
E0 206: Theorist’s Toolkit December 1, 2020

Lecture 18-19: Eigenvalues of Graphs, Expander Graphs
Instructor: Anand Louis Scribe: Aditya Subramanian, Sruthi Gorantla

Last week we studied the Singular Value Decomposition of rectangular matrices. This week we shift our
focus to the spectrum of square matrices, and in particular the symmetric square matrices related to graphs.

1 Gershgorin Circle Theorem

This discussion here is based on the lecture notes [Tul19]. We begin with a simple yet powerful theorem that
lets us give bounds on the eigenvalues of matrices.

Theorem 1. Let M ∈ Cn×n. Let Ri =
∑
i 6=j |Mij |. Define the set

Disc(Mii, Ri) := {z | z ∈ Cn, |z −Mii| ≤ Ri}

If λ is an eigenvalue of M , then

λ ∈
n⋃
i=1

Disc(Mii, Ri)

Proof. Let x ∈ Cn be an eigenvector corresponding to the eigenvalue λ. Let i0 = argmaxj∈[n]{|xj |}. Since
x is an eigenvector we have

Mx = λx =⇒ ∀i ∈ [n],

n∑
j=1

Mijxj = λxi

In particular, for i = i0 we have,

n∑
j=1

Mi0j = λxi0 =⇒
n∑
j=1

Mi0j
xj
xi0

= λ =⇒
∑
j 6=i0

Mi0j
xj
xi0

= λ−Mi0i0

Thus we have,

|λ−Mi0i0 | ≤
∑
j 6=i0

|Mi0j |
∣∣∣ xj
xi0

∣∣∣ ≤∑
j 6=i0

|Mi0i0 | = Ri0

Corollary 2. For graphs of maximum degree d, all eigenvalues of the adjacency matrix lie in [−d, d].

This follows simply from the theorem as the non-diagonal entries in every row sum to the degree of the
vertex, d. Since the diagonal entry is always zero, all eigenvalues lie in a disc of radius d centered at 0. Since
A is symmetric, the eigenvalues are real, and the intersection of the real line with the disc gives us the range
[−d, d].

Corollary 3. For graphs with self loops such that a vertex i, with degree di, also has a self loop of weight
di, all the eigenvalues of the adjacency matrix lie in [0, 2 maxi di].

In this case we get a disc centered around di (since the diagonal entries are now di) of radius di corre-
sponding to each vertex. Taking union of all such discs gives us the required result.

Corollary 4. A symmetric diagonally dominant matrix (|Mii| ≥
∑
i 6=j |Mij |) with non-negative diagonal

entries is positive semidefinite i.e M < 0.

Similar to corollary 3 we get a union of discs all of which are non-negative. This tells us that all eigenvalues
are ≥ 0, or in other words that the matrix is positive semidefinite.
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2 Cholesky Decomposition of Semidefinite Matrices

Theorem 5. For a symmetric matrix M , M < 0 iff there exists a matrix A such that M = ATA

We already proved in the previous lecture that M = ATA =⇒ M < 0 (when we showed that eigenvalues
of ATA are squares of singular values of A). Here we show only the other direction.

Proof. We know that a symmetric matrix can be represented as M = V ΛV T , where columns of V are the
orthonormal eigenvectors, and Λ is the diagonal matrix of corresponding eigenvalues (which are ≥ 0) of M .
Rewriting this, we get

M = V ΛV T = V Λ1/2Λ1/2V T = (Λ1/2V T )T (Λ1/2V T )

We have successfully decomposed M as ATA where A = Λ1/2V T .

We note that this decomposition is not unique. We can multiply A by any rotation matrix R to still get
a valid solution.

3 Courant Fischer Theorem

The discussion here is based on [AS18].

