E0 206 : Homework 7

Due date: 15/01/21

Instructions

- All problems carry equal weight.
- You are forbidden from consulting the internet. You are strongly encouraged to work on the problems on your own.
- You may discuss these problems with your group (at most 3 people including you). However, you must write your own solutions and list your collaborators for each problem.

1. (Vishnoi) exercise 3.8
2. (Vishnoi) exercise 5.4
3. Let $C_{n}=\left\{A \in \mathbb{R}^{n \times n}\right.$ such that $\left.A \succeq 0\right\}$. Prove that C_{n} is a convex set.
4. Recall the zero-sum game played between players R and C where $A \in \mathbb{R}^{m \times n}$. The von Neumann's minimax theorem says that $\max _{x} \min _{y} x^{T} A y=\min _{y} \max _{x} x^{T} A y$, where the max and min are taken over mixed strategies for the players. We will now prove this.
Let A_{1}, \ldots, A_{n} be the columns of A.
(a) Prove that the optimal value of the following LP is equal to $\max _{x} \min _{y} x^{T} A y$.

$$
\begin{array}{rlr}
\max t & \\
\text { s. t. } \quad\left\langle u, A_{i}\right\rangle & \geq t & \forall i \in[n] \\
\sum_{j \in[m]} u_{j} & =1 & \\
u_{j} & \geq 0 & \forall j \in[m]
\end{array}
$$

(b) Write the dual of the above LP.
(c) Prove that the optimal value of the dual LP is equal to $\min _{y} \max _{x} x^{T} A y$.
(d) Prove von Neumann's minimax theorem.

Optional practice problems: (will not be graded or provided with solutions)
Relevant problems from (Vishnoi).

