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Singular Value Decomposition(SVD) is a notion related to decomposing a matrix into constituent matrices so
as to gain some summarized valuable information regarding the matrix. Matrices occur almost everywhere
in computation, for instance in many computational problems where the input is a graph and is represented
as its adjacency matrix. This serves as a a very strong motivation for studying the spectrum of a matrix,
the spectrum being its eigenvalues, eigenvectors(in the case of a square matrix), singular values and singular
vectors. Please note, this lecture is based on Chapter 3 of Book [1] and Chapter 1 of Book [2].

1 Eigenvalues, Eigenvectors, Singular Values and Singular Vectors

For an n×n matrix A, x is an eigenvector with eigenvalue λ if Ax = λx. To stress an important point here,
eigenvalues and eigenvectors are only defined for square matrices. A related notion of singular values and
singular vectors for rectangular matrices exists, which we will look at, further in this lecture.

To show that eigenvalues and eigenvectors indeed exist for a matrix A, observe that

Ax = λx iff (A− λI)x = 0

where I is the n × n identity matrix. Thus, immediately we can see that if A − λI is invertible, the only
solution to this equation is the 0-vector. Otherwise if A − λI is non-invertible, there clearly exist solutions
for x since A is not a full rank matrix and hence has a non-zero null space. Equivalently,

det(A− λI) = 0

Since A is an n × n matrix, the above equation is an n-degree polynomial in λ. Thus it has n complex
roots(not necessarily distinct).

1.1 Eigenvalues and Eigenvectors of symmetric matrices

We will focus our attention on symmetric matrices since a lot of this course involves the same. Recall that
a matrix A is symmetric iff AT = A and hence it has to be a square matrix. Graph adjacency matrix(in
undirected graphs) is an example of a symmetric matrix. Some useful claims regarding symmetric matrices
are stated below.

Claim 1.1 If A is a symmetric matrix, all its eigenvalues are real.

Proof: Consider some eigenvector x os A with eigenvalue λ. Assume that λ is not real(In general, x may
not be real as well).

Ax = λx (1)

1



Lecture 16-17: Singular Value Decomposition 2

Taking the complex conjugates,
Ax̄ = λ̄x̄ (2)

Multiply 1 by x̄T from the left. Similarly Multiply 2 by xT from the left and subtract these two equations.

x̄TAx− xTAx̄ = (λ− λ̄)xT x̄

The quantity on the L.H.S is 0 since A is symmetric whereas on the R.H.S the quantity xT x̄ can never be 0
unless x is a 0-vector. Thus, λ = λ̄ and hence, any eigenvalue is real.

Claim 1.2 If A is a symmetric matrix and has eigenvectors x1 and x2 with eigenvalues λ1 and λ2 respectively
and λ1 6= λ2, then 〈x1, x2〉 = 0.

Proof: Assume here that the eigen vectors x1 and x2 are scaled so that their norm is 1. Consider the inner
product between λx1 and x2. That is,

λ1〈x1, x2〉 = 〈Ax1, x2〉 = xT1 A
Tx2 = xT1 (λ2x2) = λ2〈x1, x2〉

To explain each of these equalities; first equality follows from the fact that x1 is an eigen vector with eigenvalue
λ1. Second equality follows from writing inner product in the vector notation. Third equality follows from
A being a symmetric matrix and x2 is an eigenvector of A with eigenvalue λ2. The final equality follows
from the change of vector notation to inner product. Thus, λ1〈x1, x2〉 = λ2〈x1, x2〉 implies that 〈x1, x2〉 = 0
since the two eigenvalues are unequal.

Claim 1.3 If λ1 = λ2 then c1x1 + c2x2 is an eigenvector ∀ c1, c2 ∈ R.

The proof is as follows.
A(c1x1 + c2x2) = c1Ax1 + c2Ax2 = λ1(c1x1 + c2x2)

A general useful claim in proving equality of matrices is as follows.

Claim 1.4 Two matrices A,B ∈ Rm×n are equal iff Av = Bv for all vectors v ∈ Rn.

