Based on lecture notes by Dan Speilman, Madhur Tulsiani, etc.

Gershgorin Circle Theorem

Let $M \in \mathbb{C}^{n \times n}$, $R_i \stackrel{\text{def}}{=} \sum_{j \neq i} |M_{ij}|$ and $\operatorname{Disc}(a, b) \stackrel{\text{def}}{=} \{z : |z - a| \leq b\}$. Then the eigenvalues of M belong to $\bigcup_{i \in [n]} \operatorname{Disc}(M_{ii}, R_i)$.

- Let $x \in \mathbb{C}^n$ be an eigenvector of M with eigenvalue λ . Let $i \stackrel{\text{def}}{=} \operatorname{argmax}_{j \in [n]} |x_j|$.
- $Mx = \lambda x$ implies $\sum_{i} M_{ij} x_{i} = \lambda x_{i}$. Therefore,

$$\lambda = \sum_{j} M_{ij} x_j / x_i = M_{ii} + \sum_{j \neq i} M_{ij} x_j / x_i$$

Thus,

$$|\lambda - M_{ii}| = \left| \sum_{j \neq i} M_{ij} x_j / x_i \right| \le \sum_{j \neq i} \left| M_{ij} \right| \left| \frac{x_j}{x_i} \right| \le \sum_{j \neq i} \left| M_{ij} \right| = R_i$$

Applications of Gershgorin Circle Theorem

- Graphs of maximum degree d: all eigenvalues of adjacency matrix lie in [-d, d].
- Graphs with self loops: Let G be a graph where vertex i has degree d_i , and also has a self-loop of weight d_i . All eigenvalues of its adjacency matrix lie in $\left[0,2\max_i d_i\right]$.
- Diagonally dominant matrices: A matrix M is diagonally dominant if $|M_{ii}| \ge \sum_{j \ne i} |M_{ij}|$. If M is symmetric and diagonally dominant, then $M \ge 0$, i.e. M is positive semidefinite.

Cholesky Decomposition

• Theorem: $M \ge 0$ iff there exists a matrix A such that $M = A^T A$.

•
$$M = V\Lambda V^T = V\Lambda^{1/2}\Lambda^{1/2}V^T = (\Lambda^{1/2}V^T)^T(\Lambda^{1/2}V^T).$$

• This decomposition is not unique: Let R be any rotation matrix, and let a,b be any vectors. Then $\langle Ra,Rb\rangle=\langle a,b\rangle$.

• Used in semidefinite programming (SDP) based approximation algorithms, etc.

Rayleigh quotient $R_M(x) \stackrel{\text{def}}{=} \frac{x^T M x}{x^T x}$ $R_M(v_i) = \sigma_i$

Courant-Fischer Theorem

• Theorem: For a symmetric matrix M with eigenvalues $\sigma_1 \ge \cdots \ge \sigma_n$ and corresponding eigenvectors v_1, \ldots, v_n respectively,

$$v_1 = \operatorname{argmax}_{x} \frac{x^T M x}{x^T x}$$
 and $v_k = \operatorname{argmax}_{x \perp v_1, \dots v_{k-1}} \frac{x^T M x}{x^T x}$

• Theorem:

$$\sigma_k = \max_{S: \operatorname{rank}(S) = k} \min_{x \in S} \frac{x^T M x}{x^T x} = \min_{T: \operatorname{rank}(T) = n - k + 1} \max_{x \in T} \frac{x^T M x}{x^T x}$$

- Moreover, the optima is achieved when S is $span\{v_1, ..., v_k\}$ and T is $span\{v_k, ..., v_n\}$. (H.W.)
- Choosing $S = \operatorname{span}\{v_1, \dots, v_k\}$, for an $x \in S$ write $x = c_1v_1 + \dots + c_kv_k$ $\frac{x^TMx}{x^Tx} = \dots = \frac{\sum_{i \in [k]} c_i^2 \sigma_i}{\sum_{i \in [k]} c_i^2} \geq \sigma_k$
- Therefore, $\sigma_k \leq \max_{S: \operatorname{rank}(S) = k} \min_{x \in S} \frac{x^T M x}{x^T x}$.

