
Singular Value Decomposition
Based on 

(Chapter 1 of) Spectral Algorithms by Kannan and Vempala
(Chapter 3 of) Foundations of Data Science by Blum, Hopcroft and Kannan

• Input to many computational problems can be represented as matrices. 
• Spectrum of a matrix: eigenvalues, eigenvectors, singular values, singular vectors



Eigenvalues & eigenvectors

• For an 𝑛×𝑛 square matrix  𝐴, 𝑥 is an eigenvector with eigenvalue 𝜆 if 𝐴𝑥 = 𝜆𝑥.

𝐴𝑥 = 𝜆𝑥 iff 𝐴 − 𝜆𝐼 𝑥 = 0
• det 𝐴 − 𝜆𝐼 = 0.
• Degree 𝑛 polynomial has 𝑛 complex roots (not necessarily distinct). 
• 𝐴 must be a square matrix for it to have eigenvalues & eigenvectors. 



Eigenvalues & eigenvectors of symmetric 
matrices
If 𝐴 is a symmetric matrix, then
• all its eigenvalues are real. 
• Let 𝑥! and 𝑥" are eigenvectors with eigenvalue 𝜆! and 𝜆" respectively. If 𝜆! ≠ 𝜆", 

then 𝑥!, 𝑥" = 0.
𝜆! 𝑥!, 𝑥" = 𝐴𝑥!, 𝑥" = 𝑥!#𝐴#𝑥" = 𝑥!# 𝜆"𝑥" = 𝜆" 𝑥!, 𝑥"

• If 𝜆! = 𝜆", then 𝑐!𝑥! + 𝑐"𝑥" is an eigenvector ∀ 𝑐!, 𝑐" ∈ ℝ
𝐴 𝑐!𝑥! + 𝑐"𝑥" = 𝑐!𝐴𝑥! + 𝑐"𝐴𝑥" = 𝜆! 𝑐!𝑥! + 𝑐"𝑥"

• Therefore, 𝐴 = 𝑉Λ𝑉#, where columns of 𝑉 are the eigenvectors and Λ is a 
diagonal matrix  with Λ$$ being the eigenvalue of 𝑣$ (ith column of 𝑉)

𝐴𝑣$ = 𝑉Λ𝑉#𝑣$ = 𝑉Λ𝑒$ = 𝑉Λ$$𝑒$ = Λ$$𝑣$



Singular values and vectors

For a matrix 𝐴 ∈ ℝ%×', 𝜎 is a singular value with corresponding singular vectors 
𝑢 ∈ ℝ% and 𝑣 ∈ ℝ' if they satisfy following two equations
• 𝐴𝑣 = 𝜎𝑢 and   𝑢#𝐴 = 𝜎𝑣#

• 𝑢 is called a “left singular vector” of 𝐴, and 𝑣 is called a “right singular vectors” of 
𝐴.

• Without loss of generality, assume 𝑢 = 𝑣 = 1 since
𝜎 𝑢 " = 𝑢# 𝜎𝑢 = 𝑢#𝐴𝑣 = 𝜎𝑣# 𝑣 = 𝜎 𝑣 "



Singular values vs Eigenvalues

• Singular vectors of 𝐴 ≡ Eigenvectors of 𝐴#𝐴
• 𝐴#𝐴 𝑣 = 𝐴# 𝜎𝑢 = 𝜎 𝑢#𝐴 # = 𝜎 𝜎𝑣# # = 𝜎"𝑣

• Let 𝑣 be an eigenvector of 𝐴#𝐴 with eigenvalue 𝜆. Then, 𝐴#𝐴𝑣 = 𝜆𝑣. 
𝜆 𝑣 " = 𝑣# 𝜆𝑣 = 𝑣# 𝐴#𝐴𝑣 = 𝐴𝑣 # 𝐴𝑣 = 𝐴𝑣 "

• Therefore, 𝜆 > 0.

• Set 𝜎 = 𝜆 and 𝑢 = 𝐴𝑣/𝜎 and, we get 𝐴𝑣 = 𝜎𝑢 and

𝑢#𝐴 =
𝐴𝑣
𝜎

#
𝐴 =

𝑣#𝐴#𝐴
𝜎

=
𝐴#𝐴𝑣 #

𝜎
=

𝜆𝑣 #

𝜎
= 𝜎𝑣#

• 𝜎 is a singular value of 𝐴 iff 𝜎" is an eigenvalue of 𝐴#𝐴. 



Top singular value

• Theorem: 𝑣!( ≝ argmax)∈ℝ! 𝐴𝑥 / 𝑥 is a singular vector of 𝐴, and 𝐴𝑣!( /
𝑣!( is the largest singular value of 𝐴.

• Let 𝑣!, … , 𝑣' be the (orthonormal) eigenvectors of 𝐴#𝐴 with eigenvalues 𝜎!" ≥
⋯ ≥ 𝜎'".
• For any  𝑥 ∈ ℝ', let 𝑥 = ∑$∈ ' 𝑐$𝑣$
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Top Singular value

• Therefore,
𝐴𝑥
𝑥

=
∑$ 𝑐$"𝜎$"

∑$ 𝑐$"
≤ 𝜎! ∀ 𝑥 ∈ ℝ'

• Choosing 𝑥 = 𝑣! gives -."
."

