EO 206: Theorist’s Toolkit November 10, 2020

Lecture 12-13: Streaming Algorithms
Instructor: Prof. Arindam Khan Scribes: Sreenivas KVN & Prateek Kumar Sinha

1 Motivation

In the field of Big Data, the data is often too large to be stored entirely. Moreover, the data arrives very
frequently. Examples of such situations include data from large sensor networks, genome sequencing and
mining text messages.

Streaming algorithms are the algorithms designed for such situations where huge amount of data arrives in
a stream and we need to quickly calculate some function of the data. Consider the following setup in IP
traffic network analysis. Popular web pages receive millions of hits per minute. Some of these requests are
automated by hackers and hence, we would like to detect and restrict such users. One can think of this data
as a stream of requests which are typically made up of IP addresses, data required etc. We would ideally
want to filter out the IP addresses with abnormal number of requests. But since our memory is limited, we
can’t store the entire stream. In fact, the amount of memory at our disposal is often far less than the size
of the stream. How can we cleverly use the limited amount of memory and yet, efficiently perform the task
at hand? Answering this question is the main objective of the field of streaming algorithms.

2 Formal Definition

We have an input sequence o = {(aq, ..., a,) where m € N and is called the stream length. The elements of
the stream (a;’s) are taken from the universe [n] where n € N and is called the universe size. We have a
small working memory of size s (s < m,n).

The input stream is accessed in a streaming fashion i.e., one element arrives at a time. Random access is
not allowed i.e., we can’t access the i element whenever we like as in an array. We can look at an element
only when it arrives. One scan of the whole stream is called a pass.

Following are the main goals of a streaming algorithm.

e Small Memory Requirement: Typically, we want the space requirement of the algorithm to be
o(min(m, n)) e.g. O(polylog(min(m,n))). However, it is ideal if it is O(logm + logn).

e Small Number of Passes: The algorithm should use very few number of passes, typically not more than
a specified constant. At times, we allow w(1) number of passes too but the ideal case would be when
the algorithm requires only one pass.

e Small Update Time: Whenever a new element arrives, the algorithm should be able to update its
working memory in a very small amount of time i.e., the computations should be light.

e Good Quality of Solution: In the upcoming lectures, we will see some hardness results that hinder
us from computing the exact function that we are required to. Hence, the algorithm is allowed to be
a randomized approximation algorithm i.e., it outputs a close enough solution with high probability.
There are two prevalently used notions of quality of a randomized approximation algorithm:

E0 206: Theorist’s Toolkit-1

— Multiplicative Approzimation: An algorithm A (g, d)-approximates a function ¢ iff for any input

stream o,
Pr HA(”) - 1‘ > a} <6
o(o)
— Additive Approzimation: An algorithm A (g,d)T-approximates a function ¢ iff for any input
stream o,

Pr{|A(o) — ¢(o)| > €] <6

2.1 Different Streaming Models

It often helps to think of the input stream o = (aq,...,a,) as a multi set of elements and represent it using
a frequency vector which is denoted as f = (f1,..., fn) where f; (j € [n]) is the number of occurrences of
the element j in 0. Whenever a new element, say j, arrives, we increment the value of f; by 1.

As an example, assume m = 11,n = 5 and 10 elements — 1,4,1,4,1,1,3,3,1,4 — have arrived. Then f =
(5,0,2,3,0). Now, if 2 arrives as the eleventh element, the updated frequency vector would be f =
(5,1,2,3,0).

Till now, we assumed that only one element can arrive at a time. But in a more general setting, multiple
copies of the same element can arrive at once and moreover, besides arriving elements, there can be elements
that depart from the stream. In this setting, we change the definition of m to be the maximum number of
elements in the multi set at any point of time i.e., we require the following condition to hold true.

When elements can arrive or depart, the model is called the Turnstile model. In this model, a token in the
stream can be thought of as a pair consisting of an element from the universe and the number of copies
of it arriving (If this number is negative, we say that it is departing). Formally, any token in the stream
a; € [n] x {—L,...,L}. Here, L is the upper bound on the number of copies of an element that can arrive
or depart at once. Whenever a token a; = (7, ¢) arrives, we update f; < f; +c.

Remark: Whether any f; can go below zero depends on the specific setting, but generally we impose the
constraint that f; must always be nonnegative.

When elements can only arrive, the model is called the Cash Register model. In this case a token is of the
form a; = (j, ¢) where ¢ > 0.

3 Basic Techniques

There are two most commonly used techniques to design streaming algorithms.

