Singular Value Decomposition

Based on

(Chapter 1 of) **Spectral Algorithms** by *Kannan and Vempala* (Chapter 3 of) **Foundations of Data Science** by *Blum, Hopcroft and Kannan*

- Input to many computational problems can be represented as matrices.
- Spectrum of a matrix: eigenvalues, eigenvectors, singular values, singular vectors

Eigenvalues & eigenvectors

• For an $n \times n$ square matrix A, x is an eigenvector with eigenvalue λ if $Ax = \lambda x$.

$$Ax = \lambda x \text{ iff } (A - \lambda I)x = 0$$

- $\det(A \lambda I) = 0$.
- Degree n polynomial has n complex roots (not necessarily distinct).
- A must be a square matrix for it to have eigenvalues & eigenvectors.

Eigenvalues & eigenvectors of symmetric matrices

If A is a symmetric matrix, then

- all its eigenvalues are real.
- Let x_1 and x_2 are eigenvectors with eigenvalue λ_1 and λ_2 respectively. If $\lambda_1 \neq \lambda_2$, then $\langle x_1, x_2 \rangle = 0$.

$$\lambda_1 \langle x_1, x_2 \rangle = \langle Ax_1, x_2 \rangle = x_1^T A^T x_2 = x_1^T (\lambda_2 x_2) = \lambda_2 \langle x_1, x_2 \rangle$$

- If $\lambda_1 = \lambda_2$, then $c_1x_1 + c_2x_2$ is an eigenvector $\forall c_1, c_2 \in \mathbb{R}$ $A(c_1x_1 + c_2x_2) = c_1Ax_1 + c_2Ax_2 = \lambda_1(c_1x_1 + c_2x_2)$
- Therefore, $A = V\Lambda V^T$, where columns of V are the eigenvectors and Λ is a diagonal matrix with Λ_{ii} being the eigenvalue of v_i (ith column of V)

$$Av_i = V\Lambda V^T v_i = V\Lambda e_i = V\Lambda_{ii} e_i = \Lambda_{ii} v_i$$

Singular values and vectors

For a matrix $A \in \mathbb{R}^{m \times n}$, σ is a singular value with corresponding singular vectors $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$ if they satisfy following two equations

- $Av = \sigma u$ and $u^T A = \sigma v^T$
- u is called a "left singular vector" of A, and v is called a "right singular vectors" of A.
- Without loss of generality, assume $\|u\|=\|v\|=1$ since $\sigma\|u\|^2=u^T(\sigma u)=u^TAv=(\sigma v^T)v=\sigma\|v\|^2$

Singular values vs Eigenvalues

- Singular vectors of $A \equiv \text{Eigenvectors of } A^T A$
- $(A^T A)v = A^T (\sigma u) = \sigma (u^T A)^T = \sigma (\sigma v^T)^T = \sigma^2 v$
- Let v be an eigenvector of A^TA with eigenvalue λ . Then, $A^TAv = \lambda v$. $\lambda ||v||^2 = v^T(\lambda v) = v^T(A^TAv) = (Av)^T(Av) = ||Av||^2$
- Therefore, $\lambda > 0$.
- Set $\sigma = \sqrt{\lambda}$ and $u = Av/\sigma$ and, we get $Av = \sigma u$ and $u^T A = \left(\frac{Av}{\sigma}\right)^T A = \frac{v^T A^T A}{\sigma} = \frac{(A^T Av)^T}{\sigma} = \frac{(\lambda v)^T}{\sigma} = \sigma v^T$
- σ is a singular value of A iff σ^2 is an eigenvalue of A^TA .

Top singular value

- Theorem: $v_1' \stackrel{\text{def}}{=} \operatorname{argmax}_{x \in \mathbb{R}^n} \|Ax\| / \|x\|$ is a singular vector of A, and $\|Av_1'\| / \|v_1'\|$ is the largest singular value of A.
- Let $v_1, ..., v_n$ be the (orthonormal) eigenvectors of A^TA with eigenvalues $\sigma_1^2 \ge \cdots \ge \sigma_n^2$.
- For any $x \in \mathbb{R}^n$, let $x = \sum_{i \in [n]} c_i v_i$

$$||Ax||^{2} = (Ax)^{T}(Ax) = x^{T}(A^{T}A)x = \left(\sum_{j} c_{j}v_{j}\right)^{T}(A^{T}A)\left(\sum_{i} c_{i}v_{i}\right)$$
$$= \left(\sum_{j} c_{j}v_{j}\right)^{T}\left(\sum_{i} c_{i}\sigma_{i}^{2}v_{i}\right) = \sum_{j} \sum_{i} c_{i}c_{j}\sigma_{i}^{2}v_{j}^{T}v_{i} = \sum_{i} c_{i}^{2}\sigma_{i}^{2}$$

