cell. The exact
value of m will be disclosed in the analysis where the reader will be able to appreciate the choice of the
value. For now, it suffices to say that m = θ(1ε log(n)).

Generating the Initial Subproblems

For a change, in this section let us handle this case first and then move to solving the subproblems. We
consider the new edges of T1 not in [0, 1)2, that is the plus in the middle, and pick portals out of the 4m+5
portals on this plus such that no individual square has more than t portals, for a constant t. From our
conversation above, you will remember that t = θ(1ε). Again, the exact value will be disclosed later. Pick 4
orderings σ1 to σ4 for each of the squares, and check compatibility (Appendix A). Moving over all choices of
portals and compatible orders, and finding the minimum sum of the four subproblems, we return the final
path.

Solving a Subproblem

Given a grid cell R of Ti, and K the multiset of portals to be used in order σ, if |R ∩ P | == 0 or 1, we find
the shortest path by brute force, else we divide the cell into 4, by considering the cells of Ti+1. We consider
more portals from the 4 new edges added, this gives 4m+ 5 new portals out of which we choose compatible
portals such that no edge uses more than t portals. Taking the minimum over the value of the 4 subproblems
thus generated, the union of the 4 paths is returned as the answer to the subproblem.

E0 318: Topic in Geometric Algorithms-4

3.3 Runtime

Again, we use memoisation to avoid resolving subproblems. Let’s begin with a lemma whose corollary limits
the number of times a portal is used. But remember this lemma till later since the stronger statement we
prove will be used in analysing the approximation ratio.

Lemma 9 (Patching Lemma). Given a tour π and a line segment s, if π crosses s more than twice, we can
construct a new tour π∗ such that:

1. π∗ \ s = π \ s

2. π∗ crosses s at most twice

3. ||π∗|| ≤ ||π||+ 3||s||

What this tells us is that if π cuts a line segment many times, we can reduce the crossings by moving
up and down the line segment without crossing, and the total distance we move in this manner is at most
thrice the length of the line segment. We shall put off the proof to Appendix B since the proof comes from
Eulerian tours of graphs and does not provide insight any more to this problem than the statement does.
We will however note the following corollary.

Corollary 10. Given a tour π which only uses portals on grid cells of T⃗ there is a tour π∗ which only uses
portals on grid cells of T⃗ of length ≤ ||π|| which uses the same portals as π, using each portal at most twice,
and is the same as π away from the portals.

Proof: Use the patching lemma taking each portal as a s, ||s|| = 0 so ||π∗|| ≤ ||π|| □
This tells us that when considering all possible combinations of portals to use while generating subproblems,
we only need to choose each portal at most twice. Consider them as two separate instances of each portal,
then from the 8m + 10 choices, we choose up to t of them. As for the ordering of the portals, let us be
generous and forget compatibility, to allow all |K|! permutations to be allowed, to get an upper bound on
the number of sub problems we can generate from a given subproblem. It comes out to be

8t∑
i=0

8m+10Ci · i! ≤ 8k(8m+ 10)8k

which, by our choice of m and t, it O
(
(1ε log(n))

1
ε

)
. Then, in as much time, we can find the sum of all

such subproblems and find the minimum. Thus, this is the time to solve a subproblem given all smaller
subproblems. Now we find the total number of subproblems.
Due to our snapping, the minimum distance between any two distinct points is ≥ ε

33n so the maximum depth
of the tree H required is given by 2−H < ε

33n or H = O(log(n) + 1
ε). At each depth, we only split cells if

they contain 2 or more points of P . Thus at most 2n subproblems need to be solved at each depth. So the

total running time is given by 2nH · O
(
(1ε log(n))

1
ε

)
= O

(
n(1ε log(n))

1
ε

)
, while matches the claim at the

beginning of this lecture.

3.4 Approximation Ratio

This algorithm gives us πalg, the best TSP tour on the snapped point set which uses only the portals, for
which the Quad Tree is t-friendly. We will deduce the approximation ratio in 3 steps, listed as the 3 theorems
below.