One such technique is called Sampling. Since, we can’t store the entire data, we cleverly choose a subset of
data that will be stored. We do this by retaining each element with some probability. The set of elements
retained acts as a proxy to the whole stream. We compute the required function on this proxy data and it
hopefully gives a close estimate. The technique of sampling is widely used in practice. One such practical
example is the exit polls: We cleverly sample a subset of the population and calculate the statistics to
determine who the winner would be. In the current pressing scenario, one would like to estimate the degree
of spread of Covid-19 in a particular village: Similar to the exit polls, we pick a subset of the village residents
and estimate the number of people affected.

Another useful technique is Sketching. In this approach, we create a synopsis of the data seen so far and try
to estimate the required function using this data. For example, we can find the genre of a particular movie
by reading a short overview instead of watching the entire movie.

EO0 206: Theorist’s Toolkit-2

Now that we have the fundamentals covered, we will see a few streaming algorithms to estimate important
statistics like number of distinct elements in a stream etc.

4 Finding the Majority Element

In the Majority Problem, we would like to find if there is an element in the stream which has frequency more
than m/2 where m is the stream length. Formally, the majority problem is as follows: Let o = (ay, ..., am)
be a stream of elements from the universe [n]. Let f = (f1,..., fn) be the frequency vector of o (Hence,
i, fi = m). Then if there exists j such that f; > m/2, then output j; else output ¢ (the empty set).
Note that there can only be one majority element if there exists any.

Although this problem seems very straightforward, we need a lot of space if we want to determine the answer
without erring. We will provide the hardness result; a formal proof will be given in the upcoming lectures
using results from the field of communication complexity.

Lemma 1. Any single pass deterministic algorithm that finds the majority element or deduces that no
magority element exists in the stream requires a space of Q(min(m,n)), where m is the stream length and n
is the universe size.

Lemma [1| entails that we have no choice but to err. The algorithm we will design requires one pass and
outputs the majority element if one exists; however it still outputs some element if there is no majority
element i.e. it may output a false positive. An informal description of the algorithm is as follows. Think of a
fortress which is initially empty. People belonging to multiple groups are standing in a queue who enter the
fortress one by one. If a person enters the fortress and finds it to be empty, he/she occupies the fortress. On
the other hand, if there are people in the fortress belonging to his/her own group, he/she joins the group.
In the last possible scenario where the people in the fortress are of a different group, he/she gets into a fight
with one of them and both die. Now, we claim that after the process, the group that remains in the fortress
is the majority group (if there was one). This simple majority finding algorithm is called the Boyer-Moore
Majority Voting Algorithm. The pseudo code is as follows.

Algorithm 1: Boyer-Moore Majority Voting Algorithm
cnt < 0, maj < null
for i in [m] do

if cnt = 0 then
| maj < a;

end

if maj = a; then
| cnt<+cnt—+1

end

if maj # a; then
| cnt<+cnt—1

end

end

return maj

stream: a b b ¢ ¢ a b a a a
maj: a a b b ¢ ¢ a a a @ (majority)
cnt: 1 0 1.0 1 0 1 0 1 2 3

stream: a a b b
maj:
cnt: 1 2 1 0 1

<
=
=
=
o

c
© (false positive)
2

EO0 206: Theorist’s Toolkit-3

We will now prove that Algorithm [I| correctly returns the majority element if one exists. Recall the setting
of groups and the fortress. Whenever a person enters the fortress, either he finds that the fortress is occupied
by the people from his group and so he joins the group; or he finds that the fortress has people from some
other group and hence he gets into a fight with one of them and both die in the fight. If at the end of
the whole process, the fortress is occupied by a group other than the majority group, then it means that
the whole population from the majority group died. But this can’t be the case since the majority group
constitutes for more than 50% of the entire population and two people die in each fight. This is exactly what
happens in the algorithm. The decrement of cnt is same as a fight and the increment of cnt is same as a
person joining his own group. The variable maj denotes the current group in the fortress. Hence, at the end
of the algorithm, maj must contain the majority element if it exists.

Clearly there are only two variables that the algorithm maintains. The variable maj contains an element
from the universe. Hence it needs O(logn) bits of memory. One the other hand, cnt is at most m. Hence,
it needs O(logm) bits of memory. Hence the overall space complexity of the algorithm is O(log m + logn).

One can find the majority element and avoid false positives as well using two passes as follows: Just run
the Boyer-Moore majority voting algorithm. Let the returned value be maj. In the second pass, check if the
frequency of maj is greater than half the stream length.

