
E0 206: Theorist’s Toolkit November 17, 2020

Lecture 14-15: Streaming Algorithms
Instructor: Arindam Khan Scribe: Aditya V. Singh, Bhargav Thankey

In these lectures, we will first look at the AMS estimator for estimating Fk (Section 1). Along the way,
we will describe reservoir sampling, which is a useful technique for sampling elements from a data stream.
For the special case of F2 estimation, we will look at the Tug-of-War sketch, and present its geometric
interpretation. In Section 2, we will define p-stable distributions and look at Indyk’s algorithm for estimating
Fp, p ∈ (0, 2]. Finally, in Section 3, we will give a brief account of the notion of communication complexity
and its application in proving lower bounds for streaming algorithms.

1 AMS Estimator for Fk

Recall from the previous lecture that the k-th frequency moment Fk of a data stream x1, . . . , xm coming
from a universe U = {e1, . . . , en} is defined as

Fk =

n∑
i=1

fki ,

where fi = |{j : xj = ei}| is the number of occurrences of the element ej in the stream. The goal of this
section is to prove the following theorem:

Theorem 1. We can estimate Fk with (1 ± ε) multiplicative error with probability at least (1 − δ) using

O
((

1
ε2 log 1

δ

)
n1−

1
k

)
· (logm+ log n) space.

We will look at an explicit estimator – the AMS estimator [AMS99] – for Fk which achieves the guarantees
in Theorem 1.

Intuition. Suppose we could sample an element X uniformly at random from the stream. Say X = ei ∈ U .
Then X is equally likely to be any of the fi occurrences of ei. If r is the number of occurrences of ei ‘from
now on’, then r is equally likely to be in {1, . . . , fi}. Therefore,

E
[
rk|X = ei

]
=

1

fi

fi∑
j=1

jk

=⇒ E
[
rk − (r − 1)k|X = ei

]
=

1

fi

 fi∑
j=1

jk −
fi−1∑
j=0

jk

 =
1

fi
· fki .

Hence, after removing conditioning,

E
[
rk − (r − 1)k

]
=

n∑
i=1

E
[
rk − (r − 1)k|X = ei

]
Pr [X = ei]

=

n∑
i=1

1

fi
· fki ·

fi
m

=
1

m
· Fk.

(1)

This implies that m ·
(
rk − (r − 1)k

)
is an unbiased estimator of Fk. To turn this intuition into a streaming

algorithm, we need two things:
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1. We need an algorithm that can sample an element from a stream (of length m) with probability 1/m
without knowing m apriori. We will see an algorithm called Reservoir Sampling that achieves this.

2. We need to show concentration results because the value returned by the estimator is equal to Fk only
in expectation. We will show this by computing the variance of the estimator and using Chebyshev’s
inequality.

1.1 Reservoir Sampling

Reservoir Sampling (Algorithm 1) is an answer to the following question:

How can we sample k elements uniformly at random (without replacement) from a stream of length m
(m� k), where m is unknown?

Algorithm 1: Reservoir Sampling

Input: k ∈ Z, data stream: x1, x2, . . .

1 while not end-of-stream do

2 Put the first k elements of the stream into a ‘reservoir’ R = {x1, . . . , xk}.
3 for i ≥ k + 1 do

4 With probability k/i, replace a random entry of R with xi.

5 end

6 end

7 Return R.

Claim 2. For every t ≥ k+ 1 and i ≤ t, Pr [xi ∈ Rt] = k/t, where Rt denotes the ‘reservoir’ after observing
x1, . . . , xt.

Proof. We prove the claim using induction on t.

Base case: t = k + 1. For i ≤ k, xi will not be in Rt iff the (k + 1)-th element is selected for inclusion
in Rt and the i-th element is chosen to be replaced. That is

Pr [xi ∈ Rt] = 1−
(

k

k + 1
· 1

k

)
︸ ︷︷ ︸

Pr[xi /∈Rt]

=
k

k + 1
for i ≤ k.

Moreover, xk+1 gets included in Rt (where t = k+ 1) iff the (k+ 1)-th element is selected for inclusion
in Rt. That is

Pr [xk+1 ∈ Rt] =
k

k + 1
.

Induction: We assume that for a given t ≥ k + 1, Pr [xi ∈ Rt] = k/t for every i ≤ t. We want to show
that Pr [xi ∈ Rt+1] = k/(t+ 1) for every i ≤ t+ 1. For i ≤ t,

Pr [xi ∈ Rt+1] = Pr [xi ∈ Rt] · Pr [xi not replaced at time t+ 1|xi ∈ Rt]

=
k

t
·
(

1−
(

k

t+ 1
· 1

k

))
=

k

t+ 1
.

For (t+ 1)-th element,

Pr [xt+1 ∈ Rt+1] =
k

t+ 1
.
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Remark A similar inductive argument shows that for every t ≥ k + 1 and distinct i1, . . . , ik ≤ t,
Pr [xi1 , . . . , xik ∈ Rt] = 1/

(
t
k

)
. Even though we have presented Algorithm 1 for general k, we only need

it for the case when k = 1 for the purposes of this lecture.

1.2 Estimating Fk

Now that we have an algorithm that can sample an element from the stream uniformly at random without
knowing the length of the stream apriori, we are ready to describe the algorithm for Fk estimation.

Algorithm 2: Estimating Fk

Input: Data stream: x1, x2, . . .

