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Gershgorin Circle Theorem

Let 𝑀 ∈ ℂ!×!, 𝑅# ≝ ∑$%# 𝑀#$ and Disc 𝑎, 𝑏 ≝ 𝑧: 𝑧 − 𝑎 ≤ 𝑏 . Then the 
eigenvalues of 𝑀 belong to ∪#∈[!] Disc 𝑀##, 𝑅# .

• Let 𝑥 ∈ ℂ! be an eigenvector of 𝑀 with eigenvalue 𝜆. Let 𝑖 ≝ argmax)∈ ! 𝑥$ .
• 𝑀𝑥 = 𝜆𝑥 implies ∑$𝑀#$𝑥$ = 𝜆𝑥#. Therefore, 

𝜆 =<
$

𝑀#$𝑥$/𝑥# = 𝑀## +<
$%#

𝑀#$𝑥$/𝑥#

• Thus,

𝜆 −𝑀## = <
$%#

𝑀#$𝑥$/𝑥# ≤<
$%#

𝑀#$
𝑥$
𝑥#

≤<
$%#

𝑀#$ = 𝑅#



Applications of Gershgorin Circle Theorem

• Graphs of maximum degree 𝑑: all eigenvalues of adjacency matrix lie in −𝑑, 𝑑 .
• Graphs with self loops: Let G be a graph where vertex 𝑖 has degree 𝑑#, and also 

has a self-loop of weight 𝑑#. All eigenvalues of its adjacency matrix lie in 
0,2max

#
𝑑# .

• Diagonally dominant matrices: A matrix 𝑀 is diagonally dominant if |𝑀##| ≥
∑$%# 𝑀#$ . If 𝑀 is symmetric and diagonally dominant, then 𝑀 ≽ 0, i.e. 𝑀 is 
positive semidefinite.



Cholesky Decomposition

• Theorem: 𝑀 ≽ 0 iff there exists a matrix 𝐴 such that 𝑀 = 𝐴*𝐴.

• 𝑀 = 𝑉Λ𝑉* = 𝑉Λ+/-Λ+/-𝑉* = Λ+/-𝑉* * Λ+/-𝑉* .

• This decomposition is not unique: Let 𝑅 be any rotation matrix, and let 𝑎, 𝑏 be 
any vectors. Then 𝑅𝑎, 𝑅𝑏 = 𝑎, 𝑏 .

• Used in semidefinite programming (SDP) based approximation algorithms, etc. 



Courant-Fischer Theorem

• Theorem: For a symmetric matrix 𝑀 with eigenvalues 𝜎! ≥ ⋯ ≥ 𝜎" and corresponding 
eigenvectors 𝑣!, … , 𝑣" respectively, 

𝑣! = argmax#
𝑥$𝑀𝑥
𝑥$𝑥

𝑎𝑛𝑑 𝑣% = argmax#&'!,…'"#!
𝑥$𝑀𝑥
𝑥$𝑥

• Theorem: 

𝜎% = max
*:,-./ * 0%

min
#∈*

𝑥$𝑀𝑥
𝑥$𝑥

= min
$:,-./ $ 0"2%3!

max
#∈$

𝑥$𝑀𝑥
𝑥$𝑥

• Moreover, the optima is achieved when 𝑆 is span 𝑣!, … , 𝑣% and T is span 𝑣%, … , 𝑣" . (H.W.)

• Choosing 𝑆 = span 𝑣!, … , 𝑣% , for an 𝑥 ∈ 𝑆 write 𝑥 = 𝑐!𝑣! +⋯+ 𝑐%𝑣%
𝑥$𝑀𝑥
𝑥$𝑥

= ⋯ =
∑4∈ % 𝑐4

5𝜎4
∑4∈ % 𝑐4

5 ≥ 𝜎%

• Therefore, 𝜎% ≤ max
*:,-./ * 0%

min
#∈*

#$6#
#$#

.