= 𝜎!. 

• 𝑣! is an eigenvector of 𝐴#𝐴, therefore, it is also a singular vector of 𝐴.
• 𝐴𝑣! " is the largest eigenvalue of 𝐴#𝐴. Therefore, 𝐴𝑣! is the largest singular 

value of 𝐴. 



Best fit line

• Given a set of points 𝑎!, … , 𝑎", find the “best fit” line. 
• Find the direction 𝑣 such the squared length of projections of the 

points on 𝑣 is maximized 

argmax#: # %! *
&∈ "

𝑎& , 𝑣 (

• Find the direction 𝑣 such the squared length of distances of points to 
𝑣 is minimized.

• Maximize projection on line ≡ minimize distance to line
• Pythagoras theorem: Projection2 + distance2 = length2

• ∑&∈ " ProjecEon 𝑖 ( + ∑&∈ " distance 𝑖 ( = ∑&∈ " 𝑎& (
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Best fit line

• Let 𝐴 be the matrix with rows as 𝑎!, … , 𝑎%. Then 

J
$∈ %

𝑎$, 𝑣 " = 𝐴𝑣 "

• Therefore, argmax.: . 0!∑$∈ % 𝑎$, 𝑣 " = argmax.: . 0! 𝐴𝑣 " = 𝑣!

• Top singular vector gives the best fit line for a set of points. 



Singular values

• Define 𝑣! = argmax)∈ℝ! 𝐴𝑥 / 𝑥 and 𝑣&+ ≝ argmax
),#"#…#$%"

#
𝐴𝑥 / 𝑥

• Theorem: 𝑣.+ is the kth singular vector of 𝐴.
• Proof by induction on 𝑘. Suppose, claim holds for all 𝑖 ≤ 𝑘 − 1, i.e. 𝑣&+ = 𝑣& ∀𝑖 ≤ 𝑘 − 1.
• Fix 𝑥 ⊥ 𝑣!, … , 𝑣./!. Then 𝑥 = ∑& 𝑐&𝑣& where 𝑐! = ⋯𝑐./! = 0.
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• Therefore, 𝑣. is the kth singular vector and 𝐴𝑣. is the kth largest singular value of 𝐴.



Best fit subspace

• Given a set of points 𝐴 and a number 𝑘, compute a 𝑘-dimensional subspace 𝑉.+ such that 
the sum of the squared lengths of the projections of the points on 𝑉.+ is maximized.

• Let 𝑤!, … , 𝑤. be an orthonormal basis for 𝑉.+. Sum of squared lengths  of projections =

*
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• Theorem: Given a set of points 𝐴, the best fit 𝑘-dimensional subspace is given by span of 
the top 𝑘 singular vectors (𝑉.).

• Proof by induction on 𝑘. Suppose claim is true for 𝑉./!.
• Suppose 𝑉.+ is the optimal rank 𝑘 subspace. Let 𝑤!, … , 𝑤. be an orthonormal basis for 𝑉.+

such that 𝑤. ⊥ 𝑉./!. 



Best fit subspace

• By optimality of 𝑉./! , we have 
𝐴𝑤! ( +⋯+ 𝐴𝑤./! ( ≤ 𝐴𝑣! ( +⋯+ 𝐴𝑣./! (

• Since, 

𝑣. = argmax
),4&%"

𝐴𝑥 (

𝑥 (

• we have 𝐴𝑤. ( ≤ 𝐴𝑣. (. Therefore,
𝐴𝑤! ( +⋯+ 𝐴𝑤./! ( + 𝐴𝑤. ( ≤ 𝐴𝑣! ( +⋯+ 𝐴𝑣./! ( + 𝐴𝑣. (

• Therefore, we 𝑉. is as good as 𝑉.+. 

• Singular value decomposition: 𝐴 = ∑&∈ 5 𝜎&𝑢&𝑣&
6 = 𝑈Σ𝑉6 (why?) 

• Hint: For 𝑋, 𝑌 ∈ ℝ"×8, 𝑋 = 𝑌 iff 𝑋𝑣 = 𝑌𝑣 ∀𝑣 ∈ ℝ8



Norms

• For a vector 𝑥 ∈ ℝ', 𝑥 ≝ ∑$ 𝑥$"
!/"

• For an 𝑚×𝑛 matrix 𝐴, its Frobenius norm

𝐴 2 ≝ J
$∈[%]

J
,∈[']

𝐴$,"
!/"

• Spectral norm

𝐴 ≝ max
)∈ℝ!

𝐴𝑥
𝑥

• Theorem: 𝐴 = 𝜎! 𝐴



Norms

• 𝐴 2
" = ∑, 𝜎,"
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• Since 𝑣,s form an orthonormal basis for the row-space of 𝐴, 𝑎$ " = ∑, 𝑎$, 𝑣,
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Low rank matrix approximation

• Given a matrix 𝐴, compute a rank 𝑘 matrix 𝐷 that minimizes 𝐴 − 𝐷 2
" .