Theorem 6. Let A be a symmetric matrix with eigenvalues σ1 ≥ σ2 ≥ . . . ≥ σn and corresponding or-
thonormal eigenvectors v1, v2, . . . , vn respectively. Then,

σk = max
S⊆Rn

rank(S)=k

min
x∈S

xTAx

xTx
= min

T⊆Rn
rank(T )=n−k+1

max
x∈T

xTAx

xTx

Proof. First we verify that for the subspace S = span{v1, v2, . . . , vk}, the minimum over xTAx
xT x

is at least σk
. For every x ∈ S, we can write,

x =

k∑
i=1

civi

so,

xTAx

xTx
=

∑
i∈[k] σic

2
i∑

i∈[k] c
2
i

≥
∑
i∈[k] σkc

2
i∑

i∈[k] c
2
i

= σk

Now we need to verify that this is indeed the maximum. Let Tk = span{vk, vk+1 . . . , vn}. As Tk has
dimension n−k+1, for any subspace S of dimension k, S∩Tk 6= ∅. The minima over the restricted subspace
S ∩ Tk has to be atleast as large as the minima over S, so

min
x∈S

xTAx

xTx
≤ min
x∈S∩Tk

xTAx

xTx

any x ∈ S ∩ Tk can be expressed as,

x =

n∑
i=k

civi

and so,
xTAx

xTx
=

∑n
i=k σic

2
i∑n

i=k c
2
i

≤
∑n
i=k σkc

2
i∑n

i=k c
2
i

= σk

Hence we can say that for any subspace S of dimension k,

min
x∈S

xTAx

xTx
≤ σk
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so we can conclude that,

σk = max
S⊆Rn

rank(S)=k

min
x∈S

xTAx

xTx

Definition 7. The Rayleigh quotient of a vector x w.r.t matrix M is defined as RM (x)
def
= xTMx

xT x
.

Remark For an eigenvector, the Rayleigh quotient is it’s corresponding eigenvalue.
For a eigenvector λ (with eigenvalue σ) of matrix M ,

RM (λ) =
λTMλ

λTλ
=
σλTλ

λTλ
= σ

Courant-Fischer theorem tells us that σk is the minimum value that the rayleigh quotient can take among
vectors in a subspace of dimension k, and from the remark above we know that this extrema is achieved by
the corresponding eigenvector.

4 Eigenvalues of Graphs

4.1 Adjacency Matrix

We know that for a d-regular graph, every row and column of the Adjacency matrix A sums to d. So, if we
multiply A by the all 1s vector 1 = (1, 1, . . . , 1)T we get A1 = d1 which implies that d is an eigenvalue of A
with the corresponding eigenvector 1. From Corollary 2 we know that all eigenvalues of A are in the range
[−d, d], which means that this is the maximum eigenvalue of A.

Let λ1, λ2, . . . λn be the eigenvalues of A. We can further show that

Lemma 8. Second largest eigenvalue of A = d iff the graph is disconnected.

Proof. disconnected graph =⇒ λ2 = d
Since graph is disconnected we can appropriately label the vertices to write the adjacency matrix as

A =

[
A1 0
0 A2

]
where A1, A2 are the corresponding adjacency matrices of the components. Let 1a1,1a2 represent the column
vectors with 1 only in positions corresponding to the vertices in A1, A2 respectively; and zero otherwise. Now,[

A1 0
0 A2

] [
1a1
0

]
= d

[
1a1
0

]
and

[
A1 0
0 A2

] [
0

1a2

]
= d

[
0

1a2

]
So we have 2 orthogonal eigenvectors both corresponding to the eigenvalue d i.e. λ2 = d.
λ2 = d =⇒ disconnected graph
If λ2 = d, then there exist 2 orthogonal eigenvectors with eigenvalue d. Using these eigenvectors, we shall
show that the graph has at least 2 components and hence is disconnected. Consider the matrix L = dI −A.
Note that any eigenvector x of A with eigenvalue λ, is also an eigenvector of L with eigenvalue d− λ, since

Lx = (dI −A)x = dIx−Ax = dx− λx = (d− λ)x

Let x be one of the eigenvectors of A with eigenvalue d. It satisfies Lx = 0. Now,

0 = xTLx = xT (dI −A)x =
∑
i

dx2i − 2
∑
ij∈E

xixj =
∑
ij

x2i − 2
∑
ij∈E

xixj =
∑
ij∈E

(xi − xj)2
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∴ 0 =
∑
ij∈E

(xi − xj)2

Thus for each pair of vertices (i, j) connected by an edge, we have xi = xj . We can inductively apply
this fact to all vertices connected by a path (i.e. vertices in one component, say C1 of the graph) to get that
∀i, j ∈ C1, xi = xj .

