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Lectures 16-17: Singular Value Decomposition

Instructors: Arindam Khan, Anand Louis Scribe: Aditya Lonkar, Manish Kesarwani

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructors.

Singular Value Decomposition(SVD) is a notion related to decomposing a matrix into constituent matrices so
as to gain some summarized valuable information regarding the matrix. Matrices occur almost everywhere
in computation, for instance in many computational problems where the input is a graph and is represented
as its adjacency matrix. This serves as a a very strong motivation for studying the spectrum of a matrix,
the spectrum being its eigenvalues, eigenvectors(in the case of a square matrix), singular values and singular
vectors. Please note, this lecture is based on Chapter 3 of Book [1] and Chapter 1 of Book [2].

1 Eigenvalues, Eigenvectors, Singular Values and Singular Vectors

For an n x n matrix A, x is an eigenvector with eigenvalue A if Az = Ax. To stress an important point here,
eigenvalues and eigenvectors are only defined for square matrices. A related notion of singular values and
singular vectors for rectangular matrices exists, which we will look at, further in this lecture.

To show that eigenvalues and eigenvectors indeed exist for a matrix A, observe that
Az =Xz iff (A— Xz =0

where I is the n x n identity matrix. Thus, immediately we can see that if A — AI is invertible, the only
solution to this equation is the 0-vector. Otherwise if A — AI is non-invertible, there clearly exist solutions
for = since A is not a full rank matrix and hence has a non-zero null space. Equivalently,

det(A—\) =0

Since A is an n x n matrix, the above equation is an n-degree polynomial in A\. Thus it has n complex
roots(not necessarily distinct).

1.1 Eigenvalues and Eigenvectors of symmetric matrices

We will focus our attention on symmetric matrices since a lot of this course involves the same. Recall that
a matrix A is symmetric iff A7 = A and hence it has to be a square matrix. Graph adjacency matrix(in
undirected graphs) is an example of a symmetric matrix. Some useful claims regarding symmetric matrices
are stated below.

Claim 1.1 If A is a symmetric matriz, all its eigenvalues are real.

Proof: Consider some eigenvector x os A with eigenvalue A. Assume that A is not real(In general, © may
not be real as well).
Ax = Az (1)
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Taking the complex conjugates, -
AL = Mz (2)

Multiply 1 by 7 from the left. Similarly Multiply 2 by 27 from the left and subtract these two equations.
T Az — 2T Az = (A — NaTz

The quantity on the L.H.S is 0 since A is symmetric whereas on the R.H.S the quantity xTZ can never be 0
unless x is a 0-vector. Thus, A = A and hence, any eigenvalue is real. |

Claim 1.2 If A is a symmetric matriz and has eigenvectors x1 and xo with eigenvalues A1 and Ao respectively
and A1 # Aa, then (x1,x2) = 0.

Proof: Assume here that the eigen vectors x; and zs are scaled so that their norm is 1. Consider the inner
product between Azx; and x5. That is,

)\1 <$1,£€2> = <A.’£1,£L‘2> = I'TATLL'Q = .T’{()\QI’Q) = A2<SU1,$2>

To explain each of these equalities; first equality follows from the fact that x; is an eigen vector with eigenvalue
A1. Second equality follows from writing inner product in the vector notation. Third equality follows from
A being a symmetric matrix and zs is an eigenvector of A with eigenvalue Ay. The final equality follows
from the change of vector notation to inner product. Thus, A1 {x1,x2) = Ao{x1,x2) implies that (z1,z2) =0
since the two eigenvalues are unequal. [ |

Claim 1.3 If A\y = Ay then c1x1 + coxo s an eigenvector ¥V cq,co € R.

The proof is as follows.
A(Clu’(}l + 021‘2) = c1Axq + coAxo = )\1(01$1 + CQLL'Q)

A general useful claim in proving equality of matrices is as follows.
Claim 1.4 Two matrices A, B € R™*" are equal iff Av = Bv for all vectors v € R™.

Proof: If A = B then clearly Av = Bwv for all v € R™. For the reverse direction if Av = Bv for all vectors
v € R™ then (A — B)v = 0 for all vectors of n dimensions. For the sake of contradiction assume that
A — B = (Cis not a 0-matrix. Then at least one row of C has non-zero entries. Consider any such row C;. If
we take v = Cj, then the ith element of (A — B)v = CI'v = ||C;||> > 0. Thus for such a vector (A — B)v # 0
which is a contradiction to our assumption that A # B. Thus, the statement follows. [ |

Claim 1.5 A = VAVT, where columns of V are eigenvectors of A and A is a diagonal matriz with Ay; being
the eigenvalue of v; (ith column of V).