5 Finding Frequently Occurring Elements

Let k > 2 be a given constant. Let 0 = (a1, ..., a;) be input stream. We would like to find all such elements
from the universe whose frequency in the stream is more than m/(k 4+ 1). Let us call such elements as
frequent elements. Note that there can be multiple frequent elements in the stream but they can’t be more
than k in number. The formal objective is, if f is the frequency vector of o, output all such j in the universe
for which f; > m/(k + 1).

We will study an algorithm given by Misra and Gries to find all the frequent elements. In short, let us
call this MG-Algorithm. As in the previous case, the MG-Algorithm may output false positives i.e., it may
output elements that are not frequent; but it certainly finds all the frequent elements.

Observe that when k = 1, this problem is exactly same as the majority problem; hence this problem can be
viewed as a generalization of the majority problem. Unsurprisingly, MG-Algorithm is a generalization of the
Boyer-Moore majority voting algorithm.

EO0 206: Theorist’s Toolkit-4

Algorithm 2: Misra-Gries Algorithm to find frequent elements

Initialize an empty list L
Initialize an empty map cnt (default value of a key is 0)
for i in [m] do
if a; is already in the list L then
| cntfa;] < cntla;] + 1
end
if a; is not in L and there are less than k elements in L then
cntla;] + 1
Add a; to the list L
end
f a; is not in L and there are k elements in L already then
foreach element e in L do
cntle] <+ cntle] — 1
if cnt[e] = 0 then remove e from L
end

e

end
end
return list L

The following is an example run of the algorithm with & = 2.

o [1]1]2 [L [3[3 [1 [2]1]3 [1 [2]3
L (111212113131 11313 1,3 |(final output)
ent |12 |21 |31 2| L1211 |2]21]31]2]21

—_

Figure 1: A run of MG-Algorithm on o when scanned from left to right. Here k = 2. If in a particular
column, L =i, j and cnt = p, ¢, then it means cnt[i] = p and cnt[j] = ¢. The only frequent element of the
stream is 1. The algorithm returns 1 as promised, but it also outputs a false positive in form of 3.

The algorithm provides the following guarantees.

Lemma 2. Say we run Algorithm @ on the input stream o = (ai,...,an) with some arbitrary integer
constant k > 1. Then

1. For all s € [n], if s is in the list L, then f, == cnt[s] € [fs — m/(k + 1), fs] where f, denotes the
frequency of s. In other words, the algorithm estimates the frequency of an element within an additive
term of m/(k +1).

2. If an element s is not in the list L, then fs < m/(k +1).

Proof. First we will prove property |1} It is easy to see that fs > fs because we increment cnt[s] (if s is in
L) only when the element s arrives. To prove fs > fs —m/(k+1) we use similar arguments that we used in
the case of the Boyer-Moore majority voting algorithm. When an element s arrives and there are k elements
in L already, then a total of (k+ 1) copies of each element are eliminated in the round (k for each element
on the list and 1 for s itself). So, for any element s, at most m/(k+ 1) copies of s are eliminated. Therefore,
cnt[s] > fs —m/(k+1).

We will prove property [2] by contradiction. Assume that an element s is not in the final list. As proved in
the above paragraph, at most m/(k + 1) copies of s will be eliminated. So, if fs > m/(k + 1), then s must
be on the list, which isn’t the case. Hence fs < m/(k + 1). O

EO0 206: Theorist’s Toolkit-5

Let’s analyze the space complexity. The map cnt holds at most k£ elements each having a value at most m.
The list L contains at most k elements from the universe. Hence the overall space occupied is O(klogm +
klogn).

6 Frequency Moment of Data Streams

Assume o = (aj,aq,a,,) represents the m elements of the stream where a; € U and n = |U]| represents
the size of universe and f = (f1, fa,...., fn) is the frequency vector which represents the frequency of each
symbol of the universe with Y1 | f; =m

The k" frequent moment of the stream is represented as:

Fe=> f*
i—1

The different k** frequent moments which are frequently used and are interpreted as follows:
Fy : Represents the number of distinct elements in the stream

Fy : Represents the total number of elements in the stream

F5 : Represents the non-uniformity in the stream

Example : If all n elements occur with equal frequency m/n, then Fy = m?/n. If only one element is
there in the stream then Fh = m?

Also, as p becomes very large , Fpl/ P indicates the frequency of the most frequent element in o.
Flajolet-Martin gave and algorithm for counting number of distinct elements of the stream (Fp) with two

cool tricks : universal hashing and median trick. We will first learn about universal hashing and k-wise
independence before estimating Fj.

6.1 Hash Functions

A family of functions H = {h|h : N — M} are called Universal Hash functions such that:

e Every function h € H is easy to represent.
e Yz € N, h(z) is easy to evaluate.

e VS C N with small cardinality, hashed values of items in S have small collisions

6.2 k-wise Independence
Sometimes mutual independence is too much to ask for, and we need to deal with limited dependence.