Rayleigh quotient 𝑅. 𝑥 ≝ /!./
/!/

𝑅. 𝑣# = 𝜎#



Courant-Fischer Theorem

• Let 𝑆 be the optimal subspace of rank 𝑘 and and let 𝑇0 = span 𝑣0, 𝑣01+, … , 𝑣! .
• Since rank(𝑆) + rank 𝑇0 = 𝑘 + 𝑛 − 𝑘 + 1 > 𝑛, we have 𝑆 ∩ 𝑇0 ≠ ∅

min
/∈2

𝑥*𝑀𝑥
𝑥*𝑥

≤ min
/∈2∩*"

𝑥*𝑀𝑥
𝑥*𝑥

• Let 𝑥 ∈ 𝑆 ∩ 𝑇0 be the optimal vector above, write 𝑥 = 𝑐0𝑣0 +⋯+ 𝑐!𝑣!.
𝑥*𝑀𝑥
𝑥*𝑥

=
∑#40! 𝑐#-𝜎#
∑#40! 𝑐#-

≤ 𝜎0

• Therefore, max
5:789: 5 40

min
/∈5

/!./
/!/ ≤ 𝜎0 and hence 𝜎0 = max

5:789: 5 40
min
/∈5

/!./
/!/ .



Graph Matrices

• For a 𝑑-regular graph, every row and column of 𝐴
sums to 𝑑. Therefore, A𝟏 = 𝑑𝟏.

• Therefore 𝑑 is an eigenvalue of 𝐴 with 
eigenvector 𝟏.

• Since all its eigenvalues line in [−𝑑, 𝑑], 𝑑 is its 
largest eigenvalue.

• Second largest eigenvalue = 𝑑 iff graph is 
disconnected.

• Multiplicity of eigenvalue 𝑑 = number of 
components in graph.
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Non-regular graphs

• 𝐴#$= weight of edge 𝑖, 𝑗 . 𝑑# ≝ ∑$%#𝐴#$.

• Normalized adjacency matrix: 𝐷;
#
$𝐴𝐷;

#
$

• Eigenvalues lie in [−1,1].

• Laplacian Matrix 𝐿 ≝ 𝐷 − 𝐴. Since 𝐿 is diagonally dominant, 𝐿 ≽ 0.

• Normalized Laplacian matrix ℒ ≝ 𝐷;
#
$ 𝐷 − 𝐴 𝐷;

#
$ = 𝐼 − 𝐷;

#
$𝐴𝐷;

#
$.

min
/

𝑥*ℒ𝑥
𝑥*𝑥

=
𝐷;+/-𝑥 *𝐿 𝐷;+/-𝑥

𝑥*𝑥
≥ 0

• Therefore, ℒ ≽ 0



Laplacian matrix

• 𝜆 is an eigenvalue of the normalized adjacency matrix iff 1 − 𝜆 is an eigenvalue of 
ℒ.
• Let 0 ≤ 𝜆- ≤ ⋯ ≤ 𝜆! ≤ 2 be the eigenvalues of ℒ. Graph is disconnected iff 𝜆- =
0.
• Graph is “close to disconnected” iff 𝜆- is “close” to 0?

𝑆

̅𝑆



Graph Cuts

• Expansion of a set S

𝜙 𝑆 ≝
∑!∈#,%∈&∖#𝑤!%

∑!∈# 𝑑!
𝜙 𝑆 = ( #,#̅

* #
for 𝑑-regular unweighted graphs

• Other definitions (vol 𝑆 ≝ ∑!∈# 𝑑!)

𝜙 𝑆 ≝
∑!∈#,%∈&∖#𝑤!%

min vol 𝑆 , vol 𝑉 ∖ 𝑆
• Expansion of the graph

𝜙+ ≝ min
#:-./ # 0-./ & /2

𝜙 𝑆

𝜙+ = min
#∶ # 0 & /2

𝜙 𝑆 for 𝑑-regular graphs. 

𝑆

̅𝑆



Cheeger’s Inequality

• Cheeger’s Inequality [Alon, Milman - 85, Alon - 86]

𝜆2
2
≤ 𝜙+ ≤ 2𝜆2

• Can be used to find a “sparse cut” in a graph.

• Can be used to certify expansion (approximately).

𝑆

̅𝑆



Expander Graphs

• A graph 𝐺 is said to be an 𝛼–expander, if 𝜙! ≥ 𝛼. Informally, 𝐺 is an expander if 𝜙! = Ω 1 .
• Examples of expanders: complete graphs, random graphs (w.h.p.), many explicit 

constructions, etc.
• Examples of non-expanders: cycles, paths, etc.

