Singular Value Decomposition

Based on
(Chapter 1 of) Spectral Algorithms by Kannan and Vempala
(Chapter 3 of) Foundations of Data Science by Blum, Hopcroft and Kannan

* Input to many computational problems can be represented as matrices.

* Spectrum of a matrix: eigenvalues, eigenvectors, singular values, singular vectors



Eigenvalues & eigenvectors

* For an nXn square matrix A, x is an eigenvector with eigenvalue 1 if Ax = Ax.

Ax = Axiff(A—ADx =0
e det(4 — AI) = 0.
* Degree n polynomial has n complex roots (not necessarily distinct).

* A must be a square matrix for it to have eigenvalues & eigenvectors.



Eigenvalues & eigenvectors of symmetric
matrices

If A is a symmetric matrix, then

* all its eigenvalues are real.

* Let x; and x, are eigenvectors with eigenvalue A; and A, respectively. If A; # 1,,

then (Xl, XZ> = 0.
Adxq, x2) = (Axq, x3) = XIAsz = x{(ﬂzxz) = Ax{x1, X32)

e If A{ = A,, then cyx1 + c3x5 is an eigenvector V ¢4, c, € R
A(Clxl + szz) = Clel + C2A.X2 = /11(C1x1 + CzXz)

e Therefore, A = VAVT, where columns of V are the eigenvectors and A is a
diagonal matrix with A;; being the eigenvalue of v; (ith column of V)
Avi = VAVTUi = VAel- = VAiiei = Aiivi



Singular values and vectors

For a matrix A € R™*", g is a singular value with corresponding singular vectors
u € R™ and v € R" if they satisfy following two equations

e Av =ou and ul’4d = ov?

* uis called a “left singular vector” of A, and v is called a “right singular vectors” of
A.

* Without loss of generality, assume ||u|| = ||v|| = 1 since
allull? = u' (cu) = uT Av = (ov)v = a||v||?



Singular values vs Eigenvalues

* Singular vectors of A = Eigenvectors of ATA

c (ATAv =AT(ou) = c(WTA)T = a(ovT)T = ¢%v

* Let v be an eigenvector of AT A with eigenvalue 1. Then, ATAv = Av.
Alv|l* = v" (v) = v" (AT Av) = (Av)" (Av) = ||Av||?

 Therefore, A > 0.

 Set 0 =+V21andu = Av/o and, we get Av = ou and
- (AT vTATA  (ATAV)T ()T
o o o o

e g is a singular value of A iff 62 is an eigenvalue of AT A.
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Top singular value

I def

* Theorem: v; ¥ argmax,cgn ||Ax]||/||x]| is a singular vector of 4, and ||Avy]||/
|lv1||is the largest singular value of A.

* Let vy, ..., Uy, be the (orthonormal) eigenvectors of AT A with eigenvalues g >
. = 0f.

* Forany x € R", let x = };erpy CiV;

T
|4x[|1? = (Ax)T (Ax) = xT(ATA)x = (2 cjvj> (AT A) (2 civi>
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Top Singular value

* Therefore,

|Ax||  |¥;ciof
= |=——=-<0; Vx€eR"
||| \ Zici
. . A
* Choosing x = v, gives ””vvl”” = 0;.
1

* V4 is an eigenvector of AT A, therefore, it is also a singular vector of A.

e ||Av4||? is the largest eigenvalue of AT A. Therefore, ||Av4|| is the largest singular
value of A.



Best fit line

Given a set of points a4, ..., a,, find the “best fit” line.

Find the direction v such the squared length of projections of the
points on v is maximized

argmaxy.||y||=1 2 (a;, v)*
i1€[m]

Find the direction v such the squared length of distances of points to
v is minimized.

Maximize projection on line = minimize distance to line

Pythagoras theorem: Projection? + distance? = length?
Y ierm Projection(i)? + ¥ py, distance(i)? = X cpplla;l?




Best fit line

* Let A be the matrix with rows as a4, ..., a,,,. Then

> (a;,v)? = llavl?

ie[m]

* Therefore, argmaxy,|jy|j=1 Zie[m]{@i, V)* = argmaxy, =1 ll4v|l* = v,

* Top singular vector gives the best fit line for a set of points.



Singular values

Define v; = argmax,ern ||Ax||/|lx]| and v; & argmax |[Ax||/||x]|
x1lvi.v]_,

Theorem: vy, is the kth singular vector of A.

Proof by induction on k. Suppose, claim holds foralli < k —1,ie.v; =v; Vi < k — 1.

* Fixx L vq,...,vx_1. Thenx = }}; c;v; where ¢y = - c,_q1 = 0.
2 _ . 2 2 _ 2 2
lx|l? = - =) cto? = ) cto
i >k

) ctg?
argmax |[[Ax||/||x|| = |22t < gy
X1vq.Vp—q \ Zizk Ci

Therefore, vy, is the kth singular vector and ||Avy || is the kth largest singular value of A.



Best fit subspace

* Given a set of points A and a number k, compute a k-dimensional subspace V. such that
the sum of the squared lengths of the projections of the points on V. is maximized.

