Multiplicative weights

Based on lectures notes by Sanjeev Arora, Jonathan Kelner, etc.

- Suppose X wants to predict the outcome of games, and has n "experts" for advice. For each game, each expert gives their opinion on who will win the game. X has to make a prediction based on the experts' advice.
- Suppose there exists an expert who predicts the outcome of each game correctly. How do we find that expert?
- Initialize $S^{(0)} = [n]$.
- For game t, take the majority opinion of the experts in $S^{(t-1)}$.
- Delete from $S^{(t-1)}$ all the experts who made an incorrect prediction in game t. Call this $S^{(t)}$.
- Theorem: Number of mistakes made by X is at most $\lceil \log n \rceil$.
- Proof: If X makes a mistake in round t, then $|S^{(t)}| \leq |S^{(t-1)}|/2$.

- What if the best expert is not perfect, but makes the least number of mistakes among all experts?
- ➤ Choose a uniform random expert and follow their advice?
- Take the majority opinion of the experts?
- ➤ Observe for a few games, then pick the best expert and follow their advice henceforth?
- First two can not work if there only a few "good" experts among the *n* experts. Third can not work if some expert predicted correctly in the first few games, and makes very few correct predictions thereafter.
- Idea: For each game, consider the opinion of each expert weighted by their past performance.

Multiplicative weights

- Initialize $w_i^{(0)} = 1$ for each expert i.
- For round t, predict based on the weighted majority of the experts' predictions, where expert i gets weight $\frac{w_i^{(t-1)}}{\left(\sum_j w_j^{(t-1)}\right)}$
- Update weights: If expert i predicted outcome correctly, then set $w_i^{(t)} = w_i^{(t-1)}$, else set $w_i^{(t)} = (1 \epsilon)w_i^{(t-1)}$.
- Theorem: Fix $\epsilon \in (0,1/2]$. At the end of T rounds, let $M_i^{(T)}$ be the number of mistakes made by expert i, and $M^{(T)}$ be the number of mistakes made by Alg. Then

$$M^{(T)} \le 2(1+\epsilon)M_i^{(T)} + \frac{2\log n}{\epsilon} \ \forall i \in [n]$$

- Define $\Phi^{(t)} \stackrel{\text{def}}{=} \sum_i w_i^{(t)}$.
- If Alg made a mistake in round t, then the weighted majority of the experts made a mistake in round t. Therefore,

$$\Phi^{(t)} = \sum_{i} w_i^{(t)} \le (1 - \epsilon) \cdot \frac{1}{2} \left(\sum_{i} w_i^{(t-1)} \right) + \frac{1}{2} \left(\sum_{i} w_i^{(t-1)} \right)$$

$$= \left(1 - \frac{\epsilon}{2} \right) \left(\sum_{i} w_i^{(t-1)} \right) = \left(1 - \frac{\epsilon}{2} \right) \Phi^{(t-1)}$$

- Therefore, $\Phi^{(T)} \leq \left(1 \frac{\epsilon}{2}\right)^{M^{(T)}} \Phi^{(0)} = n\left(1 \frac{\epsilon}{2}\right)^{M^{(T)}}$
- For any i, we have $\Phi^{(T)} \geq w_i^{(T)} = (1 \epsilon)^{M_i^{(T)}}$
- Therefore $(1-\epsilon)^{M_i^{(T)}} \leq n \left(1-\frac{\epsilon}{2}\right)^{M^{(T)}}$

Therefore,

$$M^{(T)} \le \frac{\log n}{\log \frac{1}{1 - \epsilon}} + \frac{\log \frac{1}{1 - \epsilon}}{\log \frac{1}{1 - \frac{\epsilon}{2}}} M_i^{(T)}$$

Using
$$\frac{\epsilon}{2} \leq \log \frac{1}{1-\frac{\epsilon}{2}}$$
 and $\log \frac{1}{1-\epsilon} \leq \epsilon + \epsilon^2$ for small enough ϵ (verify),

$$\begin{aligned} & \text{Using } \frac{\epsilon}{2} \leq \log \frac{1}{1 - \frac{\epsilon}{2}} \text{ and } \log \frac{1}{1 - \epsilon} \leq \epsilon + \epsilon^2 \text{ for small enough } \epsilon \text{ (verify)}, \\ & M^{(T)} \leq \frac{\log n}{\log \frac{1}{1 - \frac{\epsilon}{2}}} + \frac{\log \frac{1}{1 - \epsilon}}{\log \frac{1}{1 - \frac{\epsilon}{2}}} M_i^{(T)} \leq \frac{\log n}{\frac{\epsilon}{2}} + \frac{\epsilon + \epsilon^2}{\frac{\epsilon}{2}} M_i^{(T)} \\ & = \frac{2}{\epsilon} \log n + 2(1 + \epsilon) M_i^{(T)} \end{aligned}$$