But now, if the graph had only one component we would have ∀i, j ∈ V, xi = xj which tells us that any
eigenvector x with eigenvalue d is spanned by the all 1s vector 1. This is a contradiction since there are at
least 2 orthogonal vectors with eigenvalue d, and so there are at least 2 components in the graph.

Lemma 9. Multiplicity of the eigenvalue d = number of components in the graph.

Proof-sketch. We can generalize the proof of Lemma 8 for a graph with k components. We re-label the
vertices so that we can write the Adjacency martix A as a block diagonal martix with the blocks Ai being
the adjacency matrices of the individual components, Ci. Now, if we construct eigenvectors ei with ei(j) = 1
iff j ∈ V (Ci) representing the vertices of each component, we see that we get the required k orthogonal
eigenvectors each corresponding to the eigenvalue d. So, multiplicity of eigenvalue d ≥ number of components.

Similarly extending the proof in the other direction, if we had multiplicity of eigenvalue d as k but only
k − 1 components, we would have that all eigenvectors of eigenvalue d can be spanned by the set of k − 1
orthogonal vectors {e1, e2, . . . , ek−1} (ei as defined in the last paragraph) . This gives us a contradiction since
there are k such orthogonal eigenvectors. Hence, the number of components ≥ multiplicity of eigenvalue
d.

Now, if we are given an arbitrary weighted graph, we know that in the adjacency matrix, Aij = weight
of edge {i, j}. Let us define the diagonal matrix D where Dii = di =

∑
j 6=iAij .

Definition 10. The Normalized Adjacency Matrix of a graph is defined as

A = D−
1
2AD−

1
2

Lemma 11. The eigenvalues of the normalized adjacency matrix A lie in the range [−1, 1]. (HW problem)

4.2 Laplacian Matrix

Here we define another matrix associated with a graph

Definition 12. The Laplacian Matrix of a graph is defined as

L
def
= D −A

where A is the adjacency matrix of the graph and D is the diagonal matrix with Dii = di.

By construction L is symmetric, diagonally dominant, and has positive diagonal entries. Hence by Corollary 4
it is a positive semidefinite matrix i.e. L < 0.

Similarly we also define

Definition 13. The Normalized Laplacian Matrix of a graph is defined as

L def
= D−

1
2 (D −A)D−

1
2 = I −A

where I is the identity matrix.

Lemma 14. L is positive semidefinite i.e. L < 0.
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Proof. It is sufficient to show that the smallest eigenvalue of L is non-negative.

min
x

xTLx
xTx

=
(D−

1
2x)TL(D−

1
2x)

xtx
=
yTLy

xTx

Since L is a positive semidefinite matrix, the numerator yTLy ≥ 0. Also xTx = ||x||2 ≥ 0. Hence the
expression is always ≥ 0 i.e.

min
x

xTLx
xTx

≥ 0

Lemma 15. λ is an eigenvalue of A ⇐⇒ 1− λ is an eigenvalue of L.

Proof. Let λ, x be any eigenvalue, eigenvector pair of A. It follows that Ax = λx. Now consider,

Lx = (I −A)x = Ix−Ax = x− λx = (1− λ)x

So x is also an eigenvector of L and it’s corresponding eigenvalue is 1− λ.

Lemma 16. The smallest eigenvalue of L is always zero.

Proof. Consider the vector x = D1/21,

L · x = L(D1/21) = D−
1
2LD−

1
2 (D1/21) = D1/2L1 = 0

Hence we see that zero is an eigenvalue of L (corresponding to the eigenvector x). By Lemma 14 all
eigenvalues of L are non-negative. Hence, zero is the smallest eigenvalue.

