Probabilistically Checkable
Proofs

3-SAT

* Given a Boolean formula, does there exist an assignment which satisfies it?
(X7 Vax, Vxg) A(xo VX, Vxg) A(=xg V—axy V—axy,)

 Compute an assignment which satisfies as many clauses as possible.

* q-approximation algorithm: outputs a solution whose cost is at least « times the cost
of the optimal solution.
 How do prove cost of solution is at least a times cost of optimal solution when
we don’t know OPT?

* Find suitable upper bounds OPT.

3-SAT

* OPT< m. Therefore, an algorithm producing an assignment satisfying at least am
constraints will be an a-approximation algorithm.

Algorithm: For each i, set X; to TRUE with probability 2, and FALSE with probability 7-.
* Fix any clause (X, V =Xy V X,).
Pr|cl sTRUE]| =1 — —1 —1 —1 = —7
* — %
riclause is S ¥5*5 73

* E|lnumber of clauses satisfied] = gm > §0PT

* Therefore, this is a 7 /8-approximation algorithm.
* NP-hard to do better than this!

SAT

Given a Boolean formula, does there exist an assignment which satisfies it.
(X Vax, Vxz) A(xa Vx,Vaxe) A(—xg Vax, V—axy)

YES instance if there exists an assignment which satisfies it, else NO instance.

If SAT instance is a YES instance, the satisfying assignment suffices to “prove” this.

Given a polynomial sized proof, a Verifier (Turing machine) can verify in polynomial
time that the instance is a YES instance.

Proof

(X Vax, Vxz) A(xa Vx,Vae) A(—xg V—ax, Vaxy)

Proofis “11101",i.e.,, xy =1, x, =1, x3 =1, x4, =0, x5 = 1.
Other proofs “10011%,...

A verifier (Turing Machine) can verify in polynomial time that this formula is
satisfiable.

Does the verifier need to read the whole proof, or can the verifier make a decision
after reading only O(1) bits of the proof?

Verifiers

Allow verifier to be randomized. Verifier’s decision should be correct with “good”
probability.

* Verifier can use at most r random coins, and read g locations in the proof.

If SAT instance is satisfiable, verifier should accept with probability at least c.

If SAT instance is not satisfiable, verifier should accept with probability at most s.

Verifier

Prover writes down a “proof”.

Verifier tosses r independent random coins to decide upon the g random locations
l1,15, ..., I, of the proof to query.

Compute g (Xll' "-»qu) on the values at those locations.
* g(-) depends on the PCP.

Verifier accepts if g(-) evaluates to 1, and reject if it evaluates to 0.

PCP

* PCP. (7, q) = class of languages which have a probabilistically checkable proof with
these parameters.

 Wantg = 0(1), r = O(logn). Polynomial length proof.

» PCP.;(O(logn),0(1)) = NP
[Arora, Safra — 92, Arora, Lund, Motwani, Sudan, Szegedy - 92],[Dinur - 04]

Hardness of Approximation

* Each value of the random coins R ~ {0,1}" gives g locations lgR), lgR), e lgR) and a

test g (l%R), lgR), . léR)). Consider the set of tests {g (lgR), lgR), e lgR)) : R}.

This can be viewed as a SAT problem:

* Variables are the entries of the proof [4, [,, ...
* Constraints are {g (l§R), lgR), e léR)) :R}.

* Find an assignment to the variables that satisfies as many constraints as possible.

Hardness of Approximation

If SAT instance is satisfiable, then verifier accepts with probability at least c.

There exists an assignment to [, [, ... which satisfies at least ¢ fraction of the
constraints in {g (lgR), lgR), . léR)) ; R}.

If SAT instance is not satisfiable, then verifier accepts with probability at most s.

Any assignment to [, [, ... will satisfy at most s fraction of the constraints in
(R) ;(R) (R).
tg (150,10, . 1P) R,

Hardness of Approximation

* Therefore, for {g (Z§R), lgR), e léR)) : R}, it is NP-hard to determine whether there is

an assignment which satisfies at least ¢ fraction of the constraints, or whether all
assignments will satisfy at most s fraction of the constraints.

Therefore, it is NP-hard to obtain any approximation algorithm with approximation
factor better then s/c

Max 3-SAT

[Hastad 01]: For every 6 > 0, and every L € NP, thereisa PCP withg = 3
1—36ands < % + 6. Moreover, the verifier chooses indices (i, i,, i3)~[m]

b ~ {0,1} according to some distribution and checks whether i, + 1, + 1, =
b (mod 2).

C
3 3

For any €, obtaining % + € approximation for Max-E3LIN is NP-hard.
A random assignment gives % approximation (verify).

A reduction from Max-E3LIN to Max-3SAT shows that for any €, obtaining g + €
approximation for Max-3SAT is NP-hard.

Many other hardness of approximation results based on PCPs.

=
nd

Unigue Games

* Unigque Games: Given a graph G = (V, E), alphabet [k],
and bijections m,,,: [k] — |k] for each {u, v} € E,
compute an assighment o: V — [k] that maximizes the X1 — X, =a;modp
fraction of constraints satisfied. X, — X3 =a,modp

X{ —Xs =azmodp

* |f there exists an assignment which satisfies all the
constraints, easy to find it.

* |f there exists an assignment which satisfies at least 99%
of the constraints, can we find a good assignment?

Unigue Games

X1 — X, =a;modp
X, — X3 =a;modp
Random assignment satisfies 1/p fraction of constraints. X; — Xs = azmodp

For each i, set X; to be a random element in {0,1, ...,p — 1}.
1

Pr[X; = X, + a; modp] = m

Better approximation algorithms known using semidefinite programming techniques.

Unique Games Conjecture [Khot-02]

* Conjecture: For every sufficiently small €, there exists a k such that for Unique
Games instances with alphabet size k, it is NP-hard to distinguish between the
following two cases

1. There exists an assignment satisfying 1 — € fraction of constraints.
2. All assignments satisfy at most € fraction of the constraints.

* Implies optimal hardness of approximation results for many problems, e.g. Max-cut,
min vertex cover, CSPs, etc.

* Conjecture is still open!

Other hardness assumptions

Exponential Time Hypothesis
* [Impagliazzo, Paturi 99] 36 > 0 such that 3SAT & Time(25")

* Lots of research on hardness of approximation.

