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Applications Entropy counting has many recent

applications in theoretical computer science
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Application Bounding the binomial tail

PHP there are n movies 2 1 people
Each person 2 watch a subset of movies Sao Isil 31
then there are two people who have watched
the same subset 2h 11 pigeons 2n holes

Q There are 2n movies 2 people Each person
has watched 90 of the movies is I 3 2n

then there are two people who have watched
the same subset

Proof we would like to compute the numbers of
possible sis with Isil 3 Zn

i
e.ieEgznC2in jIoC j f Zin Genki

Now we claim

If K E then OC e zn HCMn

Assuming the claim

T.joEoC j ez2n.Hc41e

µ
Itco 1 a 0.47 0 5
2nACo1 n

Zn H O 1 2h2

Using PHP we get the solution



Proof of claim

If k 72 then OC gzn.HU n

X Xn be a uniformly random string
sampled from the set of n bit strings with
at most K L's

HC x Xn log E o

Now Xi's can be think of Bernoulli RVs with

Prs Xi L KIN All Xi's are symmetric
Total k of them are 1

Thus H Xi H p for p E kn
Aa K E Vz p E Kim E 42
As Hcp is an increasing fn for p E 0 I

HC Xi E H Ken

Hence

i H X Xz Xn
n

E E H Xi From sub additivity
i i

E n H Xi From symmetry

E n H Ken from

Thus from D8

log E E n HCryn



Application Counting Perfect Matchings
Perfect matching i set of edges where every vertex
has exactly one edge incident on it

Kg has 3 perfectmatchings
Let du degree of

vertex V
za

Theorem Bregman Let G CA B E be a bipartite
graph with IAI 1131 n Then the numbers of perfect
matchings in G is at most IIaCdoo

Note this is tight Take kn n

Any bijections can be chosen
x x x x x x

such no is n II n Y kz z has 21 2 PMs

Proof By Radhakrishnan 97
Tobvious bound perfmatchings E IT die

V E A
we can justify this by entropy as well

Let E be the set of perfect matchings PM

Let 0 E S be a uniformly random PM

Here 0 A B



Let GOD be the neighbors of vice A in 0 So basically
6 is a permutation of vertices in B

log 12 I H O It Are t HCocoz lo ve t

entropy chain HE un l 0Cor 8 Uncounting mule
nconditioningreduces E E H do ientropy i i

Now use entropy counting again
FEHEOCui E log di n support size of

Coi is dCui

logffetado
di

can we improve further Ineq seems bossy
E g considers a term on LHS of
H 0 Cui lo ve Qui i measures uncertainty
in OCU after ocrea Kui e has been revealed
we use it OCU i as uppers bound without using
the information from GCU s for j E Ci e
for example drei Ef due 3 it

Hence numbers of possibilities of Coi is not
d Cui but I N Cui Lo Ue Hoi y I i Roti

However we have no way of knowing Cop
controlling how many neighbors of rei have
been used when screi is revealed

Idea Choose a random order to examine
vertices of A rather than a deterministic
order



To exploit this observation we pick a random

permutation it Cn A and examine 0 in

this order determined by IT

Then INCrei Locator dit Cui n D I Ro i

depends on how NCrei are ordered by 6 TT

Since it is a random permutation
1 N Cui n Locher dit Cui y 1 is equally

likely to be any numbers in his di

Thus Rsl Rar City Hdi for JE di
IT

Now we show an useful inequality
Lemma 1

et X Y be a pair of random variables
Let support X can be partitioned into

sets Ai A p s t F i E EPT and se E Ai

I support C Yall E I then

H Yl x I 7 the X E Ai log i

Note support X is the set of values X takes
with positive probability Yu YI X se

BI H Yl x If HE HEY

2 the XE Ai H Yu l NE Ai

Is upportsize EiBs XE Ai o log i entropy e eog i
i i



Fix i E En and a permutation it

Let IT i i e ITCH i

Now we study the expression
HK H AITC 17 It 6 Itcz I 0CIT i

H OCT n I i ditch 1

By averaging over all it we obtain

Her IE H ITC17 It 6 Itcz I 0 it i

t H OCT n I 177 ditch 1

Let us collect contributions of different Oci
separately i FCK

H 03 H Coli lo ta Click 177
Breakinginto diffsupportsizesof Oci

7 FemommaC I E Rf Ciro Cin j logy l
e

It Rf Ciro Cin j 3 log j

iqgIaPFoClRo.itCi7l jJ.logj

E.qiI.eogj Croom I

log Coli Idi log C di Idi

121 It di Idi which completes the proof DA



Application Shearer's lemma

Puzz le

suppose n distinct points in 1123 have n distinct
projections on the XY plane nz on X Z plane
and Mz on YZ plane

then m2E Nr Nzn 3

Prod A trivial observation n E n n ng o o o

For the stronger bound we use entropy th 3nt
Let P se y Z be one of the n points picked at
random with uniform distribution

