
Analysis of Boolean Functions

Based on chapter 1 of “Analysis of Boolean Functions” by Ryan O’Donnell



Boolean functions as polynomials

• 𝑓: 0,1 ! → 0,1 or more generally, 𝑓: 0,1 ! → ℝ.
• Equivalently, 𝑓: −1,1 ! → −1,1 or more generally, 𝑓: −1,1 ! → ℝ.

• Any such function can be written as a polynomial.
• Example 1: 𝑓: −1,1 → ℝ

• Polynomial "# 1 − 𝑥 = + 0 𝑖𝑓 𝑥 = 1
1 𝑖𝑓 𝑥 = −1 and "# 1 + 𝑥 = + 1 𝑖𝑓 𝑥 = 1

0 𝑖𝑓 𝑥 = −1

• Therefore, 𝑓 𝑥 = 𝑓 1 ⋅ "
#
1 + 𝑥 + 𝑓 −1 ⋅ "

#
1 − 𝑥



• For any 𝑎 ∈ −1,1 !

1 + 𝑎"𝑥"
2

⋅
1 + 𝑎#𝑥#

2
⋅ ⋯ ⋅

1 + 𝑎!𝑥!
2

= +1 𝑖𝑓 𝑥$ = 𝑎$ ∀𝑖 ∈ [𝑛]
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Therefore,

𝑓 𝑥 = >
%∈ '"," !

𝑓 𝑎 Π$∈ !
1 + 𝑎$𝑥$

2

• Multilinear polynomial, i.e., no 𝑥$ appears squared, cubed, etc.

• Fourier expansion  𝑓 𝑥 = ∑)⊆ ! A𝑓)𝜒) where 𝜒) ≝ Π$∈)𝑥$.
• This representation is unique (why?)

• A𝑓) is the Fourier coefficient of 𝑓 on 𝑆. 



Examples

• max 𝑥!, 𝑥" is −1 if both 𝑥! = 𝑥" = −1, and is 1 otherwise
max 𝑥!, 𝑥"
=
1
4 1 + 𝑥! 1 + 𝑥" +

1
4 1 − 𝑥! 1 + 𝑥" +

1
4 1 + 𝑥! 1 − 𝑥" −

1
4 1 − 𝑥! 1 − 𝑥"

=
1
2
+
1
2
𝑥! +

1
2
𝑥" −

1
2
𝑥!𝑥"

• Parity function: 𝑓 𝑥!, 𝑥", 𝑥# equal to −1 if 𝑥 has an odd number −1, and is equal to 1
otherwise.

𝑓 𝑥!, 𝑥", 𝑥# = 𝑥!𝑥"𝑥#
• 𝑓 𝑥!, … , 𝑥$ = Π%∈ $ 𝑥% = 𝜒 $



Parity functions

• The set of all functions 𝑓: −1,1 ! → ℝ forms a vector space of dimension 2!.
• For two functions 𝑓, 𝑔: −1,1 ! → ℝ, define 

𝑓, 𝑔 ≝ E+∼ '"," ! 𝑓 𝑥 𝑔 𝑥
• Then,

𝜒), 𝜒- = E+∼ '"," ! Π$∈.𝑥$Π/∈-𝑥/ = E+∼ '"," ! Π$∈.∩-𝑥$#Π/∈)1-𝑥/
= Π/∈)1-E+"∼ '"," 𝑥/

𝜒), 𝜒- = +1 𝑖𝑓 𝑆 = 𝑇
0 𝑖𝑓 𝑆 ≠ 𝑇

• Theorem: 𝜒) )⊆ ! forms an orthonormal basis for the vector space of functions 
𝑓: −1,1 ! → ℝ.
• 𝜒) )⊆ ! are the eigenfunctions of the hypercube graph.



• Proposition: A𝑓) = 𝑓, 𝜒)
𝑓, 𝜒) = >

-⊆ !

A𝑓-𝜒- , 𝜒) = E+ >
-⊆ !

A𝑓-𝜒- 𝑥 ⋅ 𝜒) 𝑥 = >
-⊆ !

A𝑓- 𝜒-, 𝜒) = A𝑓)

• 𝑓 # = 𝑓, 𝑓 = E+ 𝑓 𝑥 #

• For 𝑓: −1,1 ! → −1,1 , we have 𝑓 # = E+ 𝑓 𝑥 # = 1

• For functions 𝑓, 𝑔: −1,1 ! → −1,1 , dist 𝑓, 𝑔 ≝ Pr
+
𝑓 𝑥 ≠ 𝑔 𝑥 . 