• A 𝑑-regular graph is called a 𝛽-spectral expander if max
"∈ $,…,'

𝜎" ≤ 𝛽, where 𝜎"s are the 
eigenvalues of the adjacency matrix.

• Using Cheeger’s inequality, such graphs have expansion at least 𝑑 − 𝛽 /(2𝑑).

• Many applications of expander graphs [Expander Graphs and their Applications -Hoory, Linial
and Wigderson].



Random Walks on Graphs
• Start with a probability distribution 𝜇4

• random walks on regular graphs

𝜇567 = 7
*
𝐴 ⋅ 𝜇5

• Stationary distribution 𝜇∗ = 𝐴/𝑑 𝜇∗

• If graph is connected, then 𝟏/𝑛 is the unique stationary distribution.

• 𝛿-mixing time: smallest time 𝑡 such that 𝑑9& 𝜇5, 𝜇∗ ≤ 𝛿 for any starting 
distribution 𝜇4.

𝑑9& 𝜇5, 𝜇∗ =
1
2
𝜇5 − 𝜇∗ 7

𝜇4𝜇7𝜇2𝜇:𝜇;



Applications of Random Walks on expanders

• Let 𝐵 be a set of strings, Alg a randomized algorithm to decide whether an input string 𝑥
belongs to 𝐵 or not. Suppose Alg uses 𝑅 bits of randomness and satisfies the following 
properties.

• If 𝑥 ∈ 𝐵, Pr
(
Alg 𝑥, 𝑟 = 𝑦𝑒𝑠 ≥ )

$
.

• If 𝑥 ∉ 𝐵, Pr
(
Alg 𝑥, 𝑟 = 𝑛𝑜 = 1.

• Alg2: Run Alg with 𝑘 independent 𝑟), … , 𝑟*, output yes if any of the runs returns yes.

• If 𝑥 ∈ 𝐵, Pr
(!,…,("

Alg2 𝑥, 𝑟 = 𝑦𝑒𝑠 ≥ 1 − )
$"

.

• If 𝑥 ∉ 𝐵, Pr
(!,…,("

Alg2 𝑥, 𝑟 = 𝑛𝑜 = 1.

• Number of bits of randomness needed =𝑘𝑅.



• Construct a 𝑑-regular expander graph on 2> vertices for some 𝑑 = 𝑂(1) and 𝛽 ≤
0.8 𝑑.
• Sample 𝑟+ to be uniform random vertex in 𝐺. Sample 𝑟#1+ to be a uniform random 

neighbor of 𝑟# for 𝑖 ≥ 1.
• Number of random bits used = 𝑅 + log- 𝑑 (𝑙 − 1).

• Idea: Fix an 𝑥 ∈ 𝐵. Let  𝑆 = 𝑟: Alg 𝑥, 𝑟 = 𝑦𝑒𝑠 . Since 𝑆 is “large”, probability 
of a random walk avoiding 𝑆 is small.

• Lemma: Total number of walks of length 𝑙 between 𝑖 and 𝑗 = 𝐴? #$. (why?)

• Total number of walks of length 𝑙 = 𝟏*𝐴?𝟏 = 𝑑?𝑛



• Define

𝐴̅"+ = I
0 𝑖𝑓 𝑖 𝑜𝑟 𝑗 ∈ 𝑆
𝐴"+ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Total number of walks of length 𝑙 that avoid 𝑆 = 𝟏,𝐴̅-𝟏 ≤ 𝜆./0 𝐴̅ -𝑛
• Idea: Show that 𝜆./0 𝐴̅ < 𝑑.

