Analysis of Boolean Functions

Based on chapter 1 of “Analysis of Boolean Functions” by Ryan O’Donnell



Boolean functions as polynomials

e £:{0,1}" - {0,1} or more generally, f:{0,1}" - R.
 Equivalently, f: {—1,1}"* - {—1,1} or more generally, f: {—1,1}" - R.

* Any such function can be written as a polynomial.
 Example 1: f: {—1,1} - R

Oif x=1

1 _ 1 [ 1lifx=1
PolynomlaIE(l—x)—{1l.fx=_1and2(1+x)—{

Oif x =-—1
* Therefore, f(x) = f(1) (1 +2) + f(-1) - (1 — x)



Foranya € {—1,1}"
(1 + alxl) | (1 + azxz) o (1 + anxn) _ {1 if x; =a; Vi € |n]

2 2 2 0 otherwise

Therefore,

1+ al-xi)

F@= Y f@Niem (—

ae{—1,1}"
Multilinear polynomial, i.e., no x; appears squared, cubed, etc.

Fourier expansion f(x) = Xgc[n foxs where yg & I, cqx;.

* This representation is unique (why?)

. fS is the Fourier coefficient of f on S.



Examples

* max(xq,x,)is —1if both x; = x, = —1, and is 1 otherwise
max(xq, Xz)
1 1 1 1
=—1+x)A+x,) + 2 (1—2)@A +x,) + 2 (1+x)A—xy) — 2 (1—x1)(1 —x5)

% 1 1 1

— E + Exl + Exz _Exlxz

* Parity function: f (x4, x,, x3) equal to —1 if x has an odd number —1, and is equal to 1
otherwise.

f(xq,x2,x3) = x1X2%3

o flxy o xn) = Migmixi = Xy



Parity functions

* The set of all functions f: {—1,1}" — R forms a vector space of dimension 2".
* For two functions f, g: {—1,1}" — R, define
(f,9) = Ex—{-1,13" [f (x)g(x)]

* Then,

(Xs x1) = Ex~c117[Miesxilierx;| = Exoic1132 | Miesnr ¥ Wiesarx; ]

= jESATExj~{—1,1} [Xj

1ifS=T

(Xs)XT) = {O i;S = T

* Theorem: {xs}sc(n] forms an orthonormal basis for the vector space of functions
f:{—-1,1}" - R.

* {Xs}scn] are the eigenfunctions of the hypercube graph.



* Proposition: fg =(f,Xxs)
(frxs) = < Z frar . xs
TS[n]

= E, K D fmm) -x5<x>] = > frixras) = fs
TC[n] TS(n]

* fllz = V{F. ) = VELLF ()?]
» For f: {=1,1}" - {=1,1}, we have ||f]l, = VEx[f(x)?] =

* For functions f, g: {—1,1}"* - {—1,1}, dist(f,g) &€ P [f(x) + g(x)].
Then
{f,9) = E[f(x)g(x)] = Prlf(x) = g(x)] — Prif(x) # g(x)]
=1-2 Pr[f(x) +* g(x)] = 1 — 2dist(f, g)



e Plancherel’s Theorem

(f,g>=< fsxs, z > [Z fsGrxs () xr(x)
Cln]

7S] c

= > [ Eelts 0 ()] = 2 s

S, T<S[n]

* Parseval’s Theorem: (f, ) = Xscqn f&

1ifS=o

e Let g(x) = 1Vx.Then g5 = {O otherwise

Then
EAfCO1 = (£,9) =) fsds = fo
S



var(f) = Exlf (%] = Ex[fCOD? =(f. f) = f3 = ¥ f

S+0Q

cou(f, 9) = {f —Elf],g — Elg]) = Elfg] — EIf] Elg] = ) fsds

f:{0,1}* - R

e Forb € F,, y(b) & (-1)?, i.e.)((O[pz) =1 and X(lmz) =—1
* For S C [n], xs & Mesx(x;) = (—1)ies ¥

* Therefore, f = Ygcpn fsxs (verify)



Property Testing for Boolean Functions

* Given black-box access to a function f:{—1,1}" - {—1,1} test whether it has property
P, e.g., f isalinear function, etc.

