E0 206 : Homework 6

Due date: 02/01/21

Instructions

- All problems carry equal weight.
- You are forbidden from consulting the internet. You are strongly encouraged to work on the problems on your own.
- You may discuss these problems with your group (at most 3 people including you). However, you must write your own solutions and list your collaborators for each problem.

1. For each of the following, either prove that the problem is in P or that it is NP-hard.
(a) Given an undirected graph $G=(V, E)$ and vertices $a, b \in V$, compute the following.

$$
\min _{x_{1}, \ldots, x_{|V|} \in \mathbb{R}} \sum_{\{i, j\} \in E}\left|x_{i}-x_{j}\right| \quad \text { subject to } \quad x_{i} \in[0,1] \forall i \in V, x_{a}=0, x_{b}=1 \text {. }
$$

(b) Given an undirected graph $G=(V, E)$, compute the following.

$$
\max _{x_{1}, \ldots, x_{|V|} \in \mathbb{R}} \sum_{\{i, j\} \in E}\left|x_{i}-x_{j}\right| \quad \text { subject to } \quad x_{i} \in[0,1] \forall i \in V \text {. }
$$

2. Let $G \sim \mathcal{G}(n, 1 / 2)$ be a random graph constructed as follows. Starting with a set of n vertices, an edge is added between each pair of vertices independently with probability $1 / 2$. Prove that $\phi_{G}=\Omega(1)$ with high probability.
3. Let $G=(V, E)$ be a d-regular β spectral expander, and let A be its adjacency matrix.
(a) Let $\left\{e_{i}\right\}_{i \in[n]}$ be the standard basis vectors. Prove that if $e_{a}^{T} A^{l} e_{b}>0 \forall a, b \in V$, then the diameter of G is at most l.
(b) Give an upper bound on the diameter of G in terms of n, d and β.
4. (O'Donnell) problem 1.8

Optional practice problems: (will not be graded or provided with solutions)

1. (O'Donnell) all relevant problems from chapter 1.