Courant-Fischer Theorem

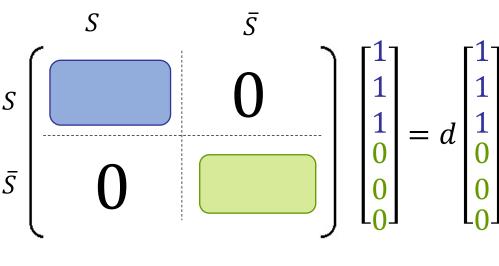
- Let S be the optimal subspace of rank k and and let $T_k = \text{span}\{v_k, v_{k+1}, \dots, v_n\}$.
- Since $\operatorname{rank}(S) + \operatorname{rank}(T_k) = k + (n k + 1) > n$, we have $S \cap T_k \neq \emptyset$ $\min_{x \in S} \frac{x^T M x}{x^T x} \leq \min_{x \in S \cap T_k} \frac{x^T M x}{x^T x}$
- Let $x \in S \cap T_k$ be the optimal vector above, write $x = c_k v_k + \cdots + c_n v_n$.

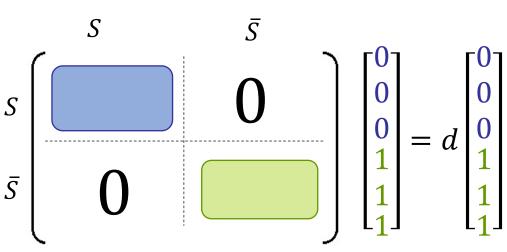
$$\frac{x^T M x}{x^T x} = \frac{\sum_{i=k}^n c_i^2 \sigma_i}{\sum_{i=k}^n c_i^2} \le \sigma_k$$

• Therefore, $\max_{S: \operatorname{rank}(S) = k} \min_{x \in S} \frac{x^T M x}{x^T x} \le \sigma_k$ and hence $\sigma_k = \max_{S: \operatorname{rank}(S) = k} \min_{x \in S} \frac{x^T M x}{x^T x}$.

Graph Matrices

- For a d-regular graph, every row and column of A sums to d. Therefore, $A\mathbf{1} = d\mathbf{1}$.
- Therefore *d* is an eigenvalue of *A* with eigenvector **1**.
- Since all its eigenvalues line in [-d, d], d is its largest eigenvalue.
- Second largest eigenvalue = *d* iff graph is disconnected.
- Multiplicity of eigenvalue d = number of components in graph.





Non-regular graphs

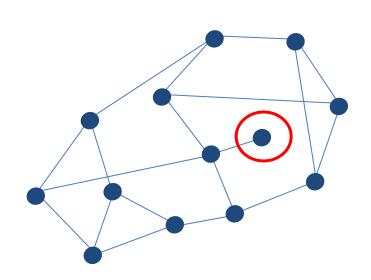
- A_{ij} = weight of edge $\{i,j\}$. $d_i \stackrel{\text{def}}{=} \sum_{j \neq i} A_{ij}$.
- Normalized adjacency matrix: $D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$
- Eigenvalues lie in [-1,1].
- Laplacian Matrix $L \stackrel{\text{def}}{=} D A$. Since L is diagonally dominant, $L \geqslant 0$.
- Normalized Laplacian matrix $\mathcal{L} \stackrel{\text{def}}{=} D^{-\frac{1}{2}}(D-A)D^{-\frac{1}{2}} = I D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$.