1 X ← x1, r ← 1, i← 1, select← 0;

2 while not end-of-stream do

3 i← i+ 1, select← 0;

4 With probability 1/i, set select← 1 (Reservoir Sampling).

5 if select = 1 then

6 X ← xi, r ← 1;

7 else

8 if X = xi then

9 r ← r + 1;

10 end

11 end

12 end

13 Return m(rk − (r − 1)k).

1.2.1 Analysis

Let the random variable Y := m(rk−(r−1)k) denote the output of Algorithm 2. We have already shown (see
(1)) that E[Y ] = Fk. We now show that Y is concentrated around its mean, i.e., Y ∈ [(1− ε)Fk, (1 + ε)Fk]
with high probability. For this, we compute the variance of Y and use Chebyshev’s inequality.

var(Y ) ≤ E[Y 2]

=

n∑
i=1

E[Y 2|X = ei] · Pr [X = ei]

=

n∑
i=1

m2 E
[(
rk − (r − 1)k

)2 |X = ei

]
︸ ︷︷ ︸ · fim

= m

n∑
i=1

fi ·

︷ ︸︸ ︷
1

fi

fi∑
j=1

(
jk − (j − 1)k

)2
≤ m

n∑
i=1

fi∑
j=1

k · jk−1 ·
(
jk − (j − 1)k

) (
since jk − (j − 1)k ≤ k · jk−1, see Section 1.2.2 for a proof

)
≤ m · k

n∑
i=1

fk−1i

fi∑
j=1

(
jk − (j − 1)k

)
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≤ m · k
n∑
i=1

fk−1∗ · fki where f∗ = max
i∈[n]

fi, which implies fk−1∗ = max
i∈[n]

fk−1i

≤ m · k · fk−1∗ · Fk

(
since

n∑
i=1

fki = Fk

)

≤ m · k · F
k−1
k

k · Fk

 since fk−1∗ =
(
fk∗
) k−1

k ≤

(
n∑
i=1

fki

) k−1
k

= F
k−1
k

k


≤ m · k · F

2k−1
k

k

≤ n1− 1
k · F

1
k

k · k · F
2k−1
k

k

(
since m = F1 ≤ n1−

1
kF

1
k

k , see Section 1.2.2 for a proof
)

≤ k · n1− 1
k · F 2

k

= k · n1− 1
k · (E[Y ])

2
. ( since Fk = E[Y ]) (2)

Now, we use Chebyshev’s inequality to get

Pr [|Y − E[Y ]| ≥ εE[Y ]] ≤ var(Y )

ε2 (E[Y ])
2

=⇒ Pr [|Y − E[Y ]| ≥ εFk] ≤ k

ε2
· n1− 1

k .

Note that for a fixed k > 1,
(
k
ε2 · n

1− 1
k

)
� 1. To improve this result, we use the median-of-means trick.

We start with an observation.

Observation 3. The variance of the estimator can be improved by running t independent copies of Algo-
rithm 2 in parallel to get i.i.d. random variables Y1, . . . , Yt, and computing their average Z. Note that

E[Z] = E

[
1

t

t∑
i=1

Yi

]
= E[Y1] = Fk

by linearity of expectation and

var(Z) =
1

t
var(Y1).

Hence, from Chebyshev’s inequality,

Pr [|Z − Fk| ≥ εFk] ≤ k

tε2
· n1− 1

k .

To make this probability smaller than δ, we set

t =
k

δε2
· n1− 1

k .

The median-of-means trick allows us to improve the dependence of t on δ; i.e. we can achieve the same

concentration with t = O
(
k
ε2 · log 1

δ · n
1− 1

k

)
.

The median-of-means trick. For ` = 4 log 1
δ , output

Z = median(Z1, . . . , Z`),

where Z1, . . . , Z` are i.i.d. random variables generated as follows: For t = 4k
ε2 · n

1− 1
k ,

Zi =
1

t

t∑
j=1

Yij ,
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where, for each i, Yi1, . . . , Yit are i.i.d. random variables generated by running t copies of Algorithm 2.
Thus, overall, we run

(
16k
ε2 · log 1

δ

)
n1−

1
k copies of Algorithm 2. Moreover, we get the desired concentration,

as shown by the following claim.

Claim 4. Pr [|Z − Fk| ≥ εFk] = o(δ).

Proof. For each i ∈ [`], using Chebyshev’s inequality (set δ = 1/4 in Observation 3), we get

Pr [|Zi − Fk| ≥ εFk] ≤ 1

4
.

Let Ei be the event {|Zi − Fk| ≥ εFk} and let Si be the corresponding indicator random variable. Then

Pr [Si = 1] ≤ 1

4
.

Let S =
∑`
i=1 Si. By linearity of expectation,

E[S] ≤ 1

4
· 4 log

1

δ
= log

1

δ
.

Now

Pr

[
S ≥ `

2

]
= Pr

[
S ≥ 2 · `

4

]
≤Pr [S ≥ 2E[S]]

(
since E[S] ≤ log

1

δ
=
`

4

)

≤
( e

22

)log 1
δ

using Chernoff bound: Pr [S ≥ (1 + α)E[S]] ≤

(
eα

(1 + α)
1+α

)E[S]

with α = 1


= o(δ).

So, with probability at least 1 − δ, at least half of Zi’s lie in (1 ± ε)Fk (implying that median lies there
too).

With the proof of this claim, we have also proved Theorem 1. We end this section with proof of two
inequalities that were used to bound var(Y ).

1.2.2 Proof of two useful inequalities

Inequality 1. For j, k ≥ 1, we have jk − (j − 1)k ≤ k · jk−1.