So by definition P Cx y Pz Coe z Pz Cy37 are
its three projectionschain rule r
Now H Pe It se t H y Ise

seems
H Pz H se t H 3 I N tailormade
H Pz HEY t H 3 I D

l
HE t HEPz HE13 2 H n HEY HE In

chainrule It 2 n t H 2 ly
2HCP t 2 H n 2HEY In 2 H 3 lay

E ZHEN HITHER H tHZ1 y

HEP T t H Pz t H Pz
Now HEP log n uniform distr and
HER E lo g ni for IE 3 as Pi can take at most ni values

Thus from
relating

slog n E tog n log net to 5h3 ftp.offs zem2 E mnzn3



Shearers's Lemma Let X X Xn be a RV

If S is any distribution on subsets of En
s t H i E En Pr i E S µ then

E H Xs 3 te H X

Here Xs is projection of X onto the coordinates
in S i e Xs Xin Xi z X ik when S in ik3
We define X i X i Xi n

nNote it generalizes sub additivity EH Cxi 3 H Xi 3
i e Ft HCXi 3 H X In Informally this says average
coordinate carries at least average entropy

Prod Let T Lie ik with in iz e in Then
H Xt H Xin H X iz l Xi t H X ik l Xi Xix y
chainmeet
3 H Xin H Xiz I Xa t t H CX ik I XciaI 2

conditioning
cantincrease

Es H Xs 3 E if Hail Xci

E Eatscis Hail Xc D Itnsdiisator

functionfor
ie Es Is Ci H Xi lX i sets

i ngPn
IE S H Xilai

chain rule

Z te E H Xi Xa te H X
iC n



Variant Let X Xa Xz Xn be a RV and

A Ai ie I be a collection of subsets of n

s t v i E Cn i appears in Z K sets then

I H XA 3 K HEXT
i c I

Here XA Xj j E A 7 for all A E En

PLOOF As in the previous proof let T Lie is
with in iz e is Then
H Xt 3 H Xin H Xiz I Xaiz t t H CX ik I X is

S

g
H C X is I Xcij

Now if we sum over all T E A then for each
i E Cn the term H C X I X e appears at least
K times as each i appears in at least

K sets
N

Hence E HC Xt 3 K E H X I X jTE A j I

KH X Ba

original proof of Shearer's lemma was
based on intricate induction argument
For the proof see Theorem 22 7 in Jukn a Book

Note for the puzzle we have X Cx y Z N 3

A l 27 C l 3 2 3 i e K 2
Corresponds to Pr Pz Pz

HEP T t It Pz It 13 3 2 HE P



Intersecting families of graphs Remember
Erdos ko

suppose F is a family of subsets of n Rado

F is k intersecting if it A B E F IA n B I Z k
Claim If F is L intersecting then IF I E I

Follows from the fact that it A E En
I can either contain A or AC not both

we can also get a large family of this size
by taking all sets containing 2

Similarly we can get a large k intersecting family
of size 242k by taking all sets containingCK
Can we do better we dont need same Kelements
in all pain wise intersections

Let F A E En I A I 3 Mz Kk then every two
sets have 3 K elements in common

n
IFI E in 3 Iz i o

i Mz1142

Now we study similar properties for graphs
Let g be a family of graphs with vertex set Cri
g is intersecting if t T K E g Tn K has an edge
As previously we have a family of size 2 7 2

s t all share a common edge If I If I

g is f intersecting if t T K E g Tn K contains a

triangle
As previous we do get a family of size 2024g
But can we have 2 7 2 as above No



Theorem If g is f intersecting then

181 E 242114

Psd
Step n Entropy counting
Let 9 be a uniformly random graph from 8
Hence H G log 181
So we can think of Cg X X z where
Xi is the RV corresponding to its edge

Step 2 Create a distribution S
C To apply Shearer's lemma

Let Xs be the RV from a restricted H edgesetsin some graph Gs
we want the support size of Xs as to be small
As then it X s E togas and to apply Shearer's
lemma we need a good upper bound on XS

step 3 Relate with 2 intersecting family
For any R E ENT let GR be the graph consisting of
two disconnected cliques one on R the others

on En l R

Let E be numbers of edges in Ge
9 V
R NAR

Observation As F T K Eg Tn K contains a T
Tn Kh GR contains an edge as 2 reptiles in the
0 either belong to either R or Erik



Thus the family of graphs Tn GR TEG is

1 intersecting so has size s 2 12

step 4 A good candidate's

Let s be uniformly random graph GR obtained
by picking a random subset R of size 72
By symmetry an edge is in GR w p ElCE