Top Singular value

• Therefore,

$$\frac{\|Ax\|}{\|x\|} = \sqrt{\frac{\sum_{i} c_i^2 \sigma_i^2}{\sum_{i} c_i^2}} \le \sigma_1 \quad \forall \ x \in \mathbb{R}^n$$

- Choosing $x = v_1$ gives $\frac{\|Av_1\|}{\|v_1\|} = \sigma_1$.
- v_1 is an eigenvector of A^TA , therefore, it is also a singular vector of A.
- $||Av_1||^2$ is the largest eigenvalue of A^TA . Therefore, $||Av_1||$ is the largest singular value of A.

Best fit line

- Given a set of points a_1, \dots, a_m , find the "best fit" line.
- Find the direction v such the squared length of projections of the points on v is maximized

$$\operatorname{argmax}_{v:\|v\|=1} \sum_{i \in [m]} \langle a_i, v \rangle^2$$

- Pythagoras theorem: Projection² + distance² = length²
- $\sum_{i \in [m]} \text{Projection}(i)^2 + \sum_{i \in [m]} \text{distance}(i)^2 = \sum_{i \in [m]} ||a_i||^2$

Best fit line

• Let A be the matrix with rows as a_1, \ldots, a_m . Then

$$\sum_{i \in [m]} \langle a_i, v \rangle^2 = ||Av||^2$$

• Therefore, $\arg\max_{v:\|v\|=1}\sum_{i\in[m]}\langle a_i,v\rangle^2=\arg\max_{v:\|v\|=1}\|Av\|^2=v_1$

• Top singular vector gives the best fit line for a set of points.

Singular values

- Define $v_1 = \operatorname{argmax}_{x \in \mathbb{R}^n} \|Ax\|/\|x\|$ and $v_i' \stackrel{\text{def}}{=} \operatorname{argmax} \|Ax\|/\|x\|$ $\underset{x \perp v_1' \dots v_{i-1}'}{\operatorname{argmax}} \|Ax\|/\|x\|$
- Theorem: v'_k is the kth singular vector of A.
- Proof by induction on k. Suppose, claim holds for all $i \le k-1$, i.e. $v_i' = v_i \ \forall i \le k-1$.
- Fix $x \perp v_1, \dots, v_{k-1}$. Then $x = \sum_i c_i v_i$ where $c_1 = \dots c_{k-1} = 0$.

$$||Ax||^{2} = \dots = \sum_{i} c_{i}^{2} \sigma_{i}^{2} = \sum_{i \ge k} c_{i}^{2} \sigma_{i}^{2}$$

$$\underset{x \perp v_{1} \dots v_{k-1}}{\operatorname{argmax}} ||Ax|| / ||x|| = \sqrt{\frac{\sum_{i \ge k} c_{i}^{2} \sigma_{i}^{2}}{\sum_{i \ge k} c_{i}^{2}}} \le \sigma_{k}$$

• Therefore, v_k is the kth singular vector and $||Av_k||$ is the kth largest singular value of A.

Best fit subspace

- Given a set of points A and a number k, compute a k-dimensional subspace V'_k such that the sum of the squared lengths of the projections of the points on V'_k is maximized.
- Let $w_1, ..., w_k$ be an orthonormal basis for V'_k . Sum of squared lengths of projections =

$$\sum_{i \in [m]} \left(\sum_{j \in [k]} \langle a_i, w_j \rangle^2 \right) = \sum_{j \in [k]} \left(\sum_{i \in [m]} \langle a_i, w_j \rangle^2 \right) = \sum_{j \in [k]} \left\| A w_j \right\|^2$$

- Theorem: Given a set of points A, the best fit k-dimensional subspace is given by span of the top k singular vectors (V_k) .
- Proof by induction on k. Suppose claim is true for V_{k-1} .
- Suppose V'_k is the optimal rank k subspace. Let w_1, \dots, w_k be an orthonormal basis for V'_k such that $w_k \perp V_{k-1}$.