Theorem 11 (The cost of Portals). Let πsnap,t be the best TSP tour on the snapped point set for which the

quad tree is t-friendly. Then E
[

||πalg||
||πsnap,t||

]
≤ (1 +

√
2H

m+1)

Theorem 12 (The cost of t-friendliness). E
[
||πsnap,t||
||πsnap||

]
≤ (1 + 3

√
2

t−2)

E0 318: Topic in Geometric Algorithms-5

Theorem 13 (The cost of Snapping). ||πsnap|| ≤ (1 + ε
2) · ||πopt||

Then, combining these 3 theorems, choosing t = 50
ε and m = 20H

ε , we get the required

E [||πalg||] ≤ (1 + ε)||πopt||

To prove those theorems, we need some properties of the Shifting Hierarchical Quad Tree.

Lemma 14 (Properties of SHQTs). 1. For axis aligned line segments s, P[s ∩ Ti ̸= ϕ] = 2i||s|| if ||s|| ≤
2−i and 1 otherwise. E[|s ∩ Ti|] = 2i||s||

2. For any line segment s, P[s ∩ Ti ̸= ϕ] ≤
√
2 · 2i||s|| and 2i||s|| ≤ E[|s ∩ Ti|] ≤

√
2 · 2i||s||

3. The above bounds hold for the union of any finite collection of line segments and in particular for
polygonal curves.

4. Let Ei be the set of open edges (discluding the vertices) of Ti. Then, for an edge e, P[e ∈ Ei−1 | e ∈
Ei] =

1
2

These results arise from basic probability and I shall not belabour the reader with the proofs here. Now
we set out proving the theorems.

Proof: (Theorem 11) Let Zi be the number of intersections of πsnap,t with Ti. We construct a TSP
tour on PG for which the SHQT is t-friendly and it only crosses at the portals, which has at most the desired
error. Then, since πalg is the shortest such tour, the error is within the desired error and so we prove the
result. For the construction, every time pisnap,t intersects an edge of Ti, it moves along the edge to the
nearest portal, crosses there, and moves back to the original point of intersection, before continuing along its
path. Since each edge is of length 2−i and is has m evenly spaced portals on it, the nearest portal is at most
2−i

2m+2 distance away. So the total error accumulated in the detour is at most 2−i

m+1 . Summing this for all Zi

and over all depths i, Error =
∑H

i
Zi

2i(m+1) . Now, πsnap,t is a polygonal curve, so E[Zi] ≤
√
2 · 2i||πsnap,t||.

Substituting, we get the desired expected error. □
Proof: (Theorem 12) Consider an optimal TSP tour πsnap on PG. Starting from H, going to 1, for

each depth, if the tour intersects an edge e ∈ Ei more than t times, we patch it using Lemma 9 incurring
an additive error of 3

2i and removing at least (t− 2) intersections. Let πi be the tour patched up to tree Ti

and πH+1 = πsnap. For notation, let Yi be the number of times πi+1 intersects Ti. After patching, let ni

be the number of times πi intersects Ti. Let Fi be the number of times the patching lemma is invoked at
depth i. Then ni ≤ Yi − (t − 2)Fi. Each intersection has a probability 1

2 of being an intersection of Ti−1.

E[Yi−1] =
E[ni]
2 ≤ E

[
Yi−(t−2)Fi

2

]
. Rearranging, E[Fi] ≤ 1

t−2 (E[Yi]− 2E[Yi−1]).

The total error is the sum of errors accumulated at each depth. Error =
∑H

1
3
2iFi

E[Error] ≤ 3

t− 2

H∑
i=1

E[Yi+1]− 2E[Yi]

2i
=

3

t− 2

(
E[YH]

2H
− E[Y0]

)
≤ 3

t− 2

E[YH]

2H

E[YH] is the expected number of intersections of polygonal curve πsnap with TH . By Lemma 14, this is
≤
√
2 · 2H ||πsnap||. Substituting this above, we get the required result. □
Proof: (Theorem 13) Along the lines of the proof of Theorem 11 above, we construct a TSP tour of

PG that is not too much worse than πopt, which serves as an upper bound for the error of πsnap, after which
we add the error from extending πsnap to a TSP tour of P .
To construct the TSP tour of PG, consider πopt and from each point in P , make a detour to ρP,G(p). Since

the width of the grid is ≤ ε
32n , the maximum distance of each detour is ≤ 2 ·

√
2ε

32n , and with n such detours,
the total length added is ≤ ε

8
√
2
. Thus, πsnap is lesser than this. Again, to extend πsnap to a tour of P , we

gain the same error. However, these are additive error. To convert it to multiplicative error, we make use of
the fact that the diameter is > 1

2 . Thus, the error is ≤ ε
2 ||πopt||, giving us the required result. □

E0 318: Topic in Geometric Algorithms-6

References

[Aro96] S. Arora. Polynomial time approximation schemes for euclidean tsp and other geometric problems.
In Proceedings of 37th Conference on Foundations of Computer Science, pages 2–11, 1996.