. InOr(nz):my cases, checking whether f has the property P can be done easily in time
29\,

Goal:
* If f has property P, output Yes with “high” probability.
* If fis “far” from property P, output No with “high” probability.

e £,9:{—1,1}" - {—1,1} are e-close if dist(f, g) < €. Let @ be the set of all
functions satisfying property P. Then f is e-close to property P if

dist(f, ) € mindist(f,g) <€
gES



f(x) =1Vx

Algorithm

« Sample k independent random inputs x4, ..., Xi, and output Yes if f(x;) = 1 Vi, else
output No.

* If f =1, then Pr|Alg outputs Yes] = 1.

 If fis e-far from 1, then Pr[f(x) # 1] = ¢, i.e., f evaluatesto 1 onat most 1 — €
X
fraction of inputs.

Pr[Alg outputs Yes] < (1 — e)*

* For k = 1/¢, Pr|Alg outputs Yes| < 1/e. Larger value of k can make probability
smaller.



Linearity Testing

g:F} — F, is a linear function if
cgx+y) =gx) + 90 Vx,y €F;.

* Equivalently, g(x) = X;e[n) @;x; for some a € [F% (verify).

Algorithm (Blum, Luby, Rubinfeld - 1990)

e Samplex,y ~ F}. If g(x + y) = g(x) + g(y) output YES, else output No.
* If g is linear, then Pr[BLR test outputs Yes]| = 1.

* Theorem (BLR-90): If test accepts with probability 1 — €, then g is e-close to
linear.




Testing parity functions

* Equivalent to testing whether f: {—1,1}" — {—1,1} is a parity function (verify).

o If f = Xs. for some S € [n],then f(x-y) = f(x)f(y) Vx,y € {—1,1}"* where
(x-y)i € x;y;.

 BLR Test: Sample x,y ~ {—1,1}" and check whether f(x - y) = f(x)f(y).

. }e(st outguts Yes if f(x)f(y) = f(x -y) orequivalently, f(x)f (y)f(x-y) =
X-y)
. E + 2f(x)f(y)f(x y) is an indicator of whether Test outputs Yes.

Pr[Test output Yes] = Ey % + % fOff(x-y)



Pr[Test outputs Yes| = Ey, F +=f)f)f(x- y)]

= E, [ (z fil Sx)(Z firll, w)(Z fon leuxlyl>]

foTfU x,y[ iesXillieryillieyx;yil
ST, UC[n]

_|_

sfrfu xy[HlESﬂUxZHlESAUx HlETﬂUyl HlETAUyl]
ST.0S(n] =1

||
N = N = N -
-+ -+
Nl = N = DN =

fsfrfv Ex[Miesavxi] Ey[Mieravyi] = 2 2 f$

S, T,U<[n]

* Last step uses Ex[Iljesapx;] = 0if S # U, and E}, [[L;erpyy;] = 0if T # U.



* Using Parseval’s theorem
B A3 <1 1 Ao » 1 1 A
Prlves| = 3+3 ). <3 z(z f)m[] PARL S
Sc[n] Sc[n]

* Therefore, if Pr[Yes] = 1 — ¢, then g&ax fo=1-2e.

e Recall that fs = (f, xs) = 1 — 2 dist(f, xs).

* Therefore, for S* &' argmax fs, we have dist(f, ys+) < €
Scn]

« Computing ys+(x): We have f(x) = ys-(x) for (1 — €)-fraction of inputs. What
about remaining e-fraction of inputs?



Local correctability

Theorem: Suppose f is e-close to ys+. For every x € {—1,1}", following algorithm outputs
Xs+(x) with probability at least 1 — 2€.

Algorithm(x)
1. Sampley ~ {—1,1}".
2. Output f(y)f(x-y)

* yand y - x are uniformly distributed in {—1,1}" (but are not independent).
. Pyr[f(y) = xs*(¥)] = 1 — e and lj/r[f(y x)=xs*(y-x)]=21—¢€

 Therefore, with probability at least 1 — 2¢ (over the choice of y), we have f(y) = xs-(y)
and f(y - x) = ys«(y - x). In such an event,

fOF-x)=xsWxs* - x) = xs-(x)



Analysis of Boolean Functions

Social Choice theory

Learning Theory

Hardness of approximation, PCPs

Many more ..

See “Analysis of Boolean Functions” by Ryan O’Donnell