Best fit subspace

- By optimality of V_{k-1} , we have $\|Aw_1\|^2 + \dots + \|Aw_{k-1}\|^2 \le \|Av_1\|^2 + \dots + \|Av_{k-1}\|^2$
- Since,

$$v_k = \underset{x \perp V_{k-1}}{\operatorname{argmax}} \frac{\|Ax\|^2}{\|x\|^2}$$

- we have $||Aw_k||^2 \le ||Av_k||^2$. Therefore, $||Aw_1||^2 + \dots + ||Aw_{k-1}||^2 + ||Aw_k||^2 \le ||Av_1||^2 + \dots + ||Av_{k-1}||^2 + ||Av_k||^2$
- Therefore, we V_k is as good as V'_k .
- Singular value decomposition: $A = \sum_{i \in [r]} \sigma_i u_i v_i^T = U \Sigma V^T$ (why?)
- Hint: For $X, Y \in \mathbb{R}^{m \times n}$, X = Y iff $Xv = Yv \ \forall v \in \mathbb{R}^n$

Norms

- For a vector $x \in \mathbb{R}^n$, $||x|| \stackrel{\text{def}}{=} \left(\sum_i x_i^2\right)^{1/2}$
- For an $m \times n$ matrix A, its Frobenius norm

$$||A||_F \stackrel{\text{def}}{=} \left(\sum_{i \in [m]} \sum_{j \in [n]} A_{ij}^2\right)^{1/2}$$

Spectral norm

$$||A|| \stackrel{\text{def}}{=} \max_{x \in \mathbb{R}^n} \frac{||Ax||}{||x||}$$

• Theorem: $||A|| = \sigma_1(A)$

Norms

• $||A||_F^2 = \sum_j \sigma_j^2$

$$||A||_F^2 = \sum_{i \in [m]} ||a_i||^2$$

- Since v_j s form an orthonormal basis for the row-space of A, $||a_i||^2 = \sum_j \langle a_i, v_j \rangle^2$
- Therefore,

$$||A||_F^2 = \sum_{i \in [m]} ||a_i||^2 = \sum_{i \in [m]} \sum_j \langle a_i, v_j \rangle^2 = \sum_j \sum_{i \in [m]} \langle a_i, v_j \rangle^2 = \sum_j ||Av_j||^2 = \sum_j \sigma_j^2$$

Low rank matrix approximation

- Given a matrix A, compute a rank k matrix D that minimizes $||A D||_F^2$.
- Theorem: Best rank k approximation is $A_k \stackrel{\text{def}}{=} \sum_{i \in [k]} \sigma_i u_i v_i^T$. Moreover,

$$\left\| A - \sum_{i \in [k]} \sigma_i u_i v_i^T \right\|_F^2 = \sum_{i > k} \sigma_i^2$$

- Let D be the optimal rank k matrix. $||A D||_F^2 = \sum_{i \in [m]} ||A_i D_i||^2$, where A_i and D_i are the ith rows of A and D respectively.
- We may assume that D_i is the projection of A_i on a rank k subspace (why?)
- Therefore, $||A_i D_i||^2 = ||A_i||^2 ||D_i||^2$ (why?)

Low rank matrix approximation

$$\sum_{i \in [m]} ||A_i - D_i||^2 = \sum_{i \in [m]} (||A_i||^2 - ||D_i||^2) = ||A||_F^2 - \sum_{i \in [m]} ||D_i||^2$$

• Therefore, goal is to maximize $\sum_{i \in [m]} ||D_i||^2$. Optimal subspace is given by top k singular vectors, i.e. $D_i = \sum_{j \in [k]} (A_i v_j) \cdot v_j^T = A_i \sum_{j \in [k]} v_j v_j^T$ $D = A \sum_{i \in [k]} v_j v_j^T = \sum_i \sigma_i u_i v_i^T \sum_{j \in [k]} v_j v_j^T = \sum_i \sum_{j \in [k]} \sigma_i u_i v_i^T v_j v_j^T = \sum_{i \in [k]} \sigma_i u_i v_i^T$