Proof: Here we will make use of Claim 1.4. Let VAV” = B for sake of notation. First we will prove that
A and B have the same eigenvectors with same respective eigen values. Consider any eigenvector v; of A
which is the ith eigenvector in terms of its eigenvalue. Then,

A’Ui = VAVTUi = VAei = VAiiei = )\iﬂji

Here e; € R™ is the vector whose ith co-ordinate is 1 and all other co-ordinates are 0s. In the above equation,
the second equality follows from the fact that all eigenvectors are orthogonal. Now, any vector z can be
written as a linear combination of the eigenvectors along with another term v, which is to account for the
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component of x orthogonal to the rowspace of A and hence by implication orthogonal to all of its eigenvectors.

Then, let © = (3 ¢;v;) + cL vy where ¢; s along with ¢, are appropriate constants. Hence,
i

Az = A((Z civy) +eivy) = Z)\icivi +0

Similarly,

VAV = VAVT(((Z civ;) +eivy)) = Z)\icﬂ)i +0

The 0 at the end of both of the equations occurs as a result of v; being orthogonal to the rowspace of A as
well as the eigenvectors of A. The above two equations imply that Av = Bv for all n-dimensional vectors
and hence they are equal. [ |

1.2 Singular values and vectors

For a matrix A € R™*" ¢ is a singular value with corresponding singular vectors v € R™ and v € R™ if
they satisfy the following two conditions,

Av =ou and uTA = ogov”

In this case, u is called the left singular vector and v is the corresponding right singular vector of A with
singular value o. Without loss of generality we can assume ||u|| = ||v|| = 1 since

T

ollul* = ul'ou = uT Av = ovTv = o||v||?

These equalities are quite straightforward and from now on, we will always assume that singular vectors are
normalized to have unit norm.

1.2.1 Singular values vs Eigenvalues
Claim 1.6 Right singular vectors of A = Eigenvectors of AT A.

Proof: Here we prove the statement for the right singular vectors of AT A and a similar statement holds
for the left singular vectors of A and the eigenvectors of AAT. The proof for that goes exactly as the proof
presented below. For the forward direction, let w and v be left and right singular vectors of A for a singular
value o. Thus,

AT Av = ATou = (uP'A)To = (ov)To = 0%
For the reverse direction, let v be an eigenvector of AT A with eigenvalue \. Then AT Av = \v. First, we
prove an important property of the eigenvalues of AT A which is that they are positive.

o] = v () = o™ (AT Av) = (Av)" (Av) = ||Av]?

Notice that then A\ = ||Av||?/||v||?> which is the division of two positive quantities and hence, is positive.
Now, set ¢ = v/X and we can do this since \ is positive(o is a real number). Set Av/o which implies Av = ou.
Now we need to prove the other property of singular vectors v and v for A.
AoNT TAT A AT Av)T T
’LLTA — (l) A= v _ ( ’U) — ()\U) _ O"UT

g g g g

Thus, all the right singular vectors of A are equivalently the the eigenvectors of AT A with singular values
the square roots of the corresponding eigenvalues for AT A. o is a singular value of A iff 02 is an eigenvalue
of AT A.
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1.2.2 Top singular value

Now, we give some characterizations for the singular values of a matrix.

Theorem 1.1
v] = argmax
vern ||
is a singular vector of A, and ”l’ﬁ;i”” is the largest singular value of A.
1

Proof: Let vy, vy, ..,v, be the orthonormal eigenvectos of AT A with eigenvalues 0? > ... > ¢2. This can

be assumed because AT A is a symmetric matrix and the eigenvectors can be assumed to be orthonormal
and its eigenvalues are all non-negative. Now, since vy, ..., v, form an orthonormal basis, any vector z € R™
can be written as a linear combination of the basis. That is, x = cqv1 + cavs + ... + ¢,v,. Here, the ¢;s are
basically (x,v;) which can be easily observed as the singular vectors are orthogonal to each other.

||Az||* = (Az)T (Az) = 2T (AT A)x = (chvj)T(ATA)(Z civi)

T
_ oy 20 o2, T 2 2
= ( E cjuj) ( E Cio; vl> = E E CiCjo Vv = E c;o;
j i i i

J

Azl _ [, co?
]