Saving a factor of 2

- Initialize $w_i^{(0)} = 1$ for each expert i.
- In round t, sample an expert i with probability $p_i^{(t)} \stackrel{\text{def}}{=} \frac{w_i^{(t-1)}}{\sum_j w_j^{(t-1)}}$ and follow their advice.
- Let $m_i^{(t)}$ be 1 if the expert i made a mistake in round t, and 0 otherwise. Set $w_i^{(t)} = \left(1 \epsilon m_i^{(t)}\right) w_i^{(t-1)}$ for each i.
- $\Pr[Alg\ makes\ mistake\ in\ round\ t] = \sum_i p_i^{(t)} m_i^{(t)} = p^{(t)} \cdot m^{(t)}$
- $E[mistake\ made\ by\ Alg\ in\ t\ rounds] = \sum_{j\in[t]} p^{(j)} \cdot m^{(j)}$

• Theorem: Fix $\epsilon \in (0,1/2]$. Then

$$\sum_{t \in [T]} p^{(t)} \cdot m^{(t)} \le (1 + \epsilon) \sum_{t \in [T]} m_i^{(t)} + \frac{\log n}{\epsilon} \ \forall i \in [n]$$

Expected number of $t \in [T]$ mistakes by Alg

$$\begin{split} &\Phi^{(t)} = \sum_{i} w_{i}^{(t)} = \sum_{i} w_{i}^{(t-1)} \left(1 - \epsilon m_{i}^{(t)} \right) = \left(\sum_{i} w_{i}^{(t-1)} \right) \sum_{i} \frac{w_{i}^{(t-1)}}{\sum_{i} w_{i}^{(t-1)}} \left(1 - \epsilon m_{i}^{(t)} \right) \\ &= \Phi^{(t-1)} \left(1 - \epsilon p^{(t)} \cdot m^{(t)} \right) \leq \Phi^{(t-1)} e^{-\epsilon p^{(t)} \cdot m^{(t)}} \end{split}$$

- Therefore, $\Phi^{(T)} \leq \Phi^{(0)} e^{-\epsilon \sum_{t \in [T]} p^{(t)} \cdot m^{(t)}} = n e^{-\epsilon \sum_{t \in [T]} p^{(t)} \cdot m^{(t)}}$
- For any expert i, $\Phi^{(T)} \ge w_i^{(T)} = (1 \epsilon)^{\sum_{t \in [T]} m_i^{(t)}}$
- Therefore, $(1-\epsilon)^{\sum_{t\in[T]}m_i^{(t)}}\leq ne^{-\epsilon\sum_{t\in[T]}p^{(t)}\cdot m^{(t)}}$

$$\sum_{t \in [T]} p^{(t)} \cdot m^{(t)} \le (1 + \epsilon) \sum_{t \in [T]} m_i^{(t)} + \frac{\log n}{\epsilon}$$

More generally ...

- A set P of possible outcomes.
- $m^{(t)} \in [-1,1]^n$
- Initialize $w_i^{(0)} = 1$ for each expert i.
- In round t, sample an expert i with probability $p_i^{(t)} \stackrel{\text{def}}{=} \frac{w_i^{(t-1)}}{\sum_j w_j^{(t-1)}}$ and follow their advice.
- Observe $m^{(t)}$. Set $w_i^{(t)} = \left(1 \epsilon m_i^{(t)}\right) w_i^{(t-1)}$ for each i.
- Theorem: Fix $\epsilon \in (0,1/2]$. For any expert i,

$$\sum_{t \in [T]} p^{(t)} \cdot m^{(t)} \le \sum_{t \in [T]} m_i^{(t)} + \epsilon \sum_{t \in [T]} \left| m_i^{(t)} \right| + \frac{\log n}{\epsilon}$$

$$\begin{split} &\Phi^{(t)} = \sum_{i} w_i^{(t)} = \sum_{i} w_i^{(t-1)} \left(1 - \epsilon m_i^{(t)} \right) = \left(\sum_{i} w_i^{(t-1)} \right) \sum_{i} \frac{w_i^{(t-1)}}{\sum_{i} w_i^{(t-1)}} \left(1 - \epsilon m_i^{(t)} \right) \\ &= \Phi^{(t-1)} \left(1 - \epsilon p^{(t)} \cdot m^{(t)} \right) \leq \Phi^{(t-1)} e^{-\epsilon p^{(t)} \cdot m^{(t)}} \end{split}$$