Proof: If A = B then clearly Av = Bv for all v ∈ Rn. For the reverse direction if Av = Bv for all vectors
v ∈ Rn then (A − B)v = 0 for all vectors of n dimensions. For the sake of contradiction assume that
A−B = C is not a 0-matrix. Then at least one row of C has non-zero entries. Consider any such row Ci. If
we take v = Ci, then the ith element of (A−B)v = CTi v = ||Ci||2 > 0. Thus for such a vector (A−B)v 6= 0
which is a contradiction to our assumption that A 6= B. Thus, the statement follows.

Claim 1.5 A = V ΛV T , where columns of V are eigenvectors of A and Λ is a diagonal matrix with Λii being
the eigenvalue of vi(ith column of V ).

Proof: Here we will make use of Claim 1.4. Let V ΛV T = B for sake of notation. First we will prove that
A and B have the same eigenvectors with same respective eigen values. Consider any eigenvector vi of A
which is the ith eigenvector in terms of its eigenvalue. Then,

Avi = V ΛV T vi = V Λei = V Λiiei = λiivi

Here ei ∈ Rn is the vector whose ith co-ordinate is 1 and all other co-ordinates are 0s. In the above equation,
the second equality follows from the fact that all eigenvectors are orthogonal. Now, any vector x can be
written as a linear combination of the eigenvectors along with another term v⊥ which is to account for the
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component of x orthogonal to the rowspace of A and hence by implication orthogonal to all of its eigenvectors.
Then, let x = (

∑
i

civi) + c⊥v⊥ where ci s along with c⊥ are appropriate constants. Hence,

Ax = A((
∑
i

civi) + c⊥v⊥) =
∑
i

λicivi + 0

Similarly,

V ΛV Tx = V ΛV T (((
∑
i

civi) + c⊥v⊥)) =
∑
i

λicivi + 0

The 0 at the end of both of the equations occurs as a result of v⊥ being orthogonal to the rowspace of A as
well as the eigenvectors of A. The above two equations imply that Av = Bv for all n-dimensional vectors
and hence they are equal.

1.2 Singular values and vectors

For a matrix A ∈ Rm×n, σ is a singular value with corresponding singular vectors u ∈ Rm and v ∈ Rn if
they satisfy the following two conditions,

Av = σu and uTA = σvT

In this case, u is called the left singular vector and v is the corresponding right singular vector of A with
singular value σ. Without loss of generality we can assume ||u|| = ||v|| = 1 since

σ||u||2 = uTσu = uTAv = σvT v = σ||v||2

These equalities are quite straightforward and from now on, we will always assume that singular vectors are
normalized to have unit norm.

1.2.1 Singular values vs Eigenvalues

Claim 1.6 Right singular vectors of A ≡ Eigenvectors of ATA.

Proof: Here we prove the statement for the right singular vectors of ATA and a similar statement holds
for the left singular vectors of A and the eigenvectors of AAT . The proof for that goes exactly as the proof
presented below. For the forward direction, let u and v be left and right singular vectors of A for a singular
value σ. Thus,

ATAv = ATσu = (uTA)Tσ = (σv)Tσ = σ2v

For the reverse direction, let v be an eigenvector of ATA with eigenvalue λ. Then ATAv = λv. First, we
prove an important property of the eigenvalues of ATA which is that they are positive.

λ||v||2 = vT (λv) = vT (ATAv) = (Av)T (Av) = ||Av||2

Notice that then λ = ||Av||2/||v||2 which is the division of two positive quantities and hence, is positive.
Now, set σ =

√
λ and we can do this since λ is positive(σ is a real number). Set Av/σ which implies Av = σu.

Now we need to prove the other property of singular vectors u and v for A.

uTA =
(Av
σ

)T
A =

vTATA

σ
=

(ATAv)T

σ
=

(λv)T

σ
= σvT

Thus, all the right singular vectors of A are equivalently the the eigenvectors of ATA with singular values
the square roots of the corresponding eigenvalues for ATA. σ is a singular value of A iff σ2 is an eigenvalue
of ATA.
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1.2.2 Top singular value

Now, we give some characterizations for the singular values of a matrix.

Theorem 1.1

v′1
def
= arg max

x∈Rn

||Ax||
||x||

is a singular vector of A, and
||Av′1||
||v‘1||

is the largest singular value of A.