The first equality follows from the last set of equalities and the fact that x is written as a linear combination
of orthonormal vectors. The second equality follows because o7 is the largest singular value. This just shows
an upper bound on the above quantity. But we can indeed achieve this value by setting ¢; =1 and ¢; =0
for every other index 4 € [n] which is equivalent to setting = v;. But notice that v; which is an eigenvector
of AT A is also a singular vector of A with corresponding singular value 1. Therefore, ||Av;|| is the largest
singular value of A since 0% = ||Av1||? is the largest eigenvalue of AT A. [

Therefore,

IN

01

1.2.3 Best fit line

The above characterization of singular vectors and singular values, in particular the largest singular value is
useful in solving problems like the one discussed here which is “The Best fit line”. The problem is that we
are given a set of points ay, ..., a,, and we have to find the “best fit” line. There can be many notions for
the Best fit line. Here we define it as follows:

Find the direction v such that the sum of the squared lengths of the projections of the points on v is

maximized.
2
argmaxg (ai,v)

vi||v||=1 P
An equivalent notion of defining the Best fit line is to find the direction v such that the sum of squared
length of distances of the points to v is minimized. This actually turns out to be an equivalent definition to

the one before it. That is because by Pythagoras Theorem,

Projection® + Distance* = Length?

== Z Projection? + Z Distance? = Z a?

i€[m] i€[m)] i€[m]
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Thus maximizing the projections is equivalent to minimizing the distances. Now, let A be the matrix with
rOwWS a1, as, ..., dy,. Lhen
2
> (as,0) = || Aol
i€[m]

This just follows from the definition of inner product. Therefore,

arg max Z a;,v)" = arg max Z ||Av||? = vy

vilfell=1 willel =1 ,£0m)

Where v; is the singular vector with the highest singular value for A. Thus, the top singular vector gives
the best fir line for a set of points.

Now, we define another problem very closely related to the problem of maximizing the quantity ||Ax||/||z]|
which yields the answer(for the argmax) as the top singular vector. Given a matrix A as before, define

[ Az]] and v, &

_ || Ax]]
U] = arg max i arg max
vern ||| Lol 2]

The theorem statement says that v}v is the ith singular vector.

Proof: This proof is essentially similar to the proof for the top singular value theorem that we showed
before. This proof uses induction on k. Base case is for £ = 1 which we have already proved before. Suppose
then this statement holds for i <k —1, i.e, v, =v; fori € [k —1]. Fixan ¢ L vq,...,u5—1. Then x = ¢;v;

K3
where c1, ..., cx—1 = 0. This is because «x is perpendicular to the first £ — 1 singular vectors. As shown before,

||Az||? = Zc = Zc?az

i>k
Therefore,
|Az]| _ [Ziswcio?
max 5 < 0k
rlvy,...,v_1 ||5EH Zizkci

Thus, v}, is indeed the kth singular vector since it is also orthogonal to the first £ — 1 singular vectors by the
induction hypothesis and || Avg|| is the kth largest singular value of A. |

1.2.4 Best fit subspace

We define now a problem which is a generalization of the Best fit line problem seen in the last part, which
is the Best fit subspace problem. Given a set of points A(the matrix A has rows as the points, i.e., 4; = a;
where a; € R™ are the points), compute a k-dimensional subspace V} such that the sum of squared lengths
of projections of the points on V} is maximized. To define the sum of squared lengths of projections on this
subspace V), let w1, ..., wy be an orthonormal bases for V). Sum of squared lengths of projections

:Z<Z@Mﬂ22(;ww> S [fduy |2

i€[m] jE[k] jE[k] i€[m J€[k]

An important point to note here is that for a given subspace V/, the choice of the orthogonal basis does not
matter. The proof is simple and follows from Pythagoras Theorem. To sketch the proof, fix any subspace
V}. Then consider the subspace orthogonal to this space, lets call it X,,_j and consider any orthogonal basis
of this subspace 1, ..., Zy—,. Then for any orthogonal basis wi, ..., wy of V/ and for any given point a;, the
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total sum of the squared lengths of its projections on any n-dimensional space is the square of its norm.
Thus the basis w1, ..., wg along with 1, ..., x,_j form a orthonormal basis for the whole vector space.

Y lanw)?+ Y fan@)” = el

jElk] l€[n—k]

Clearly the second quantity on the L.H.S of the equation is fixed once the subspace is fixed regardless of the
basis for V! and the quantity on the R.H.S is a constant. Hence, the choice of basis does not matter for a
fixed subspace.