• Therefore, $\Phi^{(T)} \leq \Phi^{(0)} e^{-\epsilon \sum_{t \in [T]} p^{(t)} \cdot m^{(t)}} = n e^{-\epsilon \sum_{t \in [T]} p^{(t)} \cdot m^{(t)}}$

$$\Phi^{(T)} \geq w_i^{(T)} = \Pi_{t \in [T]} \left(1 - \epsilon m_i^{(t)} \right) \geq \Pi_{t \in [T]} e^{-\epsilon m_i^{(t)} - \left(\epsilon m_i^{(t)}\right)^2} \geq e^{-\epsilon \sum_{t \in [T]} m_i^{(t)} - \epsilon^2 \sum_{t \in [T]} \left| m_i^{(t)} \right|}$$

 $\bullet \ \ \text{Therefore,} e^{-\epsilon \sum_{t \in [T]} m_i^{(t)} - \epsilon^2 \sum_{t \in [T]} \left| m_i^{(t)} \right|} \leq n e^{-\epsilon \sum_{t \in [T]} p^{(t)} \cdot m^{(t)}}$

$$\sum_{t \in [T]} p^{(t)} \cdot m^{(t)} \le \sum_{t \in [T]} m_i^{(t)} + \epsilon \sum_{t \in [T]} \left| m_i^{(t)} \right| + \frac{\log n}{\epsilon}$$

- If $m^{(t)} \in [-\rho, \rho]^n$, then modify update as $w_i^{(t)} = \left(1 \epsilon \frac{m_i^{(t)}}{\rho}\right) w_i^{(t-1)}$ for each i
- Theorem: Fix $\epsilon \in (0,1/2]$. For any expert i,

$$\sum_{t \in [T]} p^{(t)} \cdot m^{(t)} \le \sum_{t \in [T]} m_i^{(t)} + \epsilon \sum_{t \in [T]} \left| m_i^{(t)} \right| + \rho \frac{\log n}{\epsilon}$$

• Equivalently,

$$\frac{1}{T} \left(\sum_{t \in [T]} p^{(t)} \cdot m^{(t)} \right) - \frac{1}{T} \left(\sum_{t \in [T]} m_i^{(t)} \right) \le \frac{1}{T} \left(\epsilon \sum_{t \in [T]} \left| m_i^{(t)} \right| \right) + \rho \frac{\log n}{\epsilon T} \le \epsilon \rho + \rho \frac{\log n}{\epsilon T}$$

• For $T \geq (\log n)/\epsilon^2$, and $\epsilon = \min\left\{\frac{1}{2}, \frac{\delta}{2\rho}\right\}$, $\frac{1}{T} \left(\sum_{t \in [T]} p^{(t)} \cdot m^{(t)}\right) - \frac{1}{T} \left(\sum_{t \in [T]} m_i^{(t)}\right) \leq 2\epsilon \rho \leq \delta$

Minimizing Regret

$$regret \stackrel{\text{def}}{=} \sum_{t \in [T]} p^{(t)} \cdot m^{(t)} - \min_{i \in [n]} \sum_{t \in [T]} m_i^{(t)}$$

• If
$$m^{(t)} \in [-1,1]^n \ \forall t$$
, then $\operatorname{regret} \leq \epsilon \sum_{t \in [T]} \left| m_i^{(t)} \right| + \frac{\log n}{\epsilon} \leq \epsilon T + \frac{\log n}{\epsilon}$

• If we know T, then choosing $\epsilon = \sqrt{\frac{\log n}{T}}$ gives $\operatorname{regret} \leq 2\sqrt{T \log n}$

Zero-sum Games

- Two players R and C have to choose from a finite set of actions. If R chooses i and C chooses j, then R pays M(i,j) to C. Assume that $M(i,j) \in [0,1] \ \forall i,j$
- R tries to minimize its payoff; C tries to maximize the payoff.
- "Pure strategy": player chooses a certain fixed action to play.
- "Mixed strategy": player has a fixed probability distribution, and chooses an action from this distribution to play. $M(P,Q) \stackrel{\text{def}}{=} E_{i\sim P,\ j\sim Q} M(i,j) = P^T M Q$
- Does knowing your opponent's strategy help?
- von Neumann's minimax theorem

$$\lambda^* \stackrel{\text{def}}{=} \min_{P} \max_{j} M(P, j) = \max_{Q} \min_{i} M(i, Q)$$