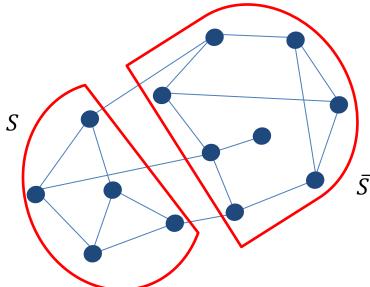
$$\min_{x} \frac{x^{T} \mathcal{L}x}{x^{T} x} = \frac{\left(D^{-1/2} x\right)^{T} L\left(D^{-1/2} x\right)}{x^{T} x} \ge 0$$

• Therefore, $\mathcal{L} \geq 0$

Laplacian matrix

- λ is an eigenvalue of the normalized adjacency matrix iff 1λ is an eigenvalue of \mathcal{L} .
- Let $0 \le \lambda_2 \le \cdots \le \lambda_n \le 2$ be the eigenvalues of \mathcal{L} . Graph is disconnected iff $\lambda_2 = 0$.
- Graph is "close to disconnected" iff λ_2 is "close" to 0?





Graph Cuts

Expansion of a set S

$$\phi(S) \stackrel{\text{def}}{=} \frac{\sum_{i \in S, j \in V \setminus S} w_{ij}}{\sum_{i \in S} d_i}$$

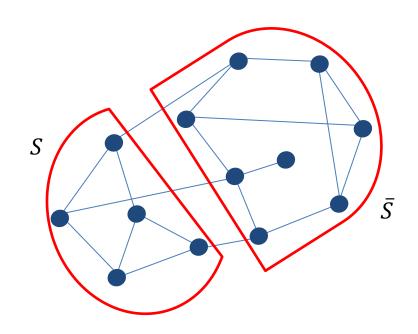
 $\phi(S) = \frac{|E(S,\bar{S})|}{d|S|}$ for d-regular unweighted graphs

• Other definitions $(\operatorname{vol}(S) \stackrel{\text{def}}{=} \sum_{i \in S} d_i)$ $\phi(S) \stackrel{\text{def}}{=} \frac{\sum_{i \in S, j \in V \setminus S} w_{ij}}{\min\{\operatorname{vol}(S), \operatorname{vol}(V \setminus S)\}}$

Expansion of the graph

$$\phi_G \stackrel{\text{def}}{=} \min_{S: \text{vol}(S) \leq \text{vol}(V)/2} \phi(S)$$

 $\phi_G = \min_{S:|S| \le |V|/2} \phi(S)$ for d-regular graphs.

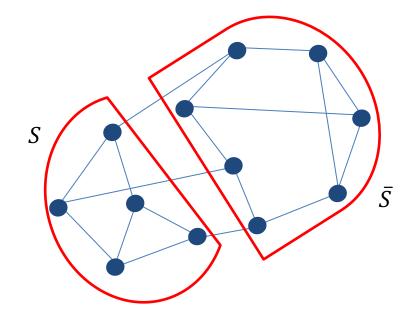


Cheeger's Inequality

• Cheeger's Inequality [Alon, Milman - 85, Alon - 86]

$$\frac{\lambda_2}{2} \le \phi_G \le \sqrt{2\lambda_2}$$

- Can be used to find a "sparse cut" in a graph.
- Can be used to certify expansion (approximately).



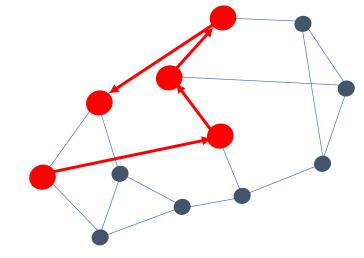
Expander Graphs

- A graph G is said to be an α -expander, if $\phi_G \ge \alpha$. Informally, G is an expander if $\phi_G = \Omega(1)$.
- Examples of expanders: complete graphs, random graphs (w.h.p.), many explicit constructions, etc.
- Examples of non-expanders: cycles, paths, etc.
- A d-regular graph is called a β -spectral expander if $\max_{i \in \{2, \dots, n\}} |\sigma_i| \leq \beta$, where σ_i s are the eigenvalues of the adjacency matrix.
- Using Cheeger's inequality, such graphs have expansion at least $(d \beta)/(2d)$.
- Many applications of expander graphs [Expander Graphs and their Applications -Hoory, Linial and Wigderson].