Theorem 1.2 Given a set of points A, the best fit k-dimensional subspace is given by span of the top k
singular vectors(Vy).

Proof: Proof follows by induction on k. Base case(k = 1) is just the best fit line case in which the statement
is clearly true. By the induction hypothesis, the best fit £ — 1-dimensional subspace is Vi1 which is given
by the span of top k — 1 singular vectors. For the sake of contradiction, assume that V is the best fit
k-dimensional subspace which is not the span of the top k singular vectors. Let wy, ..., w; be an orthonormal
basis for V/ such that wy L Vj_1. This can always be done because the first subspace has a rank which
exceeds the rank of Vj_; by 1.

Now, by optimality of Vi_1, we have that
[ Aw|* + ... + [[Awg—1|[* < [JAvi [P + .. + || Avg—a]? (1)

And

(2)

_ |[Az]]
v = arg max
:CLV)Q71 ‘ |£E| |
This implies that since wy and vy are unit norm vectors and the fact that wy is orthogonal to the subspace
Vi1, ||Awg||? < ||Avg||>. Thus, summing the two inequalities above,

[l Awn|[* + ..+ [[Awg— |* + |[Awe|[* < [[Avi ]2 + .. + || Ave—a ||* + [ Ave]]” 3)

Therefore, the subspace Vj, is at least as good as V) in terms of being the best fit k-dimensional subspace.
To show an example where there can be more than best fit subspace, consider again the problem of best fit
line which is essentially the best fit subspace problem but for £k = 1. Here, if the top singular values are
equal, we will get two best fit lines which would be the corresponding singular vectors(or it can be a linear
combination of the two singular vectors). This idea can be extended to the best fit subspace problem as
well. [ |

Finally, using these definitions of singular values we can define the Singular Value Decomposition for a matrix
A as
A= Z UiuiviT =uxv?
€[]
Here r is the rank of A, u; and v; are the ith left and right singular vectors respectively of A. Further,
columns of U are the u;s, columns of V' are the v;s and ¥ is a diagonal matrix with X;; = 0; and of course,
i € [r]. The proof of this is very similar to the proof of Claim 1.5.

1.3 Norms

Recall that for a vector = € R”, we define its Euclidean norm as ||z|| < >, x?)1/2.

So, for an m X n matrix A, its Frobenius norm is defined as follows (analogous to the Euclidean norm of a
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vector):

1/2

[Alr = | Y0 > A%
1 j€(n]

i€[m] j

Further, this is not the only norm associated with matrices, there are many norms. Lets see another norm
called the spectral norm of a matrix. Think of a matrix as a function, which takes an n dimensional vector
2 and maps it to an m dimensional vector Az. We want to understand what is the change in the length of
the vector = once it is acted upon by A. So we look at the ratio of ||Az|| divided by ||z||. We define the
spectral norm of a matrix to be the largest such value over all . So formally, we define spectral norm as

A
14112 ma 1221
zeRn ||z||

We have already seen till now that spectral norm of a matrix is equal to its top singular value, i.e. ||Al| =

Ul(A)

Theorem 1.3 Frobenius norm also has a close relationship with the singular value, and is given by

1A% =)o
J

Proof: Let A be the matrix and let a; denotes the rows of the matrix, then ||A]|% = Y

the right singular vectors, v;s form an orthonormal basis for the row-space of A, hence ||a;||? = > jlas, v;)2.
Therefore,

icpm) llail|?. Since

AN = > llasl? = D > fanv)® =" > (aiv)? =) [Av* =) o}
iem] ] i j

i€[m] Jj i€lm

1.4 Low Rank Matrix Approximation

Given a matrix A and a number k the goal is to compute a rank k matrix D that minimizes |4 — D||%

Theorem 1.4 Best rank k approzimation is given by the top k singular vectors, i.e. A = Zie[k] oiuvl .