• Theorem: Best rank 𝑘 approximation is 𝐴5 ≝ ∑$∈[5]𝜎$𝑢$𝑣$#. Moreover,

𝐴 − J
$∈[5]

𝜎$𝑢$𝑣$#

2

"

=J
$65

𝜎$"

• Let 𝐷 be the optimal rank 𝑘 matrix. 𝐴 − 𝐷 2
" = ∑$∈[%] 𝐴$ − 𝐷$ ", where 𝐴$

and 𝐷$ are the ith rows of 𝐴 and 𝐷 respectively. 
• We may assume that 𝐷$ is the projection of 𝐴$ on a rank 𝑘 subspace (why?)
• Therefore, 𝐴$ − 𝐷$ " = 𝐴$ " − 𝐷$ " (why?)



Low rank matrix approximation

J
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• Therefore, goal is to maximize ∑$∈ % 𝐷$ ". Optimal subspace is given by top 𝑘
singular vectors, i.e. 𝐷$ = ∑,∈ 5 𝐴$𝑣, ⋅ 𝑣,# = 𝐴$ ∑,∈ 5 𝑣,𝑣,
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Spectral norm approximation

• Given a matrix 𝐴, compute a rank 𝑘 matrix 𝐷 that minimizes 𝐴 − 𝐷 "
"

• Theorem: 𝐴5 gives the best rank 𝑘 approximation, and 𝐴 − 𝐴5 "
" = 𝜎57!" .

• Proof: 𝐴 − 𝐴5 "
" = 𝜎57!" (why?)

• Let 𝐷 be optimal matrix. Let 𝑧 be a unit vector in span 𝑣!, … , 𝑣57! such that 𝑧 ⊥
span𝐷. Write 𝑧 = ∑$∈ 57! 𝑐$𝑣$
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Power iteration

• Let 𝐴 be a symmetric matrix with eigenvalues 𝜎! ≥ ⋯ ≥ 𝜎' ≥ 0 and 𝑣!, … , 𝑣' the 
corresponding eigenvectors.
• Eigenvalues and eigenvectors can be irrational; therefore can not be computed 

exactly in general. 
• Goal: given 𝐴 and an error parameter 𝜖, compute an “approximate” top-

eigenvector.

• Let 𝑥8 be a “random” unit vector. Write 𝑥8 = 𝑐!𝑣! +⋯+ 𝑐'𝑣'. Then 
𝐴𝑥8
𝐴𝑥8

=
𝑐!𝐴𝑣! +⋯+ 𝑐'𝐴𝑣'

𝐴𝑥
=
𝑐!𝜎!𝑣! +⋯+ 𝑐'𝜎'𝑣'
𝑐!"𝜎!" +⋯+ 𝑐'"𝜎'"



Power iteration

𝐴5𝑥
𝐴5𝑥

=
𝑐!𝜎!5𝑣! + 𝑐"𝜎"5𝑣" +⋯+ 𝑐'𝜎'5𝑣'

𝑐!"𝜎!"5 +⋯+ 𝑐'"𝜎'"5

• Define 𝑥5 ≝ 𝐴5𝑥8/ 𝐴5𝑥8 . As 𝑘 → ∞, then 𝑥5 → 𝑣!. 
• If 𝜎" ≪ 𝜎!, then “fast” convergence (how many iterations?)

• Let 𝑝 be the index such that 𝜎9 ≥ 1 − 𝜖 𝜎! > 𝜎97!. Let 𝑉9 be the subspace 
spanned by 𝑣!, … , 𝑣9. Compute a unit vector 𝑥 whose projection on 𝑉9 is at least  
1 − 𝜖.



Power iteration

• 𝐴5𝑥8
" = ∑$ 𝜎$"5 𝑐$" ≥ 𝜎!"5 𝑐!"

• ∑$:97!𝜎$"5𝑐$" ≤ 1 − 𝜖 "5𝜎!"5 ∑$:97! 𝑐$" ≤ 1 − 𝜖 "5𝜎!"5

• Therefore, the component of 𝑥5 orthogonal to 𝑉9 has squared length
∑$:97!𝜎$"5𝑐$"

𝐴5𝑥8 " ≤
1 − 𝜖 "5𝜎!"5

𝜎!"5 𝑐!"
≤
𝑒;"5<

𝑐!"

• Taking 𝑘 ≥ !
"< ln !

="#<
suffices to ensure that >

$#%&

="#
≤ 𝜖



𝑐!?

• Taking a “random” unit vector will ensure that w.h.p. 𝑐! = Ω !
'

.

• Proof in [Blum, Hopcroft, Kannan].

• Therefore, taking 𝑘 = Θ !
<
log '

<
will suffice. 

• (H.W.)What is the value of 𝐴𝑥5 ?

• Many other methods known for computing eigenvalues and eigenvectors.