* Let wy, ..., Wy be an orthonormal basis for V.. Sum of squared lengths of projections =

D (Dt )= 3 (D lawm )= 3w

ie[m] \je[k] jelk] \ie[m]

 Theorem: Given a set of points A, the best fit k-dimensional subspace is given by span of
the top k singular vectors (V).

* Proof by induction on k. Suppose claim is true for Vj_;.

e Suppose V}, is the optimal rank k subspace. Let wy, ..., Wy be an orthonormal basis for
such that wy, L V}._;.



Best fit subspace

By optimality of V;,_; , we have
AW 1% + =+ |JAwg 1 11 < [JAvg||? + -+ + |Avg_q |7

Since,

Vj = dargmax ” ”2
k
X1V _1 ”-xllz

we have [[Aw||? < ||Avg||?. Therefore,
[Aw 12 + -« + [[Awg 1 112 + [Awi I < JAvq |12 + - + |Ave_1 1% + |Avg |2

Therefore, we V, is as good as V},.

Singular value decomposition: A = Y.;¢py o;u;v; = UZVT (why?)
Hint: For X,Y €e R™", X =Y iff Xv =Yv Vv € R"




Norms

1/2
* Foravector x € R", ||x|| & (X, x7) /

 For an mXn matrix 4, its Frobenius norm

lalle = (), ) 4)

IE[m] jE[n]

1/2

e Spectral norm

o llAx]
JAIl & max
vk [l

* Theorem: ||A|| = 01(A)



Norms

2 _ 2
* [[AllF = Xjo;

141z = > llagl?

ielm]
2
* Since vjs form an orthonormal basis for the row-space of 4, la;||? = Zj(al-, vj)
* Therefore,

A2 = Z lagll? = Z D faom)’ =) Z ayvy)’ =) [lav]* =) o
J J

ie[m] iem] j j i€[m]



Low rank matrix approximation

Given a matrix 4, compute a rank k matrix D that minimizes ||4 — D||%.

def

Theorem: Best rank k approximation is A}, = i€[k] aiuiviT. Moreover,
2

T
‘ A— z aiuivi

{€Tk] e >k

Let D be the optimal rank k matrix. |4 — D||% = Zie[m]”Ai — D;||?, where 4;
and D; are the ith rows of A and D respectively.

* We may assume that D; is the projection of 4; on a rank k subspace (why?)
* Therefore,||A; — D;||* = [IA;]1* = [1D;|* (why?)



Low rank matrix approximation

D llA =il = ) (A? = 1D = IAIE = ) D11
lE[m] ielm] ielm]

* Therefore, goal is to maximize Zie[m]IIDiIIZ. Optimal subspace is given by top k
singular vectors, i.e. D; = Y ek (A v;) - vT = A; Xje[r) ViV JT

T
D = AZU]] 2011“7 zv]] EZJLuvv]J—Zaiuivi

i jelk I€[K]



Spectral norm approximation

Given a matrix 4, compute a rank k matrix D that minimizes |4 — D||5

Theorem: A, gives the best rank k approximation, and ||4A — A, ||5 = /4.

Proof: ||A — Agll5 = 0741 (why?)
Let D be optimal matrix. Let z be a unit vector in span{vy, ..., Vy4+1} such that z L
span D. Write Z = X;er41] CiVi

2 2 2
I(A—D)zlI* 14zI2 2zT(ATA)z  Ticirsr) €2 0

1z]]% 1z]]% 1z]]* Yielk+1] CF

|A = D||5 = > 041



Power i1teration

* Let A be a symmetric matrix with eigenvalues oy = -+ = 0, = 0 and vy, ..., v, the
corresponding eigenvectors.

* Eigenvalues and eigenvectors can be irrational; therefore can not be computed
exactly in general.

* Goal: given A and an error parameter €, compute an “approximate” top-
eigenvector.

* Let xy be a “random” unit vector Write xo = ¢qvq + - + ¢, v,. Then
Axg AV + -+ AV, o4V F o O Uy

lAxoll l4x] JZo2 10l




Power i1teration

Akx  cofvy + 00505 + -+ cpoi vy

|Akx||
c2g2k 4+ ..o + c202K

* Define x;, € Akxo/”AkxO”. As k — oo, then x, = v;.

* If 0, K 04, then “fast” convergence (how many iterations?)

* Let p be the index such that ,, = (1 — €)a; > 0y,41. Let I, be the subspace

spanned by vy, ..., 1,. Compute a unit vector x whose projection on V}, is at least
1—e.



Power i1teration

X()” _2 O.Zk 2>O'2k c:

° Zl>p+1 O- < (1 E)Zk 2k Zl>p+1 C (1 _ E)Zk

* Therefore, the component of x; orthogonal to I}, has squared length

Lispr1 06 _ (1— &) 2 _e ke
”Akx ”2 — 2k — 2
0 of" cf €1

—2ke

 Taking k = 216 (ln i) suffices to ensure that

cie

<€
C1



Cq?

1

* Taking a “random” unit vector will ensure that w.h.p. ¢; = Q) (\/—ﬁ)

* Proof in [Blum, Hopcroft, Kannan].
. 1 n . .
* Therefore, taking k = © (E (logz)) will suffice.

* (HW.)What is the value of ||Ax||?

* Many other methods known for computing eigenvalues and eigenvectors.



