E0 206: Homework 4

Due date : 3/12/20

Instructions

- All problems carry equal weight.
- You are forbidden from consulting the internet. You are strongly encouraged to work on the problems on your own.
- You may discuss these problems with your group (at most 3 people including you). However, you must write your own solutions and list your collaborators for each problem.
- 1. Consider the following algorithm for multi-armed bandits when we have only two arms:
 - (a) Some N is fixed at the beginning of the algorithm.
 - (b) In the first N rounds (we call it exploration phase), the choice of arms does not depend on the observed rewards.
 - (c) In all remaining rounds, the algorithm only uses rewards observed during the exploration phase.

Prove that such an algorithm must have expected regret $\mathbb{E}[R(T)] \geq \Omega(T^{2/3})$ in the worst case.

(*Hint*. Regret is a sum of regret from exploration, and regret from exploitation. For "regret from exploration", we can use two instances: $(\mu_1, \mu_2) = (1, 0)$ and $(\mu_1, \mu_2) = (0, 1)$. For "regret from exploitation" we invoke the hardness result studied in the class.)

2. Consider the following family of hash functions \mathcal{H} :

$$h(x): (a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \dots + a_0) \bmod p,$$

where a_i 's are uniformly chosen at random from the set $\{0, 1, \dots, p-1\}$ for some prime p. Show that \mathcal{H} is a k-independent universal hash family.

3. Consider a variant of the traditional streaming model where we are interested in computation of a function of only the last N entries (instead of from the beginning of the stream). We are interested in the following basic question: Given a stream of data elements, consisting of 0's and 1's, the goal is to maintain at every time instance the count of the number of 1's in the last N elements using s bits of space. If we use s = N, we can trivially get the exact answer. Our goal is to find a good approximate solution using o(N) memory.

Design an algorithm that returns a solution within $\pm \epsilon N$ additive error using only $\frac{1}{\epsilon}O(\log^2 N)$ bits of memory, i.e. if the exact answer is C, we need to return a solution in $[C - \epsilon N, C + \epsilon N]$. (Optional: Using $\frac{1}{\epsilon}O(\log^2 N)$ bits of space, can you find an answer in $[(1 - \epsilon)C, (1 + \epsilon)C]$ where C is the exact answer?)

4. Consider the Frequent problem where we need to return all elements that appear more than m/k number of times in a stream, where m is the total number items in the stream and $k \in \{2, 3, 4, ...\}$ is a constant. Assume that every deterministic oneway communication protocol that computes the INDEX function IDX_N (i.e., $IDX_N(x,y) = x_y$) uses at least $\Omega(N)$ bits of communication, in the worst case. Using this fact, show that any one pass deterministic algorithm for Frequent will require $\Omega(\min\{m,n\})$ space.

More optional practice problems: (will not be graded or provided with solutions) AC lecture notes (2020): 1-1, 1-2, 1-3, 2-1, 2-2, 3-1, 3-2, 5-1, 5-4, 7-1, 7-2, 18-1, 18-2, 18-3. Sen-Kumar Book: 16.5, 16.7, 16.9, 16.10, 16.12, 16.13.