Then as Xs is supported on an intersecting family
from IE H Xs E log 2 2 E I

Step 4 Apply Shearer's lemma

Applying Shearer's lemma with the ETC2 we get
we wanted µ to

E HCXs 3 Ezy HCG be large
7T i Supp Xs to be smallEE I 3

g log 191

thus log 151 E Z 2 IE
r edges

Z 2 12 E fin graph
Z n en i

i It

2 Z Z l

Z FI E Z 2

Igi E 2714
BET



 

Application lower bounds for bandits
Properties of KL divergence
Remember for two probability distributions p.at
on a sample space 5 relative entropy on

KL divergence Dcp Hd p enPq Ep enPIL
Gibbs inequality Dcp11 d 30

Equality iff p D
proved using Jensen's log sum inequality

chain rule for product distributions
Let the sample space be S S X S zx x S n

Let p d be two distributions on S such that

p p Pm and D d x In where Pj Ij
are distributions on Sj for each j E En

Then DCP 11 d Eng DC Pj 11Dj

Proof
i

Let r see an E S s t 2g E Sj tr j E Cn
hi Cri en C Pichi Ai Cri

Their DCP Ild
ne
pose en pGe dGe

n

7 ness peeshi Cri since lwcpcs.ciqGeD EhiCniDii

iEaiEs aeEshiCni pcn
ni xit

iEa.IE iGei IneEPCx
saIci't

m.EEPiCxi7hiCxi7 since E PGe Pi Cri

DCP 11Qi
KES ni z.it



Pinsker's inequality relates individual events
KL divergence

For any event A C S we have
2 PCA ACA 72 E D pilot

Proof
From log sum inequality for each event BCS

aEEcmenfIEITKIE.pcmenfzfqgta.CI

p B en p 1379433

Hence nesapesen PIEL 3 PCA en Pq

seesapca en Patch PCI en Pact
Let a pCAI b ACA W 1 o g assume a Lb

Then Dcp 119
seesapcasenPatna trespasserPatna

lemetricseems3 PCA en Pq PCI en PqA a natural
extension
metricdoesa en l a en

b notaddupin
b productspace

KL divergenceFa Enda J du helpshere
a

faceseacliff Ha doe Sba de
Nce se

3 4Ge a doe since sect a E 44 for recoil
z b a

2 2 ICA p A Bara



Pinsker's inequality also relates relative
entropy and total variation distance TV

Pinsker's inequality imply
Str Ba E ID Cplld

Total variation distance between two

probability distribution functions p of is

Stu p d Sup l pCA d A l
A CS

Claim 8NCp 9 tz glPcw d I I 11p 9112

Proof Let B w E S par 39 Cw

Then 11p 911 IpCw ICW I
WE S

w zCpCw3 dew WEBCatCw p w

p B q B t 9CBC P Ba

p B ECB l HB I P BD
Z P B d B

Now Stu p d 43 l pCA d A I

PCB 9 B

I w slpCw Nw 1

Iz Il p all From DEBI

There are many other notions of distances
between probability distributions such as

Hellinger distance Wasserstein distance

Kolmogorov Smirnov distance etc



Relative entropy of Bernoulli RVs
Let BC be Bernoulli RV with mean p
Then for all E E CO E
DC BC't 11B E E 2 EZ and

D BCE 11 B 1 E E

DC B E 11 B C 7 E E

proof
Teearliers showed
DC Bcp 11 Bcd p enPf t Ci p lnC q
Hence DC BC't 11B E
iz en ite II en l E

teen Ezln IIenegative
o t E EE E enC 2 en HEE ItEZ
TE E 2E

Similarly DC BCE 11 B tf
zen Ie Een Ie
E en e EZ s I C zzz f Luci se Z Za

E E for se g iz

Also D C B tz 11 BC D
iz en iz en Ie E E



Example Flipping a coin

Giver A biased random coin
a distribution on o n3 with unknown mean µ ECO 7
we know te is either pea or tea where ten Mz

God Flip the coin T times Identify Whether
µ tea or tea with high probability
Formally if S 20 13T be the sample space for
outcomes of T coin flips then we need a

decision route Rule S E I 23 s t

The Rule Observations L I te ter I Ci 8
Pr Rule Observations 2 I te tea I Ci 8

where 0 C S CYa
Q How large should T be for such a decision
rule to exist

Claim Tn 0 ten Nz Z is sufficient
Proof Say T KCMi Hz 2 and

I be the empirical mean Say 0 c Mi Hz

Chernoff X Xp be indeep RV with support in 0,1J
then t t o ithCI E Xi ECE Xi 17 7 2 expC 224ps
Thus if the coin has mean tea theCine E ten 92
E RsC lteT tent I 072 E 2 exp f 2 02