Proof. We apply the mean value theorem to f(x) = xk. Given x1 < x2, the mean value theorem (MVT)
states that there exists θ ∈ [x1, x2] such that f ′(θ) = (f(x2)− f(x1)) / (x2 − x1). Substituting f(x) = xk,
x1 = j − 1, x2 = j, we get

f(j)− f(j − 1) = f ′(θ) = kθk−1 ≤ kjk−1.

Remark In general, truncated Taylor series is quite useful in deriving inequalities. Suppose a real-valued
function f is infinitely differentiable at a. Then Taylor series expansion of f about a is given by

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
(x− a)2

2
+ · · · .

Moreover,
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- there exists y ∈ [a, x] such that f(x) = f(a) + f ′(y)(x− a) (MVT);

- there exists z ∈ [a, x] such that f(x) = f(a) + f ′(a)(x− a) + f ′′(z) (x−a)2
2 ;

· · · and so on for higher derivatives.

This is useful to derive inequalities. For instance, take f(x) = ln(1 + x). Then

f ′(x) =
1

1 + x
, f ′′(x) = − 1

(1 + x)
2 .

For any x, f ′′(x) < 0 and thus
f(x) ≤ f(0) + f ′(0)x

=⇒ ln(1 + x) ≤ x
=⇒ 1 + x ≤ ex.

Inequality 2. F1 ≤ n1−
1
kF

1
k

k .

Proof. Applying Jensen’s inequality to convex function f(x) = xk, we get(∑n
i=1 fi
n

)k
≤
∑n
i=1 f

k
i

n
.

That is (
F1

n

)k
≤ Fk

n
=⇒ F1 ≤

F
1/k
k

n1/k
· n = n1−

1
kF

1
k

k .

1.3 Special case: F2 Estimation

An important special case of Fk estimation is when k = 2. We present a simple streaming algorithm for F2

estimation, the Tug-of-War Sketch [AMS99] (Algorithm 3). This algorithm improves upon the dependency
on n of the space requirement of Algorithm 2 (with k = 2) – from

√
n to log n. Observe that log n is the

minimum space needed to store the index of an element from a universe of cardinality n. In this section, we
assume that the universe U = [n].

Algorithm 3: Tug-of-War Sketch

Input: Data stream: x1, x2, . . . , xm.

1 Choose a random hash function h : [n]→ {±1} from a 4-universal family.

2 z ← 0;

3 for i = 1 to m do

4 z ← z + h(ai);

5 end

6 Return z2.
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1.3.1 Analysis

We will first show that z2 is an unbiased estimator of F2. We will then bound the variance of z2, which will
imply concentration results for this estimator.

Computing E[z2]. We can write z as

z =

n∑
s=1

xsfs (3)

where, for each s ∈ [n], xs = h(s) is a random variable taking values in {±1} uniformly. Thus

E

[
n∑
s=1

xsfs

]
=

n∑
s=1

fsE[xs] = 0.

Now

E[z2] = E

( n∑
s=1

xsfs

)2


= E

[
n∑
s=1

x2sf
2
s

]
+ 2E

∑
s6=t

xsxtfsft


=

n∑
s=1

f2sE
[
x2s
]

+ 2
∑
s6=t

fsftE [xsxt]

=

n∑
s=1

f2s ,

where the last equality follows from the fact that x2s = 1 with probability 1, and that for s 6= t,
E[xsxt] = E[xs]E[xt] = 0 (since 4-universality of h implies pairwise independence of xs, xt).

Computing var(z2). Let a = z2. We want to compute var(a). We first compute E[a2].

E[a2] = E

( n∑
s=1

xsfs

)4


= E

 ∑
1≤s,t,u,v≤n

xsxtxuxvfsftfufv


= 6E

[
n∑
s=1

n∑
t=s+1

x2sx
2
tf

2
s f

2
t

]
+ E

[
n∑
s=1

x4sf
4
s

]
(see Claim 6)

= 6

n∑
s=1

n∑
t=s+1

f2s f
2
t E
[
x2sx

2
t

]
+

n∑
s=1

f4sE
[
x4s
]

= 6

n∑
s=1

n∑
t=s+1

f2s f
2
t +

n∑
s=1

f4s

≤ 3

(
n∑
s=1

f4s + 2

n∑
s=1

n∑
t=s+1

f2s f
2
t

)

= 3

(
n∑
s=1

f2s

)2
since

(∑
i

αi

)2

=
∑
i

α2
i + 2

∑
i<j

αiαj


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= 3 (E[a])
2
.

Thus

var(a) = E[a2]− (E[a])
2

≤ 3 (E[a])
2 − (E[a])

2

= 2 (E[a])
2

(4)

= 2F 2
2 .

Remark The variance of the output of the Fk estimator with k = 2 (call the output a) is 2
√
n (E[a])

2
(see

equation (2)). Thus, for F2 estimation, the variance of the output of the Tug-of-War estimator (see equation
(4)) is smaller by a factor of

√
n.

Remark Since we have bounded the variance of the Tug-of-War estimator, the remaining calculations to
get the desired concentration proceeds similarly as in the analysis of the Fk estimator, using the median-of-
means trick. Moreover, since the variance here is smaller by a factor of

√
n, we will get a space saving of√

n in comparison to the Fk estimator (with k = 2). In particular, for a universal constant c, by running
t = c

ε2 · log 1
δ copies of Algorithm 3 (note: no dependence on n), we can estimate F2 to within a multiplicative

factor of (1± ε) with probability at least (1− δ).

The following exercise shows an explicit construction of a k-universal hash family.