Proof: Let v1, v2, .., vn be the orthonormal eigenvectos of ATA with eigenvalues σ2
1 ≥ ... ≥ σ2

n. This can
be assumed because ATA is a symmetric matrix and the eigenvectors can be assumed to be orthonormal
and its eigenvalues are all non-negative. Now, since v1, ..., vn form an orthonormal basis, any vector x ∈ Rn
can be written as a linear combination of the basis. That is, x = c1v1 + c2v2 + ...+ cnvn. Here, the cis are
basically 〈x, vi〉 which can be easily observed as the singular vectors are orthogonal to each other.

||Ax||2 = (Ax)T (Ax) = xT (ATA)x =
(∑

j

cjvj

)T
(ATA)

(∑
i

civi

)

=
(∑

j

cjvj

)T(∑
i

ciσ
2
i vi

)
=
∑
j

∑
i

cicjσ
2
i viv

T
j =

∑
i

c2iσ
2
i

Therefore,

||Ax||
||x||

=

√∑
i c

2
iσ

2
i∑

i c
2
i

≤ σ1

The first equality follows from the last set of equalities and the fact that x is written as a linear combination
of orthonormal vectors. The second equality follows because σ1 is the largest singular value. This just shows
an upper bound on the above quantity. But we can indeed achieve this value by setting c1 = 1 and ci = 0
for every other index i ∈ [n] which is equivalent to setting x = v1. But notice that v1 which is an eigenvector
of ATA is also a singular vector of A with corresponding singular value σ1. Therefore, ||Av1|| is the largest
singular value of A since σ2

1 = ||Av1||2 is the largest eigenvalue of ATA.

1.2.3 Best fit line

The above characterization of singular vectors and singular values, in particular the largest singular value is
useful in solving problems like the one discussed here which is “The Best fit line”. The problem is that we
are given a set of points a1, ..., am and we have to find the “best fit” line. There can be many notions for
the Best fit line. Here we define it as follows:

Find the direction v such that the sum of the squared lengths of the projections of the points on v is
maximized.

arg max
v:||v||=1

∑
i

〈ai, v〉2

An equivalent notion of defining the Best fit line is to find the direction v such that the sum of squared
length of distances of the points to v is minimized. This actually turns out to be an equivalent definition to
the one before it. That is because by Pythagoras Theorem,

Projection2 +Distance2 = Length2

=⇒
∑
i∈[m]

Projection2i +
∑
i∈[m]

Distance2i =
∑
i∈[m]

a2i
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Thus maximizing the projections is equivalent to minimizing the distances. Now, let A be the matrix with
rows a1, a2, ..., am. Then ∑

i∈[m]

〈ai, v〉2 = ||Av||2

This just follows from the definition of inner product. Therefore,

arg max
v:||v||=1

∑
i∈[m]

〈ai, v〉2 = arg max
v:||v||=1

∑
i∈[m]

||Av||2 = v1

Where v1 is the singular vector with the highest singular value for A. Thus, the top singular vector gives
the best fir line for a set of points.

Now, we define another problem very closely related to the problem of maximizing the quantity ||Ax||/||x||
which yields the answer(for the argmax) as the top singular vector. Given a matrix A as before, define

v1 = arg max
x∈Rn

||Ax||
||x||

and v′i
def
= arg max
x⊥v′1,...,v′i−1

||Ax||
||x||

The theorem statement says that v‘k is the ith singular vector.

Proof: This proof is essentially similar to the proof for the top singular value theorem that we showed
before. This proof uses induction on k. Base case is for k = 1 which we have already proved before. Suppose
then this statement holds for i ≤ k− 1, i.e., v′i = vi for i ∈ [k− 1]. Fix an x ⊥ v1, ..., vk−1. Then x =

∑
i

civi

where c1, ..., ck−1 = 0. This is because x is perpendicular to the first k−1 singular vectors. As shown before,

||Ax||2 =
∑
i

c2iσ
2
i =

∑
i≥k

c2iσ
2
i

Therefore,

max
x⊥v1,...,vk−1

||Ax||
||x||

=

√∑
i≥k c

2
iσ

2
i∑

i≥k c
2
i

≤ σk

Thus, v′k is indeed the kth singular vector since it is also orthogonal to the first k− 1 singular vectors by the
induction hypothesis and ||Avk|| is the kth largest singular value of A.

