Based on lecture notes by Dan Speilman, Madhur Tulsiani, etc.



Gershgorin Circle Theorem

let M € C", R; & Zj¢i|Ml-j| and Disc(a, b) & {z: |z — a| < b}. Then the
eigenvalues of M belong to Uef,) Disc(My;, R;).

def

* Let x € C" be an eigenvector of M with eigenvalue A. Let i & argmaxje[n]|xj|.

* Mx = Ax implies ). ; M;;x; = Ax;. Therefore,

A= EMUX]'/XL' = Mii + EMinj/Xi
J

J#i
x.
z Mijx;/xi| < 2|Mij| ‘;] < 2|Mij| = R;
JE! l

JE! JE!

* Thus,
A= My| =




Applications of Gershgorin Circle Theorem

* Graphs of maximum degree d: all eigenvalues of adjacency matrix lie in [—d, d].

* Graphs with self loops: Let G be a graph where vertex i has degree d;, and also
has a self-loop of weight d;. All eigenvalues of its adjacency matrix lie in

[O,Z miax di].

* Diagonally dominant matrices: A matrix M is diagonally dominant if |[M;;| =
Zj¢i|Ml-j|. If M is symmetric and diagonally dominant, then M = 0, i.e. M is
positive semidefinite.



Cholesky Decomposition
e Theorem: M = 0 iff there exists a matrix A such that M = AT A.
o M = VAVT = VAV2AY2YT = (A1/2yT)" (A1/2)T),

* This decomposition is not unique: Let R be any rotation matrix, and let a, b be
any vectors. Then (Ra, Rb) = (a, b).

* Used in semidefinite programming (SDP) based approximation algorithms, etc.



xT Mx

xTx

, Rayleigh quotient Ry, (x) &
Courant-Fischer Theorem Ry(0) = 0

Theorem: For a symmetric matrix M with eigenvalues g; = --- = 0, and corresponding
eigenvectors vy, ..., U, respectively,

xTMx xTMx
and v = argmaxyy,

v, = argmax
g X xTx Vk-1 xTx

Theorem:

- xTMx _ xTMx

=  max min——= min max —=
S:rank(S)=k xeS x'x T:rank(T)=n—-k+1 x€T Xx'Xx

* Moreover, the optima is achieved when S is span{vy, ..., v} and T is span{vy, ..., v, }. (H.W.)

Choosing S = span{vy, ..., Vi }, foran x € S write x = ¢;v; + -+ + C Vg

T 2

x Mx _Zie[k] Ci 0i -
T+ 2 = Uk
XX Qielk] Ci

xT Mx

Therefore, 0, < max min——.
S:rank(S)=k x€S X' X



Courant-Fischer Theorem

Let S be the optimal subspace of rank k and and let T}, = span{vy, Vi4+1, ..., Un}.

Since rank(S) + rank(Ty) =k+ (n—k+1) >n,wehaveSNT, # @
- xTMx - xTMx

min < min

x€S xTx ~— xesnT, xTx

Let x € S N T}, be the optimal vector above, write x = ¢, vy + -+ + ¢, V.

xTMx Y™, cto; B

= o
T n 2 — Yk
Xo X i=k Ci
T T
. X Mx . X Mx
e Therefore, max min < o0, and henceo, = max min

k k

S:rank(S)=k x€S xTx S:rank(S)=k x€S xTx °



Graph Matrices

* For a d-regular graph, every row and column of A4 ¢

sums to d. Therefore, A1 = d1.

* Therefore d is an eigenvalue of A with
eigenvector 1.

* Since all its eigenvalues line in [—d, d], d is its
largest eigenvalue.

» Second largest eigenvalue = d iff graph is
disconnected.

* Multiplicity of eigenvalue d = number of
components in graph.
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Non-regular graphs

¢ Aij= Weight of edge {l,]} di gt ZjilAl]

1 1
Normalized adjacency matrix: D 2AD 2

* Eigenvalues liein [—1,1].

Laplacian Matrix L < D — A. Since L i |s dlagonally dominant, L

Normalized Laplacian matrix L & D 2(D A)D 2=]-D ZAD
T 1/2 1/2
Lx D™ */“x) L{D™*“x
min — = ( ) = ( ) =0
X X' X X" X

Therefore, L = 0

O



Laplacian matrix

* Ais an eigenvalue of the normalized adjacency matrix iff 1 — A is an eigenvalue of
L.

* Let0 < A, <--- < A, < 2 be the eigenvalues of L. Graph is disconnected iff A, =
0.

e Graph is “close to disconnected” iff A, is “close” to 07

%)



Graph Cuts

* Expansion of a setS y
€S, jev\s Wij
p(S) & =
ZlES d
P (S) = IEélS.?I for d-regular unweighted graphs

* Other definitions (vol(S) £ }..ccd;)
ies,jev\s Wij

S) &
P(S) & ntvol(S), vol(V \ 8]
* Expansion of the graph
qu — Svol(S)<vol(V)/2¢( )
b = ¢ (S) for d-regular graphs.

S: |S|<|V|/2



Cheeger’s Inequality

* Cheeger’s Inequality [Alon, Milman - 85, Alon - 86]

Az
7 S ¢G S 2/12

* Can be used to find a “sparse cut” in a graph.

e Can be used to certify expansion (approximately).