Exercise 5. Prove that the family of hash functions H such that h(x) = ck−1x
k−1 + · · · + c0, where

ci
unif∼ {0, . . . , p− 1} (for a prime p), is a k-independent universal hash family.

Before moving on, we prove a claim that was used to bound the variance of the Tug-of-War estimator.

Claim 6. Suppose h : [n] → X is sampled from a 4-independent universal hash family (a.k.a. 4-universal
hash family), such that, for every i ∈ [n], E[h(i)] = 0. Let xi = h(i). Then

E

 ∑
1≤s,t,u,v≤n

xsxtxuxv

 = 6E

[
n∑
s=1

n∑
t=s+1

x2sx
2
t

]
+ E

[
n∑
s=1

x4s

]
.

Proof. The summation on the left hand side is over all tuples (s, t, u, v) where 1 ≤ s, t, u, v ≤ n. Suppose
(s, t, u, v) is such that an index i ∈ [n] appears only once. Without loss of generality, let s = i and t, u, v 6= i.
Then, by 4-independence of the hash family

E [xsxtxuxv] = E[xi]E[xtxuxv] = 0.

Thus, E [xsxtxuxv] 6= 0 only for tuples (s, t, u, v) where

- either there is an index i ∈ [n] such that i appears 4 times in (s, t, u, v), i.e. s = t = u = v = i;

- or there are two indices i, j ∈ [n], i 6= j, such that i and j both appear twice in (s, t, u, v). For a given
i, j, this can happen in

(
4
2

)
= 6 ways (choose 2 variables from s, t, u, v and assign them i; assign the

remaining 2 variables the value j).
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1.3.2 Geometric Interpretation

To build up to the next section, where we study Indyk’s algorithm to estimate Fp, p ∈ (0, 2], we give a
geometric interpretation of the Tug-of-War sketch for F2 estimation.
Let t = 6/ε2, and for i ∈ [t], let ai = y2i be the output of the i-th copy of Algorithm 3. Then, 1

t

∑t
i=1 y

2
i is

an unbiased estimator of F2. Moreover, by Chebyshev’s inequality

Pr

[∣∣∣∣∣1t
t∑
i=1

y2i − F2

∣∣∣∣∣ ≥ εF2

]
≤ 1

t
· var(a1)

ε2 (E[a1])
2︸ ︷︷ ︸

≤ 2/ε2 from (4)

≤ 1

3

(
substituting t = 6/ε2

)
.

(5)

Let hi be the random hash function used for the i-th copy of the Tug-of-War sketch, and let y2i be its output.
As in equation (3), yi can be written as yi =

∑n
s=1 hi(s)fs. Overall, for the t copies of the algorithm, we

have y1...
yt


︸ ︷︷ ︸

y

=

h1(1) h1(2) · · · h1(n)
...

...
...

...
ht(1) ht(2) · · · ht(n)


︸ ︷︷ ︸

M


f1
f2
...
fn


︸ ︷︷ ︸

f

.

Now, equation (5) tells us that, with probability ≥ 2/3,∥∥∥∥ 1√
t
y

∥∥∥∥
2

∈
[√

1− ε ‖f‖2 ,
√

1 + ε ‖f‖2
]
⊂
[

(1− ε) ‖f‖2 , (1 + ε) ‖f‖2
]
.

That is, ∥∥∥∥ 1√
t
Mf

∥∥∥∥
2

∈
[

(1− ε) ‖f‖2 , (1 + ε) ‖f‖2
]

with probability ≥ 2/3.

Thus, in totality, running t copies of the Tug-of-War sketch can be interpreted as generating a t-dimensional
sketch of the n-dimensional frequency vector f (note that t� n) using a t× n random matrix M/

√
t, such

that the `2-norm of the t-dimensional sketch (which the algorithm generates) is within a (1±ε) multiplicative
factor of the `2-norm of f (which we want to estimate).

The interpretation of the Tug-of-War sketch as “randomly projecting a high-dimensional vector into a low-
dimensional space while approximately preserving the `2-norm with high probability” suggests that we can
look for more general random projections (instead of only using hash functions, as in the Tug-of-War sketch).

Dimensionality reduction using random projections would be covered in more detail in future lectures.
Here, we give an informal account of an important result in this area called the Johnson-Lindenstrauss
(J-L) lemma. Intuitively, it says that n points in a high dimensional Euclidean space can be mapped into
an O

(
log(n)/ε2

)
-dimensional Euclidean space such that the distance between any two points change by at

most a multiplicative factor of (1± ε). More formally,

Theorem (J-L Lemma). Fix arbitrary 0 < ε < 1 and n, k ∈ N satisfying k ≥ 4
(
ε2

2 −
ε3

3

)−1
lnn. Then, for

any set V of n points in Rd, there is a map f : Rd → Rk such that, for every u, v ∈ V

(1− ε) ‖u− v‖22 ≤ ‖f(u)− f(v)‖22 ≤ (1 + ε) ‖u− v‖22 .

Furthermore, such a map can be found in polynomial time.
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In fact, guarantees of the J-L lemma can be obtained (with high probability) using a random linear map
given by a k×d matrix whose entries are i.i.d. random variables from standard Gaussian distribution N (0, 1).
Note that the sketch-matrix of the Tug-of-War sketch is different in two respects:

1. The entries are uniformly distributed in {±1}, which is a much simpler distribution than the standard
Gaussian.

2. The entries in a row need not be fully independent – 4-wise independence suffices.

However, J-L sketch will give us insights into algorithms for estimating general `p-norm, p ∈ (0, 2], of the
frequency vector. To see how, let us estimate F2 using J-L sketch.