Spectral norm approximation

- Given a matrix A, compute a rank k matrix D that minimizes $||A D||_2^2$
- Theorem: A_k gives the best rank k approximation, and $\|A A_k\|_2^2 = \sigma_{k+1}^2$.
- Proof: $||A A_k||_2^2 = \sigma_{k+1}^2$ (why?)
- Let D be optimal matrix. Let z be a unit vector in $\mathrm{span}\{v_1,\dots,v_{k+1}\}$ such that $z\perp$

$$\operatorname{span} D. \text{ Write } z = \sum_{i \in [k+1]} c_i v_i \\ \|A - D\|_2^2 \ge \frac{\|(A - D)z\|^2}{\|z\|^2} = \frac{\|Az\|^2}{\|z\|^2} = \frac{z^T (A^T A)z}{\|z\|^2} = \frac{\sum_{i \in [k+1]} c_i^2 \sigma_i^2}{\sum_{i \in [k+1]} c_i^2} \ge \sigma_{k+1}^2$$

Power iteration

- Let A be a symmetric matrix with eigenvalues $\sigma_1 \ge \cdots \ge \sigma_n \ge 0$ and v_1, \ldots, v_n the corresponding eigenvectors.
- Eigenvalues and eigenvectors can be irrational; therefore can not be computed exactly in general.
- Goal: given A and an error parameter ϵ , compute an "approximate" topeigenvector.
- Let x_0 be a "random" unit vector. Write $x_0 = c_1 v_1 + \dots + c_n v_n$. Then $\frac{Ax_0}{\|Ax_0\|} = \frac{c_1 Av_1 + \dots + c_n Av_n}{\|Ax\|} = \frac{c_1 \sigma_1 v_1 + \dots + c_n \sigma_n v_n}{\sqrt{c_1^2 \sigma_1^2 + \dots + c_n^2 \sigma_n^2}}$

Power iteration

$$\frac{A^k x}{\|A^k x\|} = \frac{c_1 \sigma_1^k v_1 + c_2 \sigma_2^k v_2 + \dots + c_n \sigma_n^k v_n}{\sqrt{c_1^2 \sigma_1^{2k} + \dots + c_n^2 \sigma_n^{2k}}}$$

- Define $x_k \stackrel{\text{def}}{=} A^k x_0 / \|A^k x_0\|$. As $k \to \infty$, then $x_k \to v_1$.
- If $\sigma_2 \ll \sigma_1$, then "fast" convergence (how many iterations?)
- Let p be the index such that $\sigma_p \geq (1-\epsilon)\sigma_1 > \sigma_{p+1}$. Let V_p be the subspace spanned by v_1,\ldots,v_p . Compute a unit vector x whose projection on V_p is at least $1-\epsilon$.

Power iteration

- $||A^k x_0||^2 = \sum_i \sigma_i^{2k} c_i^2 \ge \sigma_1^{2k} c_1^2$
- $\sum_{i \ge p+1} \sigma_i^{2k} c_i^2 \le (1-\epsilon)^{2k} \sigma_1^{2k} \sum_{i \ge p+1} c_i^2 \le (1-\epsilon)^{2k} \sigma_1^{2k}$
- Therefore, the component of x_k orthogonal to V_p has squared length

$$\frac{\sum_{i \ge p+1} \sigma_i^{2k} c_i^2}{\|A^k x_0\|^2} \le \frac{(1-\epsilon)^{2k} \sigma_1^{2k}}{\sigma_1^{2k} c_1^2} \le \frac{e^{-2k\epsilon}}{c_1^2}$$

• Taking $k \ge \frac{1}{2\epsilon} \left(\ln \frac{1}{c_1^2 \epsilon} \right)$ suffices to ensure that $\frac{e^{-2k\epsilon}}{c_1^2} \le \epsilon$

c_1 ?

- Taking a "random" unit vector will ensure that w.h.p. $c_1 = \Omega\left(\frac{1}{\sqrt{n}}\right)$.
- Proof in [Blum, Hopcroft, Kannan].
- Therefore, taking $k = \Theta\left(\frac{1}{\epsilon}\left(\log\frac{n}{\epsilon}\right)\right)$ will suffice.
- (H.W.)What is the value of $||Ax_k||$?
- Many other methods known for computing eigenvalues and eigenvectors.