E0 206 : Homework 5

Due date: 17/12/20

Instructions

- All problems carry equal weight.
- You are forbidden from consulting the internet. You are strongly encouraged to work on the problems on your own.
- You may discuss these problems with your group (at most 3 people including you). However, you must write your own solutions and list your collaborators for each problem.

1. Let A and E be $n \times n$ symmetric matrices. Let the eigenvalues of A be $\alpha_{1} \geq \cdots \geq \alpha_{n}$, the eigenvalues of E be $\epsilon_{1} \geq \cdots \geq \epsilon_{n}$, and the eigenvalues of $A+E$ be $\gamma_{1} \geq \cdots \geq \gamma_{n}$. Prove that for each i, $\alpha_{i}+\epsilon_{n} \leq \gamma_{i} \leq \alpha_{i}+\epsilon_{1}$.
2. Let A be the weighted adjacency matrix of a graph, and let D be a diagonal matrix where $D_{i i}$ is the weighted degree of vertex i. Prove that $-I \preceq D^{-1 / 2} A D^{-1 / 2} \preceq I$.
3. Let G be a d-regular graph, and let A be its adjacency matrix. Let $d=\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}$ be its eigenvalues. Prove that the following are equivalent.
(a) G is a bipartite graph.
(b) $\sigma_{n}=-d$.
(c) For each $i \in[n],-\sigma_{i}$ is also an eigenvalue of A.
4. Let $G=(V, E)$ be a 5 -regular simple graph on n vertices. Let A be an $n \times n$ matrix defined as follows.

$$
A_{i j}= \begin{cases}13 & \text { if } i=j \\ 5 & \text { if }\{i, j\} \in E \\ 3 & \text { if }\{i, j\} \notin E\end{cases}
$$

Prove that $A \succeq 0$.

Optional practice problems: (will not be graded or provided with solutions)

1. (Blum, Hopcroft, Kannan) all relevant problems from chapter 3.
2. Let G be a (not necessarily regular) graph. Give an upper bound on the mixing time of the random walk on G, i.e. generalize the proof discussed in class to arbitrary graphs.