Algorithm 4: Estimating F2 using J-L sketch

Input: Data stream: x1, x2, . . . , xm.

1 Choose Y1, . . . , Yn independently, each from N (0, 1).

2 z ← 0;

3 for i = 1 to m do

4 if xi = j then

5 z ← z + Yj ;

6 end

7 end

8 Return z2.

Let us quickly see why this algorithm works. Note that z can be written as z =
∑n
j=1 fjYj . Since

Y1, . . . , Yn
i.i.d.∼ N (0, 1), we have that z ∼ N (0, ‖f‖22) (Exercise: verify this). Hence,

E[z2] = var(z) + (E[z])
2

= ‖f‖22 + 0 = F2.

An important property of the J-L sketch was that the sketch z, which is a linear combination of i.i.d.
Gaussian random variables, is itself a Gaussian random variable with standard deviation F2. For estimating
Fp, p ∈ (0, 2], we generalize this idea in the next Section using p-stable distributions, where the sketch – a
linear combination of i.i.d. random variables from a p-stable distribution – would itself be a scaled version
of the distribution with the scaling factor = Fp.

2 Indyk’s Algorithm

We start by defining p-stable distributions.

Definition 7 (Stable Distribution [Ind06]). Let p ∈ (0, 2]. A distribution D is said to be p-stable if for
any a1, ..., an ∈ R, and independent, identically distributed random variables X1, ..., Xn drawn from D, the
distribution of the random variable

∑n
i=1 aiXi is the same as the distribution (

∑n
i=1 = api )

1/p
X, where X

is a random variable with distribution D.

Notice that the Gaussian distribution is 2-stable. In fact, it is known that for every p ∈ (0, 2], there exist
p-stable distributions. For p = 1/2 and p = 1, these are the Lévy distribution and the Cauchy distribution,
respectively. However, for values of p other than 1/2, 1, 2, we do not know closed formulas for the proba-
bility density functions of p-stable distributions and they are defined using their characteristic functions: a
distribution D is p-stable if E[eitX ] = e−|t|

p

.

Although we do not know closed formulas for probability density functions of general p-stable distributions,
we can sample from a p-stable distribution for any p ∈ (0, 2] using the Chambers, Mellows, Stuck method
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[CMS76] as follows: pick θ uniformly at random from [−π/2, π/2], pick p uniformly at random from [0, 1]
and output

sin pθ

cos1/p θ

(
cos (1− p)θ
− ln r

)(1−p)/p

.

2.1 Indyk’s algorithm for Fp estimation

Before we give an algorithm for Fp estimation, let us develop some intuition. Our goal is to obtain an (ε, δ)
estimate of the Fp norm for p ∈ (0, 2]. We’ll have a k × n matrix M , where k = O(ε−2 log(1/δ)), whose
entries are draw independently from a p-stable distribution Dp. This matrix will map the n-dimensional
frequency vector f to a k-dimensional sketch z. The sketch z will be a linear combination of the columns
M1, ...,Mn of M i.e. z =

∑n
i=1 fiMi. Since, the entries of M are drawn form a p-stable distribution, this

means that every coordinate of z will be a random variable whose distribution is a scaled version of Dp with
scaling factor ‖f‖p. We will then “extract” Fp from the sketch.

Algorithm 5: Estimating Fp norm

Input: Data stream: x1, . . . , xm.

1 Let k = O(ε−2 log(1/δ)). Create k × n matrix M by picking its entries independently from a

p-stable distribution Dp.
2 for i = 1 to k do

3 zi ← 0;

4 end

5 for ` = 1 to m do

6 if x` = j then

7 for i = 1 to k do

8 zi ← zi +M [i, j]

9 end

10 end

11 end

12 Return median1≤i≤k {|zi|/median (|Dp|)}.

In the above algorithm |Dp| is the distribution of Y = |X| where X ∼ Dp.

2.2 Analysis of the algorithm

Before analysing the algorithm, let us recall the definition of median of a continuous distribution and see
how the distribution of the random variable c|X| – for some c ∈ R – is related to the distribution of |X|.

Let D be a continuous distribution with PDF φ and CDF FX . Let X be a random variable with distribution
D. Then, median of D is any number µ ∈ R such that

Pr[X ≤ µ] =

∫ µ

−∞
φ(x) dx =

1

2
.

In our case we will have unique medians as the PDFs of the distributions we will work with will be continuous
functions.

E0 206: Theorist’s Toolkit-11



Let D′ be a distribution of Y = |X| and let its PDF and CDF be ψ and FY , respectively. Then,

FY [y] = Pr[Y ≤ y]

= Pr[|X| ≤ y]

= Pr[−y ≤ X ≤ y]

= FX(y)− FX(−y).

Differentiating w.r.t. y on both sides, we get,

ψ(y) = φ(y)− (−φ(y)) = 2φ(y).

Thus,

ψ(y) =

{
2φ(y), y ≥ 0

0, y < 0.

Now, let X ∼ Dp and for c ∈ R, let φp,c be the PDF of c|X| and µp,c its median We make the following
claim.

Claim 8.

1. φp,c(x) = 1
cφp,1(xc ).

2. µp,c = cµp,1.