Then
𝑓, 𝑔 = E

+
𝑓 𝑥 𝑔 𝑥 = Pr

+
𝑓 𝑥 = 𝑔 𝑥 − Pr

+
𝑓 𝑥 ≠ 𝑔 𝑥

= 1 − 2Pr
+
𝑓 𝑥 ≠ 𝑔 𝑥 = 1 − 2dist 𝑓, 𝑔



• Plancherel’s Theorem

𝑓, 𝑔 = 1
'⊆ $

2𝑓'𝜒' , 1
)⊆ $

3𝑔)𝜒) = E* 1
',)⊆ $

2𝑓' 3𝑔)𝜒' 𝑥 𝜒) 𝑥

= 1
',)⊆ $

2𝑓' 3𝑔) E* 𝜒' 𝑥 𝜒) 𝑥 = 1
'⊆ $

2𝑓' 3𝑔'

• Parseval’s Theorem: 𝑓, 𝑓 = ∑'⊆ $
2𝑓'"

• Let 𝑔 𝑥 = 1∀𝑥. Then 3𝑔' = 7 1 𝑖𝑓 𝑆 = ∅
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

Then

E* 𝑓 𝑥 = 𝑓, 𝑔 =1
'

2𝑓' 3𝑔' = 2𝑓∅



var 𝑓 = E+ 𝑓 𝑥 # − E+ 𝑓 𝑥 # = 𝑓, 𝑓 − A𝑓∅# = >
)3∅

A𝑓)#

c𝑜𝑣 𝑓, 𝑔 = 𝑓 − E 𝑓 , 𝑔 − E 𝑔 = E 𝑓𝑔 − E 𝑓 E 𝑔 = >
)3∅

A𝑓) S𝑔)

𝑓: 0,1 ! → ℝ

• For 𝑏 ∈ 𝔽#, 𝜒 𝑏 ≝ −1 4, i.e. 𝜒 0𝔽# = 1 and 𝜒 1𝔽# = −1
• For 𝑆 ⊆ [𝑛], 𝜒) ≝ Π$∈)𝜒 𝑥$ = −1 ∑$∈& +$

• Therefore, 𝑓 = ∑)⊆ ! A𝑓)𝜒7 (verify)



Property Testing for Boolean Functions

• Given black-box access to a  function 𝑓: −1,1 ! → −1,1 test whether it has property 
𝑃, e.g., 𝑓 is a linear function, etc.

• In many cases, checking whether 𝑓 has the property 𝑃 can be done easily in time 
2! " . 

Goal:
• If 𝑓 has property 𝑃, output Yes with “high” probability.
• If 𝑓 is “far” from property 𝑃, output No with “high” probability.

• 𝑓, 𝑔: −1,1 ! → −1,1 are 𝜖-close if dist 𝑓, 𝑔 ≤ 𝜖. Let ℘ be the set of all 
functions satisfying property 𝑃. Then 𝑓 is 𝜖-close to property 𝑃 if 
dist 𝑓, ℘ ≝ min

#∈℘
dist 𝑓, 𝑔 ≤ 𝜖



𝑓 𝑥 = 1 ∀𝑥
Algorithm
• Sample 𝑘 independent random inputs 𝑥&, … , 𝑥', and output Yes if 𝑓 𝑥( = 1 ∀𝑖, else 

output No.
• If 𝑓 = 1, then Pr 𝐴𝑙𝑔 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 𝑌𝑒𝑠 = 1.

• If 𝑓 is 𝜖-far from 1, then  Pr
)
𝑓 𝑥 ≠ 1 ≥ 𝜖, i.e., 𝑓 evaluates to 1 on at most 1 − 𝜖

fraction of inputs.
Pr 𝐴𝑙𝑔 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 𝑌𝑒𝑠 ≤ 1 − 𝜖 '

• For 𝑘 ≥ 1/𝜖, Pr 𝐴𝑙𝑔 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 𝑌𝑒𝑠 ≤ 1/𝑒. Larger value of 𝑘 can make probability 
smaller.



Linearity Testing

𝑔: 𝔽#! → 𝔽# is a linear function if
• 𝑔 𝑥 + 𝑦 = 𝑔 𝑥 + 𝑔 𝑦 ∀𝑥, 𝑦 ∈ 𝔽#! .
• Equivalently, 𝑔 𝑥 = ∑$∈ ! 𝑎$𝑥$ for some 𝑎 ∈ 𝔽#! (verify).

Algorithm (Blum, Luby, Rubinfeld - 1990)
• Sample 𝑥, 𝑦 ∼ 𝔽#!. If 𝑔 𝑥 + 𝑦 = 𝑔 𝑥 + 𝑔 𝑦 output YES, else output No.
• If 𝑔 is linear, then Pr 𝐵𝐿𝑅 𝑡𝑒𝑠𝑡 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 𝑌𝑒𝑠 = 1.
• Theorem (BLR-90): If test accepts with probability 1 − 𝜖, then 𝑔 is 𝜖-close to 

linear.



Testing parity functions

• Equivalent to testing whether 𝑓: −1,1 ! → −1,1 is a parity function (verify).
• If 𝑓 = 𝜒) for some 𝑆 ⊆ 𝑛 , then 𝑓 𝑥 ⋅ 𝑦 = 𝑓 𝑥 𝑓 𝑦 ∀𝑥, 𝑦 ∈ −1,1 ! where 
𝑥 ⋅ 𝑦 $ ≝ 𝑥$𝑦$.

