
Probabilistically Checkable 
Proofs



3-SAT

• Given a Boolean formula, does there exist an assignment which satisfies it?
𝑥! ∨ ¬𝑥" ∨ 𝑥# ∧ 𝑥" ∨ 𝑥$ ∨ 𝑥% ∧ ¬𝑥! ∨ ¬𝑥" ∨ ¬𝑥$

• Compute an assignment which satisfies as many clauses as possible.

• 𝛼-approximation algorithm: outputs a solution whose cost is at least 𝛼 times the cost 
of the optimal solution. 
• How do prove cost of solution is at least 𝛼 times cost of optimal solution when 

we don’t know OPT?
• Find suitable upper bounds OPT.



3-SAT

• OPT≤ 𝑚. Therefore, an algorithm producing an assignment satisfying at least 𝛼𝑚
constraints will be an 𝛼-approximation algorithm.

Algorithm: For each 𝑖, set 𝑋& to TRUE with probability ½, and FALSE with probability ½. 
• Fix any clause 𝑋' ∨ ¬𝑋( ∨ 𝑋) .

Pr 𝑐𝑙𝑎𝑢𝑠𝑒 𝑖𝑠 𝑇𝑅𝑈𝐸 = 1 −
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• 𝐸 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑢𝑠𝑒𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 = *
+
𝑚 ≥ *

+
𝑂𝑃𝑇

• Therefore, this is a 7/8-approximation algorithm.
• NP-hard to do better than this!



SAT

• Given a Boolean formula, does there exist an assignment which satisfies it.
𝑥! ∨ ¬𝑥" ∨ 𝑥# ∧ 𝑥" ∨ 𝑥$ ∨ 𝑥% ∧ ¬𝑥! ∨ ¬𝑥" ∨ ¬𝑥$

• YES instance if there exists an assignment which satisfies it, else NO instance. 

• If SAT instance is a YES instance,  the satisfying assignment suffices to “prove” this. 

• Given a polynomial sized proof, a Verifier (Turing machine) can verify in polynomial 
time that the instance is a YES instance.



Proof

𝑥! ∨ ¬𝑥" ∨ 𝑥# ∧ 𝑥" ∨ 𝑥$ ∨ 𝑥% ∧ ¬𝑥! ∨ ¬𝑥" ∨ ¬𝑥$

• Proof is “11101”, i.e.,  𝑥! = 1, 𝑥" = 1, 𝑥# = 1, 𝑥$ = 0, 𝑥% = 1.
• Other proofs “10011”,…

• A verifier (Turing Machine) can verify in polynomial time that this formula is 
satisfiable. 

• Does the verifier need to read the whole proof, or can the verifier make a decision 
after reading only 𝑂 1 bits of the proof?



Verifiers

• Allow verifier to be randomized. Verifier’s decision should be correct with “good” 
probability.

• Verifier can use at most 𝑟 random coins, and read 𝑞 locations in the proof.
• If SAT instance is satisfiable, verifier should accept with probability at least 𝑐.
• If SAT instance is not satisfiable, verifier should accept with probability at most 𝑠. 



Verifier

• Prover writes down a “proof”.

• Verifier tosses 𝑟 independent random coins to decide upon the 𝑞 random locations 
𝑙!, 𝑙", … , 𝑙, of the proof to query. 

• Compute 𝑔 𝑋-! , … , 𝑋-" on the values at those locations.
• 𝑔 ⋅ depends on the PCP. 

• Verifier accepts if 𝑔 ⋅ evaluates to 1, and reject if it evaluates to 0.



PCP

• PCP),/ 𝑟, 𝑞 = class of languages which have a probabilistically checkable proof with 
these parameters. 

• Want 𝑞 = 𝑂 1 , 𝑟 = 𝑂 log 𝑛 . Polynomial length proof.

• PCP),/ O(log 𝑛), 𝑂 1 = 𝑁𝑃
[Arora, Safra – 92, Arora, Lund, Motwani, Sudan, Szegedy - 92],[Dinur - 04] 



Hardness of Approximation

• Each value of the random coins 𝑅 ∼ 0,1 0 gives 𝑞 locations 𝑙!
1 , 𝑙"

1 , … , 𝑙,
1 and a 

test 𝑔 𝑙!
1 , 𝑙"

1 , … , 𝑙,
1 . Consider the set of tests  𝑔 𝑙!

1 , 𝑙"
1 , … , 𝑙,

1 : 𝑅 .