[HP11] Sariel Har-Peled. Geometric approximation algorithms. Number 173. American Mathematical Soc.,
2011.

A Verifying Compatibility

The main aim of verifying compatibility is to ensure that we get a meaningful solution on taking the union
of the paths. For the problem, we want the tour to be connected. For a subproblem (R,K, σ), we want
to maintain that the orders σ1 and σ2 when we take the union give us the same order σ on the portals K.
Thus, verification can be done in O(|K|) by ignoring the points of P and just following along the portals.
We check that rectangles are always entered on odd numbered portals K2j−1 and exit on the next even
numbered portal K2j . If the exit portal is in the main problem, we check that the number of that portal in
σ is even, and enter from the next portal according to σ. If it goes to the other subrectangle, we check if it
is odd in σ2 and continue there. For the main problem, we also check that before looping back to any point,
we cover every single portal. That is, this process gives one big connected tour.

B Patching Lemma

Proof: (Lemma 9) Consider a line segment s and a tour π. The tour is allowed to touch s and go back to
the same side it approached from, we only consider it an intersection if it approaches s from one side and
crosses over, leaving from the other side. We can visualise this by thinking of s as a thin rectangle instead
of a line segment. A crossing is when the tour enters the rectangle from one side and exits from the other.
Let K = {Ki} be the points where π crosses s, ordered along the length of s. |K| = m > t. Let C be the
components of π \K. The paths in C connect points in K to each other, with each Ki being a limit point
of two c ∈ C, one on either side. Taking this idea of sides further, we construct sets L = {Li} and R = {Ri}
to be the left and right sides of Ki for each i. Then, each Li and Ri are incident to exactly one c ∈ C.
Now, we construct a graph where the vertices are L ∪R. We need to construct edges such that each vertex
has even degree, and the graph is connected. Then, we can construct an Eulerian tour on the graph, and
report this tour as the required π′. Then, the tour needs the properties that outside s, it is the same as π.
This means that we need one edge corresponding to each c ∈ C and cannot have any other edges (Li, Rj),
i ̸= j. Also, we need that π′ crosses s at most twice. This means that we can include (Li, Ri) for at most
two i. The remaining edges we add should be of the form (Li, Lj) or (Ri, Rj), i ̸= j and the sum of lengths
of these edges should be ≤ 3||s||. For each 1 ≤ i ≤ m− 1, add edges (Li, Li+1) and (Ri, Ri+1). Now L and
R are connected. And the length of these edges is ≤ 2||s||, once along L and once along R. This is because
the sets are ordered along the length of s, so the union of the edges is a subset of s, with no overlapping. To
decide the remaining edges of size ||s|| and the crossings, we consider 2 cases.
m is even:
m = 2k for some k. Consider edges E1 = {(L2i−1, L2i)}1≤i≤k ∪ {(R2i−1, R2i)}1≤i≤k ∪ {(L1, R1), (Lm, Rm)}
and E2 = {(L2i, L2i+1)}1≤i≤k−1 ∪ {(R2i, R2i+1)}1≤i≤k−1 ∪ {(L1, R1), (L1, R1)}
m is odd:
m = 2k + 1 for some k. Consider edges E1 = {(L2i−1, L2i)}1≤i≤k ∪ {(R2i−1, R2i)}1≤i≤k ∪ {(L1, R1)} and
E2 = {(L2i, L2i+1)}1≤i≤k ∪ {(R2i, R2i+1)}1≤i≤k ∪ {(Lm, Rm)}

In both cases, the union of E1 and E2 form the set of all edges (Li, Li+1) and (Ri, Ri+1), the length of
which we have established is 2||s||. Then, the length of the lower of the two has to be lower than ||s||. So
we include the lower of the two. I shall leave it to the reader to verify that in both cases, both E1 and E2

satisfy that every node has even degree.

E0 318: Topic in Geometric Algorithms-7

	Introduction
	A first Approach: Divide and Conquer
	Definitions
	Algorithm
	Correctness
	Runtime

	A Randomised PTAS using Sliding Quad Trees and Portals
	Definitions
	Algorithm
	Runtime
	Approximation Ratio

	Verifying Compatibility
	Patching Lemma