Expander Graphs

A graph G is said to be an a—expander, if ¢ = a. Informally, G is an expander if ¢, = Q(1).

* Examples of expanders: complete graphs, random graphs (w.h.p.), many explicit
constructions, etc.

 Examples of non-expanders: cycles, paths, etc.

* Ad-regular graph is called a f-spectral expander if r{rzlax |o;| < B, where g;s are the
LE
eigenvalues of the adjacency matrix.

 Using Cheeger’s inequality, such graphs have expansion at least (d — ) /(2d).

 Many applications of expander graphs [Expander Graphs and their Applications -Hoory, Linial
and Wigderson].



Random Walks on Graphs

* Start with a probability distribution u°
* random walks on regular graphs

t+1 1 4 ¢t
prt=_A-u

Stationary distribution u* = (A/d)u*
If graph is connected, then 1 /7 is the unique stationary distribution.

§-mixing time: smallest time t such that d (ut, u*) < 6 for any starting
distribution u°.

1
dTV(ﬂt;.U*) = E ||.Ut — 1|y



Applications of Random Walks on expanders

* Let B be a set of strings, Alg a randomized algorithm to decide whether an input string x
belongs to B or not. Suppose Alg uses R bits of randomness and satisfies the following
properties.

 If x € B, Pr[Alg(x,r) = yes] >
r

* If x ¢ B, Pr|Alg(x,r) = no] = 1.
r

N | =

* Alg2: Run Alg with k independent 1y, ..., 1, output yes if any of the runs returns yes.
« Ifx € B, Pr [Alg2(x,r) =yes]=>1-— ik
71,0l 2

k

 Ifx ¢ B, Pr [Alg2(x,r) =no]=1.
ri1,-.. Tk

e Number of bits of randomness needed =kR.



Construct a d-regular expander graph on 2% vertices for some d = 0(1) and B <
0.8d.

Sample 77 to be uniform random vertex in G. Sample 77,1 to be a uniform random
neighbor of r; fori = 1.

Number of random bits used = R + [log, d|(l — 1).

ldea: Fixan x € B. Let S = {r: Alg(x,r) = yes}. Since |S| is “large”, probability
of a random walk avoiding S is small.

Lemma: Total number of walks of length [ between i andj = (Al)ij. (why?)

Total number of walks of length [ = 1TA!1 = d'n



Define

A;j otherwise

_ Oifiorjes

Total number of walks of length [ that avoid S =17A4'1 < 1,4, (A)'n
Idea: Show that A,,,,,(4) < d.

Amax(@'n _ (Amaxui))l

Probability of avoiding § <

din d
Example: _
17 A1 . ZiZinj _ ZiEV\SZjEV\SAij < ZiEV\Sd _n-= N d
171 n n T on n
0ifies
n : . —
Forany x € R", define z; X, ifi @S

XT/TX = Z/Tijxixj = EAijZiZj = ZTAZ
Lj Lj

<

d
2



* Writez =c¢q1+ 2.
ZTAZ = (Cll + ZJ_)TA(Cll + ZJ_) = (Cll + ZJ_)T(dC]_l + AZJ_)
- d”Cllllz + C11TAZJ_ + 0+ ZJ’I:AZJ_ = d”C11”2 + ZJ’I:AZJ_

* Then(z,1) = c4(1,1) + 0. Therefore, c; = (Z 1)/n

lex 1l = cn = - (2,1)2 = %(Z ) S ish Y et <

* Since G is a f-spectral expander
Azl yTAy
= < max

l\JIb—\

<p

* Therefore,
z"Az < d|lc11]|1% + BllzoI* = dlley 111> + BIzII1% — ller 11%)

1 d
= (d - B)lles I + Bl < (d — ) (311212 + Bl = =L

2
—— IlzIl



xTAx = zTAz < Iz||? < 1 x |2

d+p d+p
2 2

* Therefore, A4, (4) < d—;ﬁ

1
 Probability of avoiding S < (Am“;(A)) < (0.9)! (using B < 0.84d).

* Therefore, using R + O(k) bits of randomness, can reduce error probability to 2—1,(



Mixing time of random walks on graphs

5-mixing time: smallest time t such that d, (ut, u*) < 6 for any starting distribution p°.
1\ 1 1 1
u = <M0,\/—T—l>\/—ﬁ+ p = (Biw)) -+l =—+pd

1
ut = (A/d)u’ ==+ (A/d)'ul
If graph is a f-spectral expander, then

1112 N 2 R IBZt , IBZt
t _ — _ 0 — ONT | 0 < = 0 <(_)
U nll, ”(d) 2 (ui) (d) ('ul)_(d)t”“l” =\
1 1 p
<=2, < )
u nl_x/ﬁ‘u nz_x/ﬁ 7
log(n/é)

Theorem: fort = 0 ( ), we have d, (ut, u*) < 6.

log(d/B)



Mixing Time
* (H.W.) Give an upper bound on mixing time as a function of ¢.

* Levin, Peres, Wilmer — “Markov Chains and Mixing Times”

* Tetali, Montenegro - “Mathematical Aspects of Mixing Times in
Markov Chains”.