Random Walks on Graphs

- Start with a probability distribution μ^0
- random walks on regular graphs

$$\mu^{t+1} = \frac{1}{d}A \cdot \mu^t$$



- Stationary distribution $\mu^* = (A/d)\mu^*$
- If graph is connected, then 1/n is the unique stationary distribution.
- δ -mixing time: smallest time t such that $d_{TV}(\mu^t, \mu^*) \leq \delta$ for any starting distribution μ^0 .

$$d_{TV}(\mu^t, \mu^*) = \frac{1}{2} \|\mu^t - \mu^*\|_1$$

Applications of Random Walks on expanders

- Let B be a set of strings, Alg a randomized algorithm to decide whether an input string x belongs to B or not. Suppose Alg uses R bits of randomness and satisfies the following properties.
- If $x \in B$, $\Pr_r[Alg(x,r) = yes] \ge \frac{1}{2}$.
- If $x \notin B$, $\Pr_r[Alg(x,r) = no] = 1$.
- Alg2: Run Alg with k independent r_1, \dots, r_k , output yes if any of the runs returns yes.
- If $x \in B$, $\Pr_{r_1, \dots, r_k}[\text{Alg2}(x, r) = yes] \ge 1 \frac{1}{2^k}$.
- If $x \notin B$, $\Pr_{r_1,\dots,r_k}[\text{Alg2}(x,r) = no] = 1$.
- Number of bits of randomness needed =kR.

- Construct a d-regular expander graph on 2^R vertices for some d=O(1) and $\beta \leq 0.8 \ d$.
- Sample r_1 to be uniform random vertex in G. Sample r_{i+1} to be a uniform random neighbor of r_i for $i \ge 1$.
- Number of random bits used = $R + \lceil \log_2 d \rceil (l-1)$.
- Idea: Fix an $x \in B$. Let $S = \{r : Alg(x, r) = yes\}$. Since |S| is "large", probability of a random walk avoiding S is small.
- Lemma: Total number of walks of length l between i and $j = (A^l)_{ij}$. (why?)
- Total number of walks of length $l = \mathbf{1}^T A^l \mathbf{1} = d^l n$

• Define

$$\bar{A}_{ij} = \begin{cases} 0 & if i \text{ or } j \in S \\ A_{ij} & otherwise \end{cases}$$

- Total number of walks of length l that avoid $S = \mathbf{1}^T \bar{A}^l \mathbf{1} \leq \lambda_{max}(\bar{A})^l n$
- Idea: Show that $\lambda_{max}(\bar{A}) < d$.
- Probability of avoiding $S \leq \frac{\lambda_{max}(\bar{A})^{l}n}{d^{l}n} = \left(\frac{\lambda_{max}(\bar{A})}{d}\right)^{l}$
- Example:

$$\frac{\mathbf{1}^T \bar{A} \mathbf{1}}{\mathbf{1}^T \mathbf{1}} = \frac{\sum_i \sum_j \bar{A}_{ij}}{n} = \frac{\sum_{i \in V \setminus S} \sum_{j \in V \setminus S} A_{ij}}{n} \le \frac{\sum_{i \in V \setminus S} d}{n} = \frac{n - |S|}{n} d \le \frac{d}{2}$$

• For any
$$x \in \mathbb{R}^n$$
, define $z_i = \begin{cases} 0 \ if \ i \in S \\ x_i \ if \ i \notin S \end{cases}$
$$x^T \bar{A} x = \sum_{ij} \bar{A}_{ij} x_i x_j = \sum_{ij} A_{ij} z_i z_j = z^T A z$$

• Write $z = c_1 1 + z_{\perp}$.

$$z^{T}Az = (c_{1}\mathbf{1} + z_{\perp})^{T}A(c_{1}\mathbf{1} + z_{\perp}) = (c_{1}\mathbf{1} + z_{\perp})^{T}(dc_{1}\mathbf{1} + Az_{\perp})$$

= $d\|c_{1}\mathbf{1}\|^{2} + c_{1}\mathbf{1}^{T}Az_{\perp} + 0 + z_{\perp}^{T}Az_{\perp} = d\|c_{1}\mathbf{1}\|^{2} + z_{\perp}^{T}Az_{\perp}$