1.2.4 Best fit subspace

We define now a problem which is a generalization of the Best fit line problem seen in the last part, which
is the Best fit subspace problem. Given a set of points A(the matrix A has rows as the points, i.e., Ai = ai
where ai ∈ Rn are the points), compute a k-dimensional subspace V ′k such that the sum of squared lengths
of projections of the points on V ′k is maximized. To define the sum of squared lengths of projections on this
subspace V ′k, let w1, ..., wk be an orthonormal bases for V ′k. Sum of squared lengths of projections

=
∑
i∈[m]

( ∑
j∈[k]

〈ai, wj〉2
)

=
∑
j∈[k]

( ∑
i∈[m]

〈ai, wj〉2
)

=
∑
j∈[k]

||Awj ||2

An important point to note here is that for a given subspace Vk′, the choice of the orthogonal basis does not
matter. The proof is simple and follows from Pythagoras Theorem. To sketch the proof, fix any subspace
V ′k. Then consider the subspace orthogonal to this space, lets call it Xn−k and consider any orthogonal basis
of this subspace x1, ..., xn−k. Then for any orthogonal basis w1, ..., wk of V ′k and for any given point ai, the
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total sum of the squared lengths of its projections on any n-dimensional space is the square of its norm.
Thus the basis w1, ..., wk along with x1, ..., xn−k form a orthonormal basis for the whole vector space.∑

j∈[k]

〈ai, wj〉2 +
∑

l∈[n−k]

〈ai, xl〉2 = ||ai||2

Clearly the second quantity on the L.H.S of the equation is fixed once the subspace is fixed regardless of the
basis for V ′k and the quantity on the R.H.S is a constant. Hence, the choice of basis does not matter for a
fixed subspace.

Theorem 1.2 Given a set of points A, the best fit k-dimensional subspace is given by span of the top k
singular vectors(Vk).

Proof: Proof follows by induction on k. Base case(k = 1) is just the best fit line case in which the statement
is clearly true. By the induction hypothesis, the best fit k − 1-dimensional subspace is Vk−1 which is given
by the span of top k − 1 singular vectors. For the sake of contradiction, assume that V ′k is the best fit
k-dimensional subspace which is not the span of the top k singular vectors. Let w1, ..., wk be an orthonormal
basis for V ′k such that wk ⊥ Vk−1. This can always be done because the first subspace has a rank which
exceeds the rank of Vk−1 by 1.

Now, by optimality of Vk−1, we have that

||Aw1||2 + ...+ ||Awk−1||2 ≤ ||Av1||2 + ...+ ||Avk−1||2 (1)

And

vk = arg max
x⊥Vk−1

||Ax||
||x||

(2)

This implies that since wk and vk are unit norm vectors and the fact that wk is orthogonal to the subspace
Vk−1, ||Awk||2 ≤ ||Avk||2. Thus, summing the two inequalities above,

||Aw1||2 + ...+ ||Awk−1||2 + ||Awk||2 ≤ ||Av1||2 + ...+ ||Avk−1||2 + ||Avk||2 (3)

Therefore, the subspace Vk is at least as good as V ′k in terms of being the best fit k-dimensional subspace.
To show an example where there can be more than best fit subspace, consider again the problem of best fit
line which is essentially the best fit subspace problem but for k = 1. Here, if the top singular values are
equal, we will get two best fit lines which would be the corresponding singular vectors(or it can be a linear
combination of the two singular vectors). This idea can be extended to the best fit subspace problem as
well.

Finally, using these definitions of singular values we can define the Singular Value Decomposition for a matrix
A as

A =
∑
i∈[r]

σiuiv
T
i = UΣV T

Here r is the rank of A, ui and vi are the ith left and right singular vectors respectively of A. Further,
columns of U are the uis, columns of V are the vis and Σ is a diagonal matrix with Σii = σi and of course,
i ∈ [r]. The proof of this is very similar to the proof of Claim 1.5.