Proof. Let Y = |X| and FY be its CDF; its PDF is φp,1. Fix c ∈ R. Let Z = c|X| and FZ be its CDF; its
PDF if φp,c. Then,

FZ [z] = Pr[Z ≤ z]
= Pr[cY ≤ z]

= Pr
[
Y ≤ z

c

]
= FY

(z
c

)
Then, differentiating both sides w.r.t. z, we get

φp,c(z) =
1

c
φp,1

(z
c

)
,

which proves item 1 of the claim. Now, µp,c is any number such that

Pr[Z ≤ µp,c] =
1

2

=⇒ FZ(µp,c) =
1

2

=⇒ FY

(µp,c
c

)
=

1

2
.

As FY [µp,1] = 1/2, cµp,1 is a median of Z.
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Armed with Claim 8, let us analyse algorithm 5. Consider the final value of the variables zi. As the entries of
matrix M are independent random variables drawn from Dp, zi = ‖f‖p Z where Z ∼ Dp. Thus the random
variable zi/median (|Dp|) has distribution with PDF φp,λ, where λ = ‖f‖p /median (|Dp|) and its median is

µp,λ = λµp,1 =
‖f‖p

median (|Dp|)
·median (|Dp|) = ‖f‖p .

So, we can say the algorithm is attempting to estimate the median by sampling from the distribution
k = O(ε−2 log(1/δ)) many times and then outputting the sample median. We will now show that the sample
median is close to the actual median. As a first step in that direction, we prove the following theorem.

Theorem 9. Let ε > 0 and let D be a distribution over R with PDF φ and a unique median µ > 0. Further,
suppose that φ is continuous on [(1 − ε)µ, (1 + ε)µ] and let φ∗ = min {φ(z) : z ∈ [(1− ε)µ, (1 + ε)µ]}. For
k ∈ N, let Z1, .., Zk be independent samples drawn from D and let Y = median1≤i≤kZi. Then,

Pr [|Y − µ| > εµ] ≤ 2 · exp

(
−2

3
ε2µ2φ2∗k

)
.

Proof. We will show how to obtain an upper bound on Pr[Y < (1− ε)µ]; a similar argument can be used to
obtain a lower bound on Pr[Y > (1 + ε)µ]. Let the CDF of D be F (y) =

∫ y
−∞ φ(z) dz. Then,

Pr[Zi < (1− ε)µ] =

∫ µ

−∞
φ(z) dz −

∫ (1−ε)µ

−∞
φ(z) dz

=
1

2
− (F (µ)− F ((1− ε)µ)) (∵ µ is the median of Zi)

=
1

2
− εµφ(β) (6)

for some β ∈ [(1 − ε)µ, µ]. To see why the last equality is true, observe that the Fundamental Theorem of
Calculus implies F ′(y) = φ(y). As φ is continuous on [(1 − ε)µ, µ], it also implies that F ′ is continuous on
[(1− ε)µ, µ] and differentiable on ((1− ε)µ, µ). Thus, F ′ satisfies the hypothesis of the Mean Value Theorem
on the interval [(1− ε)µ, µ]. Applying the Mean Value Theorem, we get that there exists a β ∈ [µ, (1− ε)µ]
such that

φ(β) =
F (µ)− F ((1− ε)µ)

µ− (1− ε)µ
=
F (µ)− F ((1− ε)µ)

εµ
.

Define α to be the number which satisfies

(
1

2
− εµφ(β)

)
(1 + α) =

1

2
. (7)

Let N = |{i ∈ [k] : Zi < (1− ε)µ}| and for i ∈ [k], let Ii = 1, if and only if Zi < (1− ε)µ. Then,

E[N ] = E

∑
i∈[k]

Ii


=
∑
i∈[k]

E[Ii] (∵ linearity of expectation)

=
∑
i∈[k]

Pr[Ii = 1] (∵ Ii are 0-1 variables)
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=

(
1

2
− εµφ(β)

)
k (from 6) (8)

Now, the sample median Y < (1− ε)µ if and only if at least half of the Zi’s are less than (1− ε)µ; in other
words Pr[Y < (1− ε)µ] = Pr[N ≥ k/2]. Also, from (7) and (8), (1 + α)E[N ] = k/2 . Thus,

Pr[Y < (1− ε)µ] = Pr[N ≥ k/2]

= Pr[N ≥ (1 + α)E[N ]]

≤ exp

(
−1

3
α2 E[N ]

)
(using Chernoff bound) . (9)

Now, from (7), we have

k

(
1

2
− εµφ(β)

)
+ k

(
1

2
− εµφ(β)

)
α =

k

2

=⇒ k

2
− εµφ(β)k + αE[N ] =

k

2
(from (8))

=⇒ αE[N ] = εµφ(β)k.

Also, from (7),

(
1

2
− εµφ(β)

)
+

(
1

2
− εµφ(β)

)
α =

1

2

=⇒ −εµφ(β)k +
1

2
α ≥ 0 (∵ εµφ(β) ≥ 0 since ε, µ > 0 and φ(β) ≥ 0 as φ is continuous at β.)

=⇒ α ≥ 2εµφ(β)k.

Thus, from (9),

Pr[Y < (1− ε)µ] ≤ exp

−1

3
·

αE[N ]︷ ︸︸ ︷
εµφ(β)k ·

α︷ ︸︸ ︷
2εµφ(β)


= exp

(
−2

3
ε2µ2(φ(β))2k

)
≤ exp

(
−2

3
ε2µ2φ2∗k

)
.