Approximating the value of the game

- Pure strategies of R corresponds to experts, and pure strategies for C corresponds to events.
- At round t, let $p^{(t)}$ be the probability distribution over the experts. Let $j^{(t)} = \underset{j}{\operatorname{argmax}} M(p^{(t)}, j)$. The penalty for expert i is given by $M(i, j^{(t)})$.
- For $T=\Theta\left(\frac{\log n}{\delta^2}\right)$, we have $\frac{1}{T}\sum_{t\in[T]}\sum_i p_i^{(t)}M(i,j^{(t)})\leq \delta+\min_i\left(\frac{1}{T}\sum_{t\in[T]}M(i,j^{(t)})\right)$

Let P* be the optimal strategy for R.

$$\min_{i} \left(\frac{1}{T} \sum_{t \in [T]} M(i, j^{(t)}) \right) = \min_{i} e_i^T M\left(\frac{1}{T} \sum_{t \in [T]} e_{j^{(t)}} \right) \leq P^* M\left(\frac{1}{T} \sum_{t \in [T]} e_{j^{(t)}} \right) \leq \lambda^*$$

• Let $\hat{P} \stackrel{\text{def}}{=} (\sum_{t \in [T]} p^{(t)})/T$ and let $\hat{j} \stackrel{\text{def}}{=} \operatorname{argmax} M(\hat{P}, j)$.

Let
$$P \stackrel{\text{def}}{=} \left(\sum_{t \in [T]} p^{(t)}\right) / T$$
 and let $\hat{j} \stackrel{\text{def}}{=} \operatorname{argmax} M(\hat{P}, j)$.

$$\lambda^* \stackrel{\text{def}}{=} \min_{P} \max_{j} M(P, j) \leq \max_{j} M(\hat{P}, j) = \frac{1}{T} \left(\sum_{t \in [T]} p^{(t)}\right)^T M e_{\hat{j}} = \frac{1}{T} \sum_{t \in [T]} \left(p^{(t)}\right)^T M e_{\hat{j}}$$

$$\leq \frac{1}{T} \sum_{i \in [T]} \left(p^{(t)}\right)^T M e_{j^{(t)}} \leq \delta + \min_{i} \left(\frac{1}{T} \sum_{t \in [T]} e_i^T M e_{j^{(t)}}\right) = \delta + \min_{i} \left(\frac{1}{T} \sum_{t \in [T]} M(i, j^{(t)})\right)$$

$$\leq \delta + \lambda^*$$

• Therefore, \hat{P} is an approximately optimal strategy for R.

Linear programming

- Given matrix $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, does the following have a feasible solution $Ax \geq b$ and $x \geq 0$
- Goal: Given $\delta \in (0,1/2)$ compute an $x \geq 0$ such that $A_i x b_i \geq -\delta \ \forall i$. (A_i is the ith row of matrix A)
- Oracle: Given $c \in \mathbb{R}^n$ and $d \in \mathbb{R}$, does there exist an $x \in \mathbb{R}^n$ such that $c^T x \ge d$, and $x \ge 0$?
- Oracle is easy to design, answer is no only when c < 0 and d > 0.

- m experts, one for each constraint.
- Event corresponds to an $x \ge 0$.
- Penalty for expert i is equal to $A_i x b_i$. Assume penalty $\in [-\rho, \rho]$.
- In round t, generate inequality $\sum_i p_i^{(t)} A_i x \ge \sum_i p_i^{(t)} b_i$
- If oracle says infeasible, the LP is infeasible.
- If oracle returns a point $x^{(t)}$ satisfying this constraint, then set $m_i^{(t)} = A_i x^{(t)} b_i$. Update weights accordingly and repeat.
- Idea: If $A_i x^{(t)} < b_i$, then increase weight of this constraint in next round. If $A_i x^{(t)} > b_i$, then decrease weight of this constraint in next round.

• If infeasibility is not detected for
$$T = O\left(\frac{\rho^2 \log n}{\delta^2}\right)$$
 rounds, we have for each i $0 \le \frac{1}{T} \sum_{t \in [T]} \left(\sum_i p_i^{(t)} \left(A_i x^{(t)} - b_i\right)\right) \le \delta + \frac{1}{T} \sum_{t \in [T]} \left(A_i x^{(t)} - b_i\right)$

Expected penalty of Alg

penalty of expert i

Equivalently, for each i

$$-\delta \le A_i \left(\frac{\sum_{t \in [T]} x^{(t)}}{T} \right) - b_i$$

- Therefore, $(\sum_{t \in [T]} x^{(t)})/T$ approximately satisfies all constraints.
- ρ depends on the problem instance, etc.

Many other applications

"The Multiplicative Weights Update Method: a Meta-Algorithm and Applications" by Arora, Hazan and Kale