# Probabilistically Checkable Proofs

### 3-SAT

- Given a Boolean formula, does there exist an assignment which satisfies it?  $(x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor x_4 \lor x_5) \land (\neg x_1 \lor \neg x_2 \lor \neg x_4)$
- Compute an assignment which satisfies as many clauses as possible.
- $\alpha$ -approximation algorithm: outputs a solution whose cost is at least  $\alpha$  times the cost of the optimal solution.
  - How do prove cost of solution is at least  $\alpha$  times cost of optimal solution when we don't know OPT?
  - Find suitable upper bounds OPT.

#### 3-SAT

• OPT  $\leq m$ . Therefore, an algorithm producing an assignment satisfying at least  $\alpha m$  constraints will be an  $\alpha$ -approximation algorithm.

<u>Algorithm</u>: For each i, set  $X_i$  to TRUE with probability  $\frac{1}{2}$ , and FALSE with probability  $\frac{1}{2}$ .

• Fix any clause  $(X_a \lor \neg X_b \lor X_c)$ .

$$Pr[clause \ is \ TRUE] = 1 - \frac{1}{2} * \frac{1}{2} * \frac{1}{2} = \frac{7}{8}$$

- $E[number\ of\ clauses\ satisfied] = \frac{7}{8}m \ge \frac{7}{8}OPT$
- Therefore, this is a 7/8-approximation algorithm.
- NP-hard to do better than this!

### SAT

• Given a Boolean formula, does there exist an assignment which satisfies it.

$$(x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor x_4 \lor x_5) \land (\neg x_1 \lor \neg x_2 \lor \neg x_4)$$

- YES instance if there exists an assignment which satisfies it, else NO instance.
- If SAT instance is a YES instance, the satisfying assignment suffices to "prove" this.
- Given a polynomial sized proof, a Verifier (Turing machine) can verify in polynomial time that the instance is a YES instance.

### Proof

$$(x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor x_4 \lor x_5) \land (\neg x_1 \lor \neg x_2 \lor \neg x_4)$$

- Proof is "11101", i.e.,  $x_1 = 1$ ,  $x_2 = 1$ ,  $x_3 = 1$ ,  $x_4 = 0$ ,  $x_5 = 1$ .
- Other proofs "10011",...
- A verifier (Turing Machine) can verify in polynomial time that this formula is satisfiable.
- Does the verifier need to read the whole proof, or can the verifier make a decision after reading only O(1) bits of the proof?

#### Verifiers

- Allow verifier to be randomized. Verifier's decision should be correct with "good" probability.
- Verifier can use at most r random coins, and read q locations in the proof.
- If SAT instance is satisfiable, verifier should accept with probability at least c.
- If SAT instance is not satisfiable, verifier should accept with probability at most s.

## Verifier

- Prover writes down a "proof".
- Verifier tosses r independent random coins to decide upon the q random locations  $l_1, l_2, \ldots, l_q$  of the proof to query.
- Compute  $g\left(X_{l_1}, \dots, X_{l_q}\right)$  on the values at those locations.
  - $g(\cdot)$  depends on the PCP.
- Verifier accepts if  $g(\cdot)$  evaluates to 1, and reject if it evaluates to 0.

#### PCP

•  $PCP_{c,s}(r,q)$  = class of languages which have a probabilistically checkable proof with these parameters.

• Want q = O(1),  $r = O(\log n)$ . Polynomial length proof.

•  $PCP_{c,s}(O(\log n), O(1)) = NP$ 

[Arora, Safra – 92, Arora, Lund, Motwani, Sudan, Szegedy - 92],[Dinur - 04]

## Hardness of Approximation

• Each value of the random coins  $R \sim \{0,1\}^r$  gives q locations  $l_1^{(R)}, l_2^{(R)}, \dots, l_q^{(R)}$  and a test  $g\left(l_1^{(R)}, l_2^{(R)}, \dots, l_q^{(R)}\right)$ . Consider the set of tests  $\left\{g\left(l_1^{(R)}, l_2^{(R)}, \dots, l_q^{(R)}\right) : R\right\}$ .

