E0 206 : Homework 1

Due date: 22/10/20

Instructions

- All problems carry equal weight.
- You are forbidden from consulting the internet. You are strongly encouraged to work on the problems on your own.
- You may discuss these problems with your group (at most 3 people including you). However, you must write your own solutions and list your collaborators for each problem.

1. Assume you are flipping a fair coin n times. A streak of length k occurs when the coin comes up with k consecutive heads at some point during the sequence. For example, consider the following sequence: THHTHHHTHHTTHHHH. This sequence has one streak of length 4, three streaks of length 3 and seven streaks of length 2.

- What is the expected number of streaks of length k ?
- Show that for sufficiently large n, the probability that there is no streak of length $\log n-2 \log \log n$ or more, is less than $1 / n$. Here the log has base 2 .
(Hint: break the sequence of n flips into disjoint blocks of ($\log n-2 \log \log n$) consecutive flips. Note that the streaks in different blocks are independent.)

2. Suppose you repeatedly roll an n-sided die. Show that the expected number of rolls until you roll some number that you have already rolled before, is $\Theta(\sqrt{n})$.
3. Let \mathcal{F} be a family of subsets of $N=\{1,2, \ldots, n\}$ where n is an even number, and suppose that there are no $A, B \in \mathcal{F}$ satisfying $A \subset B$. Let $\sigma \in S_{n}$ be a random permutation of the elements of N and consider the random variable $X:=|\{i:\{\sigma(1), \sigma(2), \ldots \sigma(i)\} \in \mathcal{F}\}|$. By considering the expectation of X, prove that $|\mathcal{F}| \leq\binom{ n}{n / 2}$. (Hint: Show that $\mathbb{E}[X] \leq 1$.)
4. (*) Prove that every set A of n nonzero integers contains two disjoint subsets $B_{1}, B_{2} \subseteq A$ so that $\left|B_{1}\right|+\left|B_{2}\right|>2 n / 3$ and each set B_{i}, for $i \in\{1,2\}$, is sum-free (i.e., there exists no $b_{1}, b_{2}, b_{3} \in B_{i}$ such that $\left.b_{1}+b_{2}=b_{3}\right)$. (Hint: Use $p=6 k+5$, and create two large sum-free subsets in \mathbb{Z}_{p}.)