A set of random variables X1,X,, are said to be k-wise independent if, for any index set J C [n] with
|J| <k, and for any values x;,i € J,

Pr

/\Xi:l‘i‘| :HPT[XiZ.’Bi]

icJ icJ
In particular, X;’s are pairwise independent if they are 2-wise independent, i.e. Vi, j,x,y

Pr((Xi =z) AN(X; =y)] = Pr{(X; =2)] .Pr{(X; =y)]

EO0 206: Theorist’s Toolkit-6

6.3 Pairwise independent hash functions
A family of functions H = {h|h : N — M} is pairwise independent if :

1. Vz € N, the random variable h(x) is uniformly distributed in M

2. Va1 # x9 € N, random variables hi(x) and hy(z) are independent, i.e. Vzy # x5 € N and y1,y2 € M

and h € H .

Prih(z1) = y1 Ah(z2) = y2] = E

Note that Property [2| already implies property [1} This is because for any x1, y1, 2(# 1), Pr[h(z1) = y1]
can be written as), Pr{h(z1) = y1 A h(z2) = yo] which is in turn equal to 1/[M].

Proposition 3. Let p be a prime and hgy, = (ax +b) mod p. We define H = {hq |0 < a,b < (p — 1)}.
Then H 1is the family of pairwise independent hash functions.

Proof. Observe that for all a, b if hep(21) = Y1, hap(x2) = Y2, then

ax1 +b=y; modp
axe + b=y mod p

This is the system of two equations and two unknowns has just one solution (z1 # x2)

a=(y2 —y1)/(r2 — 1) mod p
b=y —axr; mod p

Hence, out of p? possible (a,b)’s only one choice results in hashing of z; and x5 into y; and y,. Thus,

Prihap(x1) =11 A hap(z2) = 32| = 1/p?

7 Estimating F

Suppose the set D of distinct elements is uniformly distributed among n members of U. Let p(z) = max;{i :
2% divides z(# 0)}. Basically it is the number of 0’s at the end of binary representation of z (Note : If
max, p(x) = r, then it is likely that the number of distinct integers is close to 2"). However, the numbers
may not be uniformly distributed. Hash functions help in getting the numbers distributed uniformly.

After applying h, all items in D will be uniformly distributed and on average one out of Fy distinct numbers
hit p(h(z)) > log(Fp). So, max, p(h(x)) ~ log(number of distinct elements).

Algorithm 3: Algorithm to estimate Fj

Pick a random function A : [n] — [n] from a family of pairwise independent hash functions;
z <+ 0;
while (an element a; arrives) do

if {p(h(a;)) > =} then

|2 e plha);

end
end
return 2°+¢

E0 206: Theorist’s Toolkit-7

Analysis: Let X, ; be indicator random variable such that X, ; = 1ifand only if p(h(j)) > r. Y, =37, Xrj
be the total number of such items. z* be the value of z when the algorithm terminates. Hence, Y, > 0 if
and only if 2* > r.

Since, h is pairwise independent, h(j) is uniformly distributed, and

E[X; ;] = Prlp(h(4)) = 7]
= Pr[2" divides h(x)]
=1/2"

By Linearity of Expectation,

ElY,] =) E[X,]
jeu
=Fy/2"
Now we will upper bound the variance.
VarlY,] = Z Var(X, ;]
jeU
<D X
jeu
=D ElX,]
Jjeu
=Fy/2"
Here, the first equality holds as the random variables are pair wise independent and the second equality

holds as X, ;’s are 0/1 random variables.
Now, we are interested in the concentration. So, by Markov inequality,

PrlY, > 0] = Pr[Y, > 1]
< Ely,]/1
— Fy/2"

Also by Chebyshev inequality we get,

F
Pr[Y, = 0] < Pr ||Y, — E[Y,]| > 2&
VarlY,]
~ (Fo/2r)?

27"
< =
=

EO0 206: Theorist’s Toolkit-8

Let the final output be F* = 2% +¢. Also, let a be the smallest integer such that 2¢1¢ > 3F,. Then,

Pr[F* > 3Fy] = Pr[2® T¢ > 209
= Pr[z* > d
= Pr[Y, > 0]

5

2a

2a+c

<

- 3.29

27(5
-3

<

Similarly, let b be the largest integer such that 2°+¢ < F;,/3, we have

Pr[F* < Fy/3] = Pr2® ¢ < 20+
Priz* <]
1—Pr[z" >b+1]
=1—Pr[Vpy1 =0
2b+1
Fy
2176F0

3F,
217c

3

IA

IN

IN

We choose ¢ = 1/2 to minimize (2¢ + 217¢)/3.
The guarantees here are weak

e [is not arbitrary good approximation of Fj (it lies in a huge range).

e Success of probability is rather small (One can possibly use larger constant instead of 3 to improve
slightly, but the range widens).