This can be viewed as a SAT problem:

- Variables are the entries of the proof  $l_1, l_2, ...$
- Constraints are  $\left\{g\left(l_1^{(R)}, l_2^{(R)}, \dots, l_q^{(R)}\right): R\right\}$ .
- Find an assignment to the variables that satisfies as many constraints as possible.

## Hardness of Approximation

- If SAT instance is satisfiable, then verifier accepts with probability at least c.
- There exists an assignment to  $l_1, l_2, \ldots$  which satisfies at least c fraction of the constraints in  $\left\{g\left(l_1^{(R)}, l_2^{(R)}, \ldots, l_q^{(R)}\right) : R\right\}$ .
- If SAT instance is not satisfiable, then verifier accepts with probability at most s.
- Any assignment to  $l_1, l_2, ...$  will satisfy at most s fraction of the constraints in  $\left\{g\left(l_1^{(R)}, l_2^{(R)}, ..., l_q^{(R)}\right): R\right\}$ .

## Hardness of Approximation

- Therefore, for  $\{g(l_1^{(R)}, l_2^{(R)}, ..., l_q^{(R)}): R\}$ , it is NP-hard to determine whether there is an assignment which satisfies at least c fraction of the constraints, or whether all assignments will satisfy at most s fraction of the constraints.
- Therefore, it is NP-hard to obtain any approximation algorithm with approximation factor better then s/c

#### Max 3-SAT

- [Hastad 01]: For every  $\delta > 0$ , and every  $L \in NP$ , there is a PCP with q = 3,  $c \ge 1 \delta$  and  $s \le \frac{1}{2} + \delta$ . Moreover, the verifier chooses indices  $(i_1, i_2, i_3) \sim [m]^3$  and  $b \sim \{0,1\}$  according to some distribution and checks whether  $l_{i_1} + l_{i_2} + l_{i_3} = b \pmod{2}$ .
- For any  $\epsilon$ , obtaining  $\frac{1}{2} + \epsilon$  approximation for Max-E3LIN is NP-hard.
- A random assignment gives  $\frac{1}{2}$  approximation (verify).
- A reduction from Max-E3LIN to Max-3SAT shows that for any  $\epsilon$ , obtaining  $\frac{7}{8} + \epsilon$  approximation for Max-3SAT is NP-hard.
- Many other hardness of approximation results based on PCPs.

## Unique Games

- Unique Games: Given a graph G = (V, E), alphabet [k], and bijections  $\pi_{uv}$ :  $[k] \to [k]$  for each  $\{u, v\} \in E$ , compute an assignment  $\sigma$ :  $V \to [k]$  that maximizes the fraction of constraints satisfied.
- If there exists an assignment which satisfies all the constraints, easy to find it.
- If there exists an assignment which satisfies at least 99% of the constraints, can we find a good assignment?

 $X_1 - X_2 = a_1 \mod p$   $X_2 - X_3 = a_2 \mod p$  $X_1 - X_5 = a_3 \mod p$ 

•

## Unique Games

• Random assignment satisfies 1/p fraction of constraints.

$$X_1 - X_2 = a_1 \mod p$$
  
 $X_2 - X_3 = a_2 \mod p$   
 $X_1 - X_5 = a_3 \mod p$ 

•

- For each i, set  $X_i$  to be a random element in  $\{0,1,\ldots,p-1\}$ .
- $\Pr[X_1 = X_2 + a_1 \mod p] = \frac{1}{p}$ .

• Better approximation algorithms known using semidefinite programming techniques.

## Unique Games Conjecture [Khot-02]

- Conjecture: For every sufficiently small  $\epsilon$ , there exists a k such that for Unique Games instances with alphabet size k, it is NP-hard to distinguish between the following two cases
- 1. There exists an assignment satisfying  $1 \epsilon$  fraction of constraints.
- 2. All assignments satisfy at most  $\epsilon$  fraction of the constraints.
- Implies optimal hardness of approximation results for many problems, e.g. Max-cut, min vertex cover, CSPs, etc.

Conjecture is still open!

## Other hardness assumptions

#### **Exponential Time Hypothesis**

• [Impagliazzo, Paturi 99]  $\exists \delta > 0$  such that  $3SAT \notin Time(2^{\delta n})$ 

• Lots of research on hardness of approximation.