Moreover,

§ ’ T § ’ 2
A— U] = o;

i€ (k] F i>k
Proof: Let D be the optimal rank k£ matrix. Then,

IA= D[ = > |4 — Di|)?

i€[m)]

In the above equation, A; and D; are the i*" rows of A and D respectively. We may assume without loss
of generality that D; is the projection of A; on a rank k subspace (If this is not the case then we can show
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that D is a sub-optimal matrix). Therefore, | A; — D;||? = || A;||* — || D;||*.
Now we can write the error as,

S A =Dl =) (AR - IDi?) = [AIE — > 1D

i€[m)] i€[m] i€[m)]

Therefore, to minimize the error, our goal is to maximize Zie[m] | Di]|?. We have already seen earlier that,
if we want to maximize the projection on a rank k£ subspace, then the optimal subspace is given by top k

singular vectors, i.e. D; =3, c(Aiv;) ol = A > ek vjvl

D = AZU] v; Zo’zuv ZUJ v; ZZazulv VU —Zaluv

JElk] i jElk] i€k

1.4.1 Spectral Norm Approximation
Given a matrix A and a number k, find the best rank k matrix D that minimizes ||A — D||3.
Theorem 1.5 A;, gives the best rank k approzimation, and ||A — Ag||3 = 07,4

Proof: Let D be any optimal matrix. Let z be a unit vector in the span{vy, - - vg41} such that zL span D.
Write z = Zie[k+1} Civ;

I(A= D) _ Az _ 2T(ATA)e  Miewsy GO0 |

B = = > oy,
[zl [zl 1212 Dot i

Therefore, the matrix Ay gives the best rank k approximation in the spectral norm approximation also. M

IA = DI >

There are several application of Low Rank Approximation. The error is sufficiently small depending on the
application. We can work with the low rank approximation of the matrix instead of the original matrix, since
the low rank approximation would be smaller in general, the algorithms working on the approximate matrix
might work faster and moreover the low rank matrix might require less space to store it in the memory.

1.5 Power Iteration

Power iteration is one of the simplest method to compute eigenvalues, eigenvectors, singular values and

singular vectors of a matrix.

Given any matrix M, computing its singular values and singular vectors is equivalent to computing the

eigenvalues and eigenvectors of the matrix M7 M. So, let A be a symmetric matrix with eigenvalues oy >
-~op > 0and vy, -+ , v, are the corresponding eigenvectors. Here, just for simplification, the eigenvalues are

considered non-negative, but the analysis in this section can be extended for the case when the eigenvalues

are negative. Now, given this we want to compute the eigenvalues, because eigenvalues and eigenvectors can

be irrational; therefore cannot be computed exactly in general.

So, our goal is that given A and an error parameter ¢, compute an “approximate” top eigenvector.

Let zg be a “random” unit vector. Write xg = c1v1 + - -+ 4+ ¢,v,. Then,

Axg c1Avy + -+ + ¢ Avy, _ ann + e onUn

Aol [ Az| NCT --+cgag
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Notice that each of the component along v;s are getting scaled, for example the component along v is scaled
by o1 after appropriate normalization, similarly the component along v, is scaled by ¢,,. So the component
along vy is getting scaled by the largest value and all other components are getting scaled by smaller values.
Therefore after normalization in a relative sense, the component along v; is increasing whereas the component
along the other eigenvectors is decreasing. So, formally,

Ak cla’fvl + 020502 +e 4 cnaﬁvn

[ Akz]| VAo 4 2ok

Define zj, = AFxq /|| AFxol|. Now, if we look at the limit as k — oo, then x — v1, because the coefficient of
v1 is increasing at a much faster rate than the coefficients of the other eigenvectors. So, observe that if we
take any random vector and keep multiplying it by A, we will eventually get to v;. Also if there is a large
gap between o1 and 09, i.e. 03 < 01, then we can show ”fast” convergence.

But in general, there need not be a large gap between the top two singular vectors. Then probably we cannot
guarantee that we will converge to v1, but we can observe following: Given an error parameter €, let p be the
index such that o, > (1 —€)o1 > 0p41, i.e. p is the number of eigenvalues which are greater than or equal to
(1 —€)o1. Let V, be the subspace spanned by vq,--- ,v,. Compute a unit vector 2 whose projection on V,,
is at least 1 — €. Informally, we don’t want the vector that we are computing to be close to vy, all we want
is that it should have a large projection on the eigenvectors corresponding to the eigenvalues which are close
to o1.

As we have seen before, ||A¥zo||? =Y, 02%c? > o2k c?

So, now lets try to upper bound the component orthogonal to vp,

Y. otrd < (=Mo" Y < (1ot

i>p+1 1>p+1

Therefore, the component of xj, orthogonal to V,, has squared length

Zl>p+1 0'2k(32 (1- )2k 2k e—2ke

R e A

Taking k > & (ln ) suffices to ensure tha

Taking a “random” unit vector will ensure that with high probability ¢; = Q2 (7) (Proof in Lemma 3.12
of [1]). Therefore, given this bound, taking k = © (1 (log 2)) will suffice.
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