• Probability of avoiding 𝑆 ≤ 1#$% 3̅ &'
4&'

= 1#$% 3̅
4

-

• Example: 
𝟏,𝐴̅𝟏
𝟏,𝟏 =

∑"∑+ 𝐴̅"+
𝑛 =

∑"∈5∖7∑+∈5∖7𝐴"+
𝑛 ≤

∑"∈5∖7 𝑑
𝑛 =

𝑛 − 𝑆
𝑛 𝑑 ≤

𝑑
2

• For any 𝑥 ∈ ℝ', define 𝑧" = I0 𝑖𝑓 𝑖 ∈ 𝑆𝑥" 𝑖𝑓 𝑖 ∉ 𝑆

𝑥,𝐴̅𝑥 =Y
"+

𝐴̅"+𝑥"𝑥+ =Y
"+

𝐴"+𝑧"𝑧+ = 𝑧,𝐴𝑧



• Write 𝑧 = 𝑐+𝟏 + 𝑧@. 
𝑧*𝐴𝑧 = 𝑐+𝟏 + 𝑧@ *𝐴 𝑐+𝟏 + 𝑧@ = 𝑐+𝟏 + 𝑧@ * 𝑑𝑐+𝟏 + 𝐴𝑧@
= 𝑑 𝑐+𝟏 - + 𝑐+𝟏*𝐴𝑧@ + 0 + 𝑧@*𝐴𝑧@ = 𝑑 𝑐+𝟏 - + 𝑧@*𝐴𝑧@

• Then 𝑧, 𝟏 = 𝑐+ 𝟏, 𝟏 + 0. Therefore, 𝑐+ = 𝑧, 𝟏 /𝑛.

𝑐+𝟏 - = 𝑐+-𝑛 = 𝑛
1
𝑛-

𝑧, 𝟏 - =
1
𝑛

<
#

𝑧#

-

≤
1
𝑛
𝑛 − 𝑆 <

#

𝑧#- ≤
1
2
𝑧*𝑧

• Since 𝐺 is a 𝛽-spectral expander
𝑧@*𝐴𝑧@
𝑧@*𝑧@

≤ max
A@𝟏

𝑦*𝐴𝑦
𝑦*𝑦

≤ 𝛽

• Therefore,
𝑧*𝐴𝑧 ≤ 𝑑 𝑐+𝟏 - + 𝛽 𝑧@ - = 𝑑 𝑐+𝟏 - + 𝛽 𝑧 - − 𝑐+𝟏 -

= 𝑑 − 𝛽 𝑐+𝟏 - + 𝛽 𝑧 - ≤ 𝑑 − 𝛽
1
2
𝑧 - + 𝛽 𝑧 - =

𝑑 + 𝛽
2

𝑧 -



𝑥*𝐴̅𝑥 = 𝑧*𝐴𝑧 ≤
𝑑 + 𝛽
2

𝑧 - ≤
𝑑 + 𝛽
2

𝑥 -

• Therefore, 𝜆CD/ 𝐴̅ ≤ E1F
-

• Probability of avoiding 𝑆 ≤ G%&' H̅
E

?
≤ 0.9 ? (using 𝛽 ≤ 0.8𝑑).

• Therefore, using 𝑅 + 𝑂 𝑘 bits of randomness, can reduce error probability to +-"



Mixing time of random walks on graphs

• 𝛿-mixing time: smallest time 𝑡 such that 𝑑,5 𝜇8 , 𝜇∗ ≤ 𝛿 for any starting distribution 𝜇:.

• 𝜇: = 𝜇:, 𝟏
'

𝟏
'
+ 𝜇<: = ∑" 𝜇":

𝟏
'
+ 𝜇<: =

𝟏
'
+ 𝜇<:

• 𝜇8 = 𝐴/𝑑 8𝜇: = 𝟏
'
+ 𝐴/𝑑 8𝜇<:

• If graph is a 𝛽-spectral expander, then

𝜇8 −
𝟏
𝑛 $

$
=

𝐴
𝑑

8
𝜇<:

$

= 𝜇<: , 𝐴
𝑑

$8
𝜇<: ≤

𝛽
𝑑

$8

𝜇<:
$ ≤

𝛽
𝑑

$8

𝜇8 −
𝟏
𝑛 )

≤ 𝑛 𝜇8 −
𝟏
𝑛 $

≤ 𝑛
𝛽
𝑑

8

• Theorem: for 𝑡 = 𝑂 =>? '/A
=>? 4/B

, we have 𝑑,5 𝜇8 , 𝜇∗ ≤ 𝛿.



Mixing Time

• (H.W.) Give an upper bound on mixing time as a function of 𝜙= .

• Levin, Peres, Wilmer – “Markov Chains and Mixing Times”
• Tetali, Montenegro - “Mathematical Aspects of Mixing Times in 

Markov Chains”.