• BLR Test: Sample 𝑥, 𝑦 ∼ −1,1 ! and check whether 𝑓 𝑥 ⋅ 𝑦 = 𝑓 𝑥 𝑓 𝑦 .
• Test outputs Yes if 𝑓 𝑥 𝑓 𝑦 = 𝑓 𝑥 ⋅ 𝑦 or equivalently, 𝑓 𝑥 𝑓 𝑦 𝑓 𝑥 ⋅ 𝑦 =
𝑓 𝑥 ⋅ 𝑦 # = 1. 
• "#+

"
#𝑓 𝑥 𝑓 𝑦 𝑓 𝑥 ⋅ 𝑦 is an indicator of whether Test outputs Yes.

Pr 𝑇𝑒𝑠𝑡 𝑜𝑢𝑡𝑝𝑢𝑡 𝑌𝑒𝑠 = 𝐸+,8
1
2
+
1
2
𝑓 𝑥 𝑓 𝑦 𝑓 𝑥 ⋅ 𝑦



Pr 𝑇𝑒𝑠𝑡 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 𝑌𝑒𝑠 = 𝐸+,8
1
2
+
1
2
𝑓 𝑥 𝑓 𝑦 𝑓 𝑥 ⋅ 𝑦

= 𝐸+,8
1
2
+
1
2

>
)⊆[!]

A𝑓)Π$∈)𝑥$ >
-⊆[!]

A𝑓-Π$∈-𝑦$ >
;⊆[!]

A𝑓;Π$∈;𝑥$𝑦$

=
1
2
+
1
2

>
),-,;⊆ !

A𝑓) A𝑓- A𝑓; 𝐸+,8 Π$∈)𝑥$Π$∈-𝑦$Π$∈;𝑥$𝑦$

=
1
2
+
1
2

>
),-,;⊆ !

A𝑓) A𝑓- A𝑓; 𝐸+,8 Π$∈)∩;𝑥$#Π$∈)1;𝑥$Π$∈-∩;𝑦$#Π$∈-1;𝑦$

=
1
2
+
1
2

>
),-,;⊆ !

A𝑓) A𝑓- A𝑓; 𝐸+ Π$∈)1;𝑥$ 𝐸8 Π$∈-1;𝑦$ =
1
2
+
1
2
>
)⊆ !

A𝑓)<

• Last step uses 𝐸+ Π$∈)1;𝑥$ = 0 if 𝑆 ≠ 𝑈, and 𝐸8 Π$∈-1;𝑦$ = 0 if 𝑇 ≠ 𝑈.

= 1 = 1



• Using Parseval’s theorem, 

Pr 𝑌𝑒𝑠 =
1
2
+
1
2
>
)⊆ !

A𝑓)< ≤
1
2
+
1
2

>
)⊆ !

A𝑓)# ⋅ max
)⊆ !

A𝑓) =
1
2
+
1
2
max
)⊆ !

A𝑓)

• Therefore, if Pr 𝑌𝑒𝑠 ≥ 1 − 𝜖, then max
)⊆ !

A𝑓) ≥ 1 − 2𝜖.

• Recall that A𝑓) = 𝑓, 𝜒) = 1 − 2dist 𝑓, 𝜒) .
• Therefore, for 𝑆∗ ≝ argmax

)⊆ !
A𝑓), we have dist 𝑓, 𝜒)∗ ≤ 𝜖

• Computing 𝜒)∗ 𝑥 : We have 𝑓 𝑥 = 𝜒)∗ 𝑥 for 1 − 𝜖 -fraction of inputs. What 
about remaining 𝜖-fraction of inputs?



Local correctability

Theorem: Suppose 𝑓 is 𝜖-close to 𝜒'∗ . For every 𝑥 ∈ −1,1 $, following algorithm outputs 
𝜒'∗ 𝑥 with probability at least 1 − 2𝜖.

Algorithm(𝑥)
1. Sample 𝑦 ∼ −1,1 $.
2. Output 𝑓 𝑦 𝑓 𝑥 ⋅ 𝑦

• 𝑦 and 𝑦 ⋅ 𝑥 are uniformly distributed in −1,1 $ (but are not independent). 
• Pr

-
𝑓 𝑦 = 𝜒'∗ 𝑦 ≥ 1 − 𝜖 and Pr

-
𝑓 𝑦 ⋅ 𝑥 = 𝜒'∗ 𝑦 ⋅ 𝑥 ≥ 1 − 𝜖

• Therefore, with probability at least 1 − 2𝜖 (over the choice of 𝑦), we have 𝑓 𝑦 = 𝜒'∗ 𝑦and 𝑓 𝑦 ⋅ 𝑥 = 𝜒'∗ 𝑦 ⋅ 𝑥 . In such an event, 
𝑓 𝑦 𝑓 𝑦 ⋅ 𝑥 = 𝜒'∗ 𝑦 𝜒'∗ 𝑦 ⋅ 𝑥 = 𝜒'∗ 𝑥



Analysis of Boolean Functions

• Social Choice theory 
• Learning Theory
• Hardness of approximation, PCPs
• Many more ..

• See “Analysis of Boolean Functions” by Ryan O’Donnell