To prove the accuracy of the estimate we will use the above theorem with φ = φp,λ and µ = µp,λ where
λ = ‖f‖p /µp,1. Note that to use the above theorem in any meaningful way, we need an estimate of φ∗. Now,

µφ∗ = µp,λ ·min {φp,λ(z) : z ∈ [(1− ε)µp,λ, (1 + ε)µp,λ]}

= λµp,1 ·min

{
1

λ
φp,1

( z
λ

)
: z ∈ [(1− ε)λµp,1, (1 + ε)λµp,1]

}
= µp,1 ·min {φp,1(y) : y ∈ [(1− ε)µp,1, (1 + ε)µp,1]} ,
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which is a constant only depending on p, say cp. Thus, from the theorem,

Pr [|Y − µ| > εµ] ≤ 2 · exp

(
−2

3
ε2µ2φ2∗k

)
=⇒ Pr

[∣∣∣Y − ‖f‖p∣∣∣ > ε ‖f‖p
]
≤ 2 · exp

(
−2

3
ε2c2pk

)
=⇒ Pr

[∣∣∣Y − ‖f‖p∣∣∣ > ε ‖f‖p
]
≤ δ,

by putting k = 3
2c2p
ε−2 log 2

δ .

2.3 Some technical details about implementing the algorithm

Algorithm 5 is an idealized sketch and one needs to take care of the following details while implementing
the algorithm.

1. The sketch – in particular the matrix M – uses real numbers while in practice computers can only do
bounded precision arithmetic. To get around this problem, we can approximate all entries of M with
sufficient precision using rational numbers. While we won’t prove it, the number of bits required per
entry of M is polynomial in log n, 1/ε and 1/δ.

2. The matrix M used by the sketch has n columns and no small implicit representation. We can get
around storing M by using a pseudorandom generator (PRG, for short) that works with space bounded
algorithms (see [Nis92]). A PRG is a deterministic function that takes a “small” truly random string
(called a seed) and generates a “large” string which “looks random”. Note that we only need the j-th
column of M when the j-th token arrives. So, we can use the PRG seeded with j plus the initial seed
to generate the j-th column of M when required. While we won’t prove it, this only blows up the
space required by the algorithm by a log n factor and adds 1/n to the error probability.

3 Communication Complexity Theory and Lower Bounds

Communication complexity theory studies the following fundamental problem:

Consider two players Alice and Bob who have inputs x and y, respectively. They do not know each other’s
input and want to compute a function f(x, y) which is known to both of them. What is the minimum
amount of communication required to compute f?

Not only is communication complexity theory an important and interesting area of complexity theory, it
is also very useful in proving lower bounds for many diverse areas like property testing, game theory, data
structures, extension complexity, parallel and VLSI computation, and circuit lower bounds, to name just a
few. Additionally, unlike some lower bounds that rely on some assumptions like P 6= NP or the Exponential
Time Hypothesis (ETH), lower bounds obtained using communication complexity are unconditional. In this
section we will first introduce the one-way communication setting and then see how it can be used to prove
lower bounds on streaming algorithms.

3.1 The setting

As shown in Figure 1, there are two players Alice and Bob with unlimited computational power. Alice has
input x ∈ {0, 1}a and Bob has input y ∈ {0, 1}b. Neither of them know the input of the other player and

their goal is to compute a function f : {0, 1}a × {0, 1}b → {0, 1}, which is known to both. Moreover, they
have already agreed upon a protocol to compute f before seeing their respective inputs and all that needs
to be done now is to implement the protocol with inputs x and y. In this lecture, we will focus only on
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Figure 1: The one-way communication setting.

one-way communication protocols, where only one player (say, Alice) can send a message to the other player
(say, Bob), who then has to compute f(x, y) using the message received and their input.

Now we are ready to define the notion of one-way communication complexity (owcc, for short).

Definition 10 (One-way communication complexity or owcc). Let f : {0, 1}a × {0, 1}b → {0, 1} be a
Boolean function. The one-way communication complexity of f , denoted owcc(f) is the minimum number
of bits communicated in the worst case by any one-way communication protocol that correctly computes f
on all inputs. For randomized protocols, owcc(f) is the minimum number of bits communicated in the worst
case by any one-way communication protocol that correctly computes f on all inputs with probability at least
2/3.

Remark The probability in the above definition is on the randomness of the protocol; there is no ran-
domness in the input. Also, as long as we are not interested in the exact value of owcc(f), but only its
asymptotic behaviour, 2/3 in the above definition can be replaced by any constant in (1/2, 1).

Note that, trivially, owcc(f) ≤ a: Alice can send x to Bob and Bob can compute f(x, y). On the other hand,
consider the parity function defined as PARITYn : {0, 1}n × {0, 1}n → {0, 1}, PARITYn(x, y) = 1 ⇐⇒
the sum of number of 1s in xy is odd; here xy denotes the string obtained by concatenating x and y.
owcc(PARITYn) = 1 as Alice can simply send the parity of x to Bob. Now let us see some “hard” functions
for which the trivial protocol of sending x is optimal:

1. The equality function.

EQN : {0, 1}N × {0, 1}N → {0, 1} , EQN (x, y) =

{
1 if x = y,

0 otherwise.

2. The index function.

IDXN : {0, 1}N × [N ]→ {0, 1} , IDXN (x, y) =

{
1 if xy = 1,

0 otherwise.

where xy denotes the y-th symbol of x. For example, IDX3(101, 2) = 0 and IDX3(011, 3) = 1.