1.3 Norms

Recall that for a vector x ∈ Rn, we define its Euclidean norm as ‖x‖ def
=
(∑

i x
2
i

)1/2
.

So, for an m× n matrix A, its Frobenius norm is defined as follows (analogous to the Euclidean norm of a
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vector):

‖A‖F
def
=

∑
i∈[m]

∑
j∈[n]

A2
ij

1/2

Further, this is not the only norm associated with matrices, there are many norms. Lets see another norm
called the spectral norm of a matrix. Think of a matrix as a function, which takes an n dimensional vector
x and maps it to an m dimensional vector Ax. We want to understand what is the change in the length of
the vector x once it is acted upon by A. So we look at the ratio of ‖Ax‖ divided by ‖x‖. We define the
spectral norm of a matrix to be the largest such value over all x. So formally, we define spectral norm as

‖A‖ def
= max
x∈Rn

‖Ax‖
‖x‖

We have already seen till now that spectral norm of a matrix is equal to its top singular value, i.e. ‖A‖ =
σ1(A)

Theorem 1.3 Frobenius norm also has a close relationship with the singular value, and is given by

‖A‖2F =
∑
j

σ2
j

Proof: Let A be the matrix and let ai denotes the rows of the matrix, then ‖A‖2F =
∑
i∈[m] ‖ai‖2. Since

the right singular vectors, vjs form an orthonormal basis for the row-space of A, hence ‖ai‖2 =
∑
j〈ai, vj〉2.

Therefore,

‖A‖2F =
∑
i∈[m]

‖ai‖2 =
∑
i∈[m]

∑
j

〈ai, vj〉2 =
∑
j

∑
i∈[m]

〈ai, vj〉2 =
∑
j

‖Avj‖2 =
∑
j

σ2
j

1.4 Low Rank Matrix Approximation

Given a matrix A and a number k the goal is to compute a rank k matrix D that minimizes ‖A−D‖2F

Theorem 1.4 Best rank k approximation is given by the top k singular vectors, i.e. Ak
def
=
∑
i∈[k] σiuiv

T
i .

Moreover, ∥∥∥∥∥∥A−
∑
i∈[k]

σiuiv
T
i

∥∥∥∥∥∥
2

F

=
∑
i>k

σ2
i

Proof: Let D be the optimal rank k matrix. Then,

‖A−D‖2F =
∑
i∈[m]

‖Ai −Di‖2

In the above equation, Ai and Di are the ith rows of A and D respectively. We may assume without loss
of generality that Di is the projection of Ai on a rank k subspace (If this is not the case then we can show
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that D is a sub-optimal matrix). Therefore, ‖Ai −Di‖2 = ‖Ai‖2 − ‖Di‖2.
Now we can write the error as,

∑
i∈[m]

‖Ai −Di‖2 =
∑
i∈[m]

(‖Ai‖2 − ‖Di‖2) = ‖A‖2F −
∑
i∈[m]

‖Di‖2

Therefore, to minimize the error, our goal is to maximize
∑
i∈[m] ‖Di‖2. We have already seen earlier that,

if we want to maximize the projection on a rank k subspace, then the optimal subspace is given by top k
singular vectors, i.e. Di =

∑
j∈[k](Aivj) · vTj = Ai

∑
j∈[k] vjv

T
j

D = A
∑
j∈[k]

vjv
T
j =

∑
i

σiuiv
T
i

∑
j∈[k]

vjv
T
j =

∑
i

∑
j∈[k]

σiuiv
T
i vjv

T
j =

∑
i∈[k]

σiuiv
T
i

1.4.1 Spectral Norm Approximation

Given a matrix A and a number k, find the best rank k matrix D that minimizes ‖A−D‖22.

Theorem 1.5 Ak gives the best rank k approximation, and ‖A−Ak‖22 = σ2
k+1

Proof: Let D be any optimal matrix. Let z be a unit vector in the span{v1, · · · vk+1} such that z⊥ span D.
Write z =

∑
i∈[k+1] civi

‖A−D‖22 ≥
‖(A−D)z‖2

‖z‖2
=
‖Az‖2

‖z‖2
=
zT (ATA)z

‖z‖2
=

∑
i∈[k+1] c

2
iσ

2
i∑

i∈[k+1] c
2
i

≥ σ2
k+1

Therefore, the matrix Ak gives the best rank k approximation in the spectral norm approximation also.