2 expC iz O 2exp K

Similarly if coin has mean pez then

PmCte z lez t 92 exp 0 2 1402 expC9g



Thus if te 3 MIMI we return mean to be ten
and else return µz

Claim T S Cten Nz 2 is necessary
For simplicity we assume µ 1 Mz Lz and
show T Hae
Proof For a valid decision rule let Ao E S
be the event that the rule returns I

Then

the Ao l te ten the Ao I te fez s z 28

Let Pi A theCA l te Mi for event A E S i E 7,23
Let Pi t be the distribution of the t th toss

if te Mi Then Pi Pi y X X Pi T o

so 2 pCA Pz ADZ DCP 11 Pz Pin ers

TE D Put 11 Pzz ftp.uqe

T 2EZ Bernouilli RV

I p CA Pz A I E E TT
So for A Ao and T E 44EZ we obtain

1 R Ao Pz Ao E 42 I 28
This contradicts

Note Lowers bound proof applies to all decision
rules at once



Generalization to more than two coins
It E

we have n coins at most one is biased mean 2
The algorithm can choose a single coin set out
of n coins to flip at time t E CT

At the end of time T algorithm needs to guess
the biased coin if any Let the guess be ye
To show the towers bound we construct the

following 1 distributions on coin flip outcomes

Po all coins are fair
Pj j th coin has mean HE others coins

2
j E Cn are fairs

Note that in all these distributions the different
coin flips are mutually independent events

For j C 0 or we denote the probability and

expectation of an event undera distribution

Pj by Fry and Ej respectively
them Let A LG be any coin flipping algorithm

If T E then there exists at least Mz distinct
values of j O s t PryCy 7 j 342

PPoof Let Qj denote RV that counts the number

of times ALG flips coin j
Then

j
Ito Oj Eo

j Qj
T

T Averagingso at most 43 coins can have Qj 3 In argument
and at most 43 coins can have Brody j 31N
This also follows from averaging argument Say we

have n coins with Pro Yt j 31N
Then I ProCY j n 31N x 3 I



Considers the sets

I j EoCQj E 317N Iz j Pro YT j E31N
Then I In l Z 2h13 I Iz l Z 243
Let D I I m Iz l Then I JI 373

Let j E J and define the event E YT j
Then

Png E E 1Ppo E I Ippj E Pro E I

X E Pro E t I 11Po Pj Il Definitionoff
E In I IDCpollPj Froinfeffeinasukff's

Now using chain rule DCPo11Pj
T

E DCpoGet 11 P CHt
Unlike two coins now we have many coins to choose
from the choice may depend on the outcomes
of previous tosses

Then using conditional net entropy IID Poke 1113Cut

t Epoch set 1 D Po Nt 11Pj Kt Nz A s
M x

et og set be the outputs of the coin tosses
seen by A LG Let Po Ne and Pj Kt denote the
distribution of t th coin toss seen by ALG
given the outputs of the first t Z tosses

Now Pj Kt is a single coin toss which is a

fair coin for see j and biased coin if he j
Poole is always corresponds to fairs coin Loss



Then DC poll Pj
tEE.at NJImj.DCBCtz7llBC'zI
EECQj E E En E

Hence Eng E E Int J iz 35
2

AS TE I for large enough n I 113g E E E100 EZ
This proves the theorem 870

Multi armed Bandits MAB

An important problem in online decision making
Given k arms T rounds

In each round t E CT
1 ALGO picks arm at
2 ALGO observes reward Pz E 0 I
for the chosen arson

We considers stochastic MAB where reward for
each arm at is IID say Bernoulli RV with
mean pet

Let µ Max Mt
at

i e
best mean reward

Goal
minimize regret

1
RCT pet T E pet

t i



Theorem For stochastic multi armed
bandit problem for fixed time horizon T
and the number of arms K for any
algorithm there exists a problem instance
s t IE RCT 3 S JIT large enough k
Reoof we define the distribution by choosing a

random i EEK and defining the NE Ci as

I E
re cis o fits Yg if i it re cis j fits 2 if i i

iz
we choose I E JFK
We can think of an algorithm that chooses
action set E C KT at time t as a coin guessing
algorithm which chooses coin set at time t

For t E EEZ F Ite E E K with 15Th1 3 43 s t

H j E Jt Reg see j E 42
I

Hence it re ne
aJt It

E I ta ta t ta Itf 3 HI c It 12

Here the expectation is also over the
choice of it
On the other hand

E infifyEthnicis E E Irt City E TI T

thus we have E Rt

IE t tats t 3 sit 3 I 5 as
So there is one instance with regret 3 I
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