• Then $\langle z, \mathbf{1} \rangle = c_1 \langle \mathbf{1}, \mathbf{1} \rangle + 0$. Therefore, $c_1 = \langle z, \mathbf{1} \rangle / n$.

$$||c_1 \mathbf{1}||^2 = c_1^2 n = n \frac{1}{n^2} \langle z, \mathbf{1} \rangle^2 = \frac{1}{n} \left(\sum_i z_i \right)^2 \le \frac{1}{n} (n - |S|) \sum_i z_i^2 \le \frac{1}{2} z^T z$$

• Since G is a β -spectral expander

$$\frac{z_{\perp}^T A z_{\perp}}{z_{\perp}^T z_{\perp}} \le \max_{y \perp 1} \frac{y^T A y}{y^T y} \le \beta$$

• Therefore,

$$z^{T}Az \leq d\|c_{1}\mathbf{1}\|^{2} + \beta\|z_{\perp}\|^{2} = d\|c_{1}\mathbf{1}\|^{2} + \beta(\|z\|^{2} - \|c_{1}\mathbf{1}\|^{2})$$

$$= (d - \beta)\|c_{1}\mathbf{1}\|^{2} + \beta(\|z\|^{2}) \leq (d - \beta)\left(\frac{1}{2}\|z\|^{2}\right) + \beta\|z\|^{2} = \frac{d + \beta}{2}\|z\|^{2}$$

$$x^T \bar{A} x = z^T A z \le \frac{d+\beta}{2} ||z||^2 \le \frac{d+\beta}{2} ||x||^2$$

- Therefore, $\lambda_{max}(\bar{A}) \leq \frac{d+\beta}{2}$
- Probability of avoiding $S \leq \left(\frac{\lambda_{max}(\bar{A})}{d}\right)^l \leq (0.9)^l$ (using $\beta \leq 0.8d$).
- Therefore, using R + O(k) bits of randomness, can reduce error probability to $\frac{1}{2^k}$

Mixing time of random walks on graphs

• δ -mixing time: smallest time t such that $d_{TV}(\mu^t, \mu^*) \leq \delta$ for any starting distribution μ^0 .

•
$$\mu^0 = \left\langle \mu^0, \frac{1}{\sqrt{n}} \right\rangle \frac{1}{\sqrt{n}} + \mu^0_{\perp} = \left(\sum_i \mu^0_i \right) \frac{1}{n} + \mu^0_{\perp} = \frac{1}{n} + \mu^0_{\perp}$$

•
$$\mu^t = (A/d)^t \mu^0 = \frac{1}{n} + (A/d)^t \mu_{\perp}^0$$

• If graph is a β -spectral expander, then

$$\left\|\mu^{t} - \frac{\mathbf{1}}{n}\right\|_{2}^{2} = \left\|\left(\frac{A}{d}\right)^{t} \mu_{\perp}^{0}\right\|^{2} = (\mu_{\perp}^{0})^{T} \left(\frac{A}{d}\right)^{2t} (\mu_{\perp}^{0}) \leq \left(\frac{\beta}{d}\right)^{2t} \left\|\mu_{\perp}^{0}\right\|^{2} \leq \left(\frac{\beta}{d}\right)^{2t}$$

$$\left\|\mu^{t} - \frac{\mathbf{1}}{n}\right\|_{1} \leq \sqrt{n} \left\|\mu^{t} - \frac{\mathbf{1}}{n}\right\|_{2} \leq \sqrt{n} \left(\frac{\beta}{d}\right)^{t}$$

• Theorem: for $t = O\left(\frac{\log(n/\delta)}{\log(d/\beta)}\right)$, we have $d_{TV}(\mu^t, \mu^*) \le \delta$.

Mixing Time

• (H.W.) Give an upper bound on mixing time as a function of ϕ_G .

- Levin, Peres, Wilmer "Markov Chains and Mixing Times"
- Tetali, Montenegro "Mathematical Aspects of Mixing Times in Markov Chains".