This can be viewed as a SAT problem: 
• Variables are the entries of the proof 𝑙!, 𝑙", …

• Constraints are 𝑔 𝑙!
1 , 𝑙"

1 , … , 𝑙,
1 : 𝑅 .

• Find an assignment to the variables that satisfies as many constraints as possible.



Hardness of Approximation

• If SAT instance is satisfiable, then verifier accepts with probability at least 𝑐. 
• There exists an assignment to 𝑙!, 𝑙", … which satisfies at least 𝑐 fraction of the 

constraints in  𝑔 𝑙!
1 , 𝑙"

1 , … , 𝑙,
1 : 𝑅 .

• If SAT instance is not satisfiable, then verifier accepts with probability at most 𝑠. 
• Any assignment to 𝑙!, 𝑙", … will satisfy at most 𝑠 fraction of the constraints in  
𝑔 𝑙!

1 , 𝑙"
1 , … , 𝑙,

1 : 𝑅 .



Hardness of Approximation

• Therefore, for 𝑔 𝑙!
1 , 𝑙"

1 , … , 𝑙,
1 : 𝑅 , it is NP-hard to determine whether there is 

an assignment which satisfies at least 𝑐 fraction of the constraints, or whether all 
assignments will satisfy at most 𝑠 fraction of the constraints.

• Therefore, it is NP-hard to obtain any approximation algorithm with approximation 
factor better then 𝑠/𝑐



Max 3-SAT

• [Hastad 01]: For every 𝛿 > 0,  and every 𝐿 ∈ 𝑁𝑃, there is a PCP with 𝑞 = 3, 𝑐 ≥
1 − 𝛿 and 𝑠 ≤ !

"
+ 𝛿.  Moreover, the verifier chooses indices 𝑖!, 𝑖", 𝑖# ~ 𝑚 # and 

𝑏 ∼ 0,1 according to some distribution and checks whether 𝑙&! + 𝑙&# + 𝑙&$ =
𝑏 𝑚𝑜𝑑 2 .

• For any 𝜖, obtaining !
"
+ 𝜖 approximation for Max-E3LIN is NP-hard.

• A random assignment gives !
"

approximation (verify).

• A reduction from Max-E3LIN to Max-3SAT shows that for any 𝜖, obtaining *
+
+ 𝜖

approximation for Max-3SAT is NP-hard.

• Many other hardness of approximation results based on PCPs.



Unique Games

• Unique Games: Given a graph 𝐺 = 𝑉, 𝐸 , alphabet 𝑘 , 
and bijections 𝜋23: 𝑘 → 𝑘 for each 𝑢, 𝑣 ∈ 𝐸, 
compute an assignment 𝜎: 𝑉 → 𝑘 that maximizes the 
fraction of constraints satisfied. 

• If there exists an assignment which satisfies all the 
constraints, easy to find it. 

• If there exists an assignment which satisfies at least 99%
of the constraints, can we find a good assignment?

𝑋! − 𝑋" = 𝑎!mod𝑝
𝑋" − 𝑋# = 𝑎"mod𝑝
𝑋! − 𝑋% = 𝑎#mod𝑝

⋅
⋅
⋅



Unique Games

• Random assignment satisfies 1/𝑝 fraction of constraints.

• For each 𝑖, set 𝑋& to be a random element in 0,1, … , 𝑝 − 1 .

• Pr 𝑋! = 𝑋" + 𝑎!mod𝑝 = !
4

.

• Better approximation algorithms known using semidefinite programming techniques.

𝑋! − 𝑋" = 𝑎!mod𝑝
𝑋" − 𝑋# = 𝑎"mod𝑝
𝑋! − 𝑋% = 𝑎#mod𝑝

⋅
⋅
⋅



Unique Games Conjecture [Khot-02]

• Conjecture: For every sufficiently small 𝜖, there exists a 𝑘 such that for Unique 
Games instances with alphabet size 𝑘, it is NP-hard to distinguish between the 
following two cases

1. There exists an assignment satisfying 1 − 𝜖 fraction of constraints.
2. All assignments satisfy at most 𝜖 fraction of the constraints.

• Implies optimal hardness of approximation results for many problems, e.g. Max-cut, 
min vertex cover, CSPs, etc.

• Conjecture is still open!



Other hardness assumptions

Exponential Time Hypothesis

• [Impagliazzo, Paturi 99] ∃𝛿 > 0 such that 3SAT ∉ Time 256

• Lots of research on hardness of approximation.