There are several application of Low Rank Approximation. The error is sufficiently small depending on the
application. We can work with the low rank approximation of the matrix instead of the original matrix, since
the low rank approximation would be smaller in general, the algorithms working on the approximate matrix
might work faster and moreover the low rank matrix might require less space to store it in the memory.

1.5 Power Iteration

Power iteration is one of the simplest method to compute eigenvalues, eigenvectors, singular values and
singular vectors of a matrix.
Given any matrix M , computing its singular values and singular vectors is equivalent to computing the
eigenvalues and eigenvectors of the matrix MTM . So, let A be a symmetric matrix with eigenvalues σ1 ≥
· · ·σn ≥ 0 and v1, · · · , vn are the corresponding eigenvectors. Here, just for simplification, the eigenvalues are
considered non-negative, but the analysis in this section can be extended for the case when the eigenvalues
are negative. Now, given this we want to compute the eigenvalues, because eigenvalues and eigenvectors can
be irrational; therefore cannot be computed exactly in general.
So, our goal is that given A and an error parameter ε, compute an “approximate” top eigenvector.
Let x0 be a “random” unit vector. Write x0 = c1v1 + · · ·+ cnvn. Then,

Ax0
‖Ax0‖

=
c1Av1 + · · ·+ cnAvn

‖Ax‖
=
c1σ1v1 + · · ·+ cnσnvn√

c21σ
2
1 + · · ·+ c2nσ

2
n
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Notice that each of the component along vis are getting scaled, for example the component along v1 is scaled
by σ1 after appropriate normalization, similarly the component along vn is scaled by σn. So the component
along v1 is getting scaled by the largest value and all other components are getting scaled by smaller values.
Therefore after normalization in a relative sense, the component along v1 is increasing whereas the component
along the other eigenvectors is decreasing. So, formally,

Akx

‖Akx‖
=
c1σ

k
1v1 + c2σ

k
2v2 + · · ·+ cnσ

k
nvn√

c21σ
2k
1 + · · ·+ c2nσ

2k
n

Define xk
def
= Akx0/‖Akx0‖. Now, if we look at the limit as k →∞, then xk → v1, because the coefficient of

v1 is increasing at a much faster rate than the coefficients of the other eigenvectors. So, observe that if we
take any random vector and keep multiplying it by A, we will eventually get to v1. Also if there is a large
gap between σ1 and σ2, i.e. σ2 � σ1, then we can show ”fast” convergence.
But in general, there need not be a large gap between the top two singular vectors. Then probably we cannot
guarantee that we will converge to v1, but we can observe following: Given an error parameter ε, let p be the
index such that σp ≥ (1− ε)σ1 > σp+1, i.e. p is the number of eigenvalues which are greater than or equal to
(1− ε)σ1. Let Vp be the subspace spanned by v1, · · · , vp. Compute a unit vector x whose projection on Vp
is at least 1− ε. Informally, we don’t want the vector that we are computing to be close to v1, all we want
is that it should have a large projection on the eigenvectors corresponding to the eigenvalues which are close
to σ1.
As we have seen before, ‖Akx0‖2 =

∑
i σ

2k
i c

2
i ≥ σ2k

1 c21
So, now lets try to upper bound the component orthogonal to vp,

∑
i≥p+1

σ2k
i c

2
i ≤ (1− ε)2kσ2k

1

∑
i≥p+1

c2i ≤ (1− ε)2kσ2k
1

Therefore, the component of xk orthogonal to Vp has squared length∑
i≥p+1 σ

2k
i c

2
i

‖Akx0‖2
≤ (1− ε)2kσ2k

1

σ2k
1 c21

≤ e−2kε

c21

Taking k ≥ 1
2ε

(
ln 1

c21ε

)
suffices to ensure that e−2kε

c21
≤ ε

Taking a “random” unit vector will ensure that with high probability c1 = Ω
(

1√
n

)
(Proof in Lemma 3.12

of [1]). Therefore, given this bound, taking k = Θ
(
1
ε

(
log n

ε

))
will suffice.
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