So, here we use a much useful median trick.

7.1 The Median Trick

In the median trick, we run k copies of the algorithm in parallel and output the median of k£ runs. If median
exceeds 3F, then atleast k/2 of the individual answers must exceed 3fy. Let Z1, Zs,Zy denote random
variables corresponding to the event that i** run answer is > 3F,. These are independent trials. So,

PT‘[ZZZI] S

<%

Let,Z =Y ¥ | Z;, then E[Z] < kv/2/3

EO0 206: Theorist’s Toolkit-9

But from standard Chernoff bounds, we get
Pr|Z > k/2] = Pr[Z > (3/(2v/2).E[Z]]

L3/2vD-1) | PR
< -
- (3/2\/5)(3/%/5)

~ 27 SUR)

Similarly, the probability that median is below Fy/3 is also 27%*). Choosing k = ©(log(1/§)), we can make
the sum of two probabilities < ¢. This gives (O(1),d) estimate for Fy.

8 Finding frequent items via Sketching

Let 0 = (a1, as,.....a;,) be the stream which comes , where the universe set U has size n. We will learn
about an algorithm to find the minimum size sketch.

8.1 Count-Min Sketch by Cormode and Muthukrishnan

Let us consider a fixed array of counters of width w and depth d. The array is initialized to 0. Each row
corresponds to a d-wise hash function h; : U — {1,2,..w}. Figure [8.I] represents the idea of this array.

h1 (IE)

o

-

——— ho (33)

" hs()

——— w=Tefe] ——

o)
Ry
—
8
o
|(_
~

Figure 2: Sketch of the Items in the Stream

EO0 206: Theorist’s Toolkit-10

Algorithm 4: Count Min-Sketch Algorithm
d = [log(1/8)],w = [e/e],c[l...d][1...w] + O;
Choose d independent hash functions h; : [n] — w from a d-universal family;
for i = 1 to m do
if {a; arrives} then
for j = 1toddo
| cli hj(ai)] + +
end

end
end
for k =1 tondo
‘ return f = min;i:1 clj, hj(k)] as the number of occurrences of k
end

Note : The size of count-min sketch o(1/e.log(1/¢)).(log(m) + log(n)) only depends on candd and is inde-
pendent of the number of symbols in the universe.

Theorem : For any item ¢ € U with frequency f; the estimator f € [fi, fi +e.F1] with probability > (1—9),
where F} is the first moment of o.

Proof: Foe each of f; instances of i, we incremented c[j, h;(i)] = ﬁ > fi. Now, we will show that for a
fixed 1,

fi < fi + e.F with probability > (1 —)
So, we have to show that there are not many false positives, i.e. k € [n]
i for which h;(k) = h;(4).
Let, Yj; be the indicator random variable for the event “h;(k) = h;(i)”. Now if Y, = 1, it adds fj to
clj, hj(?)]. So, the total error for c[j, h;() is

Xj = 2kempi fr-Yi

As hj is chosen from d-universal family,

ElYp] = 1/w
<egle
Hence, by linearity of expectations,
EX;]= Y feE[YVi]
ke[n]\i
€
< Z
< > f
ken]\7
. Fie
e

This shows that the expected error is as small as

Elelj, hy ()] = Elfi + X;]
= Elfil + E[X}]

<fi+t—
e

EO0 206: Theorist’s Toolkit-11

Now, we will show the concentration. As each fi > 0, we obtain

Prf; > fi+e.Fy] = Pr[Vj : c[j, hj(i)] > fi + . F}]
=PriVj: fi+X; > fi +e.F]
= Pr[Vj: X; > e.F}]

Vi : X, > e.B[X,]]

d
<[] Prix; > e.ElX;]]

where the third last and second last inequality hold by the property of d-wise independent hash and Markov’s
inequality respectively. Also the last last inequality holds as d = log(1/4)

EO0 206: Theorist’s Toolkit-12

	Motivation
	Formal Definition
	Different Streaming Models

	Basic Techniques
	Finding the Majority Element
	Finding Frequently Occurring Elements
	Frequency Moment of Data Streams
	Hash Functions
	k-wise Independence
	Pairwise independent hash functions

	Estimating F0
	The Median Trick

	Finding frequent items via Sketching
	Count-Min Sketch by Cormode and Muthukrishnan