3. The disjointness function.

DISJN : {0, 1}N × {0, 1}N → {0, 1} , DISJN (x, y) =

{
1 if ∀i ∈ [N ], xi = 0 or yi = 0,

0 otherwise

i.e. if X ⊂ [N ] is the set of indices i such that xi = 1 and Y ⊂ [N ] is the set of indices j such that yj = 1,
then DISJN (x, y) = 1 if and only if X ∩ Y = φ. For example, DISJ3(101, 010) = 1, DISJ3(101, 100) = 0
and DISJ3(100, 010) = 1.
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3.2 Connection to streaming algorithms

Now let us see how we can obtain streaming algorithm lower bounds using communication complexity lower
bounds. In what follows we show that a small space streaming algorithm implies one-way communication
protocols with low communication complexity ; we can then use the contrapositive of this statement to prove
streaming algorithm lower bounds.

Small space streaming algorithm =⇒ low communication one-way protocols: Suppose that we
have a streaming algorithm As that uses s bits of memory. How can we define a one-way communication
protocol using it? Well, we can have Alice and Bob treat their inputs x and y as a stream (x, y) where all
of x appears before all of y. Then,

1. Alice feeds x into As without communicating it to Bob.

2. After As has processed x its state can be expressed using at most s bit.

3. Alice communicates these s bits to Bob.

4. Bob restarts As where Alice left off by initializing it with these s bits of memory.

Now, the output computed by Bob will be the same as the output of As on the stream (x, y) and so we
have a one-way protocol with low communication complexity! In fact the communication cost of the induced
protocol is the same as the space used by As. This discussion suggests that to prove a lower bound on the
space required by any streaming algorithm for some problem P, we need a function f with the following two
properties:

1. f can be reduced to P. In other words, f can be computed using a streaming algorithm for P.

2. No low-communication one-way protocol can compute f .

We now show that the disjointness function DISJN defined on the previous page satisfies 2. In fact, in
communication complexity, it is one of the canonical “hard” functions - analogous to SAT in the theory of
NP-completeness.

Proposition 11. Every deterministic one-way communication protocol that computes DISJN uses at least
N bits of communication in the worst case. (Thus, the trivial protocol for DISJN is an optimal deterministic
protocol.)

Proof. For the sake of contradiction assume that there is a one-way communication protocol in which Alice
sends at most N − 1 bits. This means that Alice can send at most 2N−1 different messages. Then, as
there are 2N distinct strings of size N , by the pigeon hole principle, there must exist x, x′ ∈ {0, 1}N
such that the message that Alice sends to Bob on input x is the same as that sent on input x′. As
x 6= x′, ∃i ∈ [N ] such that xi 6= x′i. Let y be the string that is all 0’s except for yi, which is 1. But,
then DISJN (x, y) 6= DISJN (x′, y). However, as Bob cannot distinguish between x and x′, he cannot
distinguish between DISJN (x, y) and DISJN (x′, y) and must thus output the wrong value for at least one
of them, a contradiction.

While we will not prove it, the following statement, which is much stronger, is true.

Theorem 12. Every randomized one-way communication protocol that correctly computes DISJN (x, y) on
all inputs (x, y) ∈ {0, 1}n × {0, 1}n with probability at least 2/3 requires Ω(n) bits of communication in the
worst case.

Remark In the above theorem, the probability is over the randomness of the protocol; there is no ran-
domness in the input. Moreover, 2/3 can be replaced by any constant greater than 1/2 using the “median
trick”.

We are now in the position to prove a lower bound for F∞ estimation.
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3.3 Space lower bound for F∞ estimation

Recall that the F∞ norm of a stream is the frequency of the most frequent element in it.

Theorem 13. Any randomized streaming algorithm that computes F∞ within a factor of (1 ± 1/5) with
probability at least 2/3 for every data stream of length m over a universe of size n uses space Ω (min {m,n}).
Proof. Let As be a randomized streaming that uses s bits of space which computes F∞ within a factor of
(1± 1/5) with probability at least 2/3 for every data stream of length m over a universe of size n. Consider
the following one-way communication protocol for the DISJn.

Protocol 6: Protocol for DISJn

1 Alice feeds As the indices i for which xi = 1 (in any arbitrary order).

2 Alice sends the current memory state σ of As to Bob.

3 Bob resumes As with memory state σ and feeds it the indices i for which yi = 1 (in any arbitrary

order).

4 Bob declares ‘disjoint’ if and only if the final output of As is at most 4/3.

Let us first determine the communication cost of the protocol. Steps 1 and 3 do not incur any cost as Alice
has x and Bob has y. The only communication is in Step 2. As As uses at most s bits of memory, σ can be
expressed in s bits . So the communication cost of the above protocol is s bits.

Note that the universe of the stream induced by (x, y) is [n] and the size of the stream is m ≤ 2n (the size
is 2n when both x and y are all 1 strings). The frequency fi of an element i ∈ [n] is given by

fi =


0 if xi = yi = 0,

1 if exactly one of xi and yi is 1,

2 if xi = yi = 1.

Hence, F∞ = 2 if and only if DISJn(x, y) = 0 and F∞ ≤ 1 otherwise. Since, for every input (x, y), As
outputs a number in (1 ± 1/5)F∞ with probability at least 2/3, if DISJn(x, y) = 1, the output of As
is at most (1 + 1/5) = 1.2 and if DISJn(x, y) = 0, the output of As is at least 2(1 − 1/5) = 1.6. As
1.2 < 4/3 < 1.6, Protocol 6 correctly computes DISJn(x, y) with probability at least 2/3. Then, from
Theorem 12, its communication cost must be Ω(n). Hence, s = Ω(n); furthermore, as m ≤ 2n, s = Ω(m)
and so s = Ω(min {m,n}).

Exercise 14. In fact, the lower bound of s = Ω(min {m,n}) holds for estimation of any Fk, k 6= 1. Extend
the above proof for arbitrary k 6= 1.
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