Lemma 17. For regular graphs, λ2 = 0 iff the graph is disconnected. Further, the multiplicity of the
eigenvalue 0 is the number of components in the graph.

Proof-sketch. We note that in L the rows sum to zero. Hence the eigenvectors that we described for A in
Lemma 8 are also eigenvectors of L, but now correspond to the eigenvalue of zero. Rest of the proof follows
similarly to the proof of Lemma 8.

4.3 Expansion and Sparse Cuts

We noted in the last section that the graph is disconnected iff λ2 = 0. We further ask the question, if a
graph will be close to disconnected if λ2 is close to zero? To study this we introduce the notion of expansion
of a vertex set, and a sparse cut.

Definition 18. Expansion of a subset of vertices S ⊆ V is

φ(S)
def
=

∑
i∈S,j∈V \S wij∑

i∈S di

where wij is the weight of edge {i, j} and di is the degree of vertex i.

For regular unweighted graphs, φ(S) = |E(S,S)|
d|S|

Alternately the expansion is also defined in terms of the volume of S, vol(S)
def
=
∑
i∈S di as,

φ(S)
def
=

∑
i∈S,j∈V \S wij

min{vol(S), vol(V \S)}

These 2 definitions are equivalent when vol(S) ≤ vol(V )/2
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Definition 19. The expansion of a graph G is defined as the minimum expansion of a set S (among sets
with volume lesser than half the total volume).

φG = min
S⊆V

vol(S)≤vol(V )/2

φ(S)

Cheeger’s inequality gives us a bound on the expansion of a graph in terms of the second eigenvalue.
This is very useful to get an approximate value of φG since it’s exact computation is NP-hard.

Theorem 20 (Cheeger’s Inequality).
λ2
2
≤ φG ≤

√
2λ2

we shall study the inequality in more detail next week.

4.4 Expander Graphs

Definition 21. A graph G is said to be an α-expander if φG ≥ α.

Informally we say a graph is an expander if it’s expansion is an absolute constant i.e. Ω(1). Complete
graphs Kn, random graphs G (n, p) with a value of p close to 1, are some examples of expanders. Expanders
can also be explicitly constructed. Cycle graphs and path graphs are not expanders since their expansion
decays with the number of vertices.
Another notion of expansion that is studied is,

Definition 22. A d-regular graph is called a β-spectral expander if maxi∈{2,...n} |σi| ≤ β, where σi are the
eigenvalues of the adjacency matrix.

This notion of expansion is closely related to the first since it can be shown by Cheeger’s inequality that
such graphs have expansion at least d−β

2d . For more discussions on expander graphs and Cheeger’s inequality
see [HLW06, MKO13, AS15, Tre16a, Tre16b, Tre11b, Tre11a].

5 Random Walks on Graphs

The discussion here is based on [TL13, Mah15]. The idea is to start with an vertex chosen uniformly at
random and iteratively choose a neighbor of the current vertex uniformly at random. This results in a
random walk on a graph G.

Let A be the adjacency matrix of a graph G. Let µ0 be the starting probability distribution over the
vertices of G to start the random walk with. Then, µ1 is the probability distribution over the neighbours
adjacent to the vertex chosen in the first step, µ2 is the probability distribution over the neighbours adjacent
to the vertex chosen in the second step, and so on.

Lemma 23. For a d-regular graph with adjacency matrix A, if µt is the probability distribution of the random
walk at time t, then,

µt+1 =
1

d
A · µt.

Proof. We prove this claim by induction on t. Let µ0 be the initial probability distribution over all the
vertices of the graph G.
Base step. For t = 1, let vi be the vertex chosen in the first iteration. Then there are d choices for the second
vertex since the graph is d-regular. Then the probability of landing at a neighbour vertex vj in the second
step is 1

dµ
0(i). Hence we have,

µ1 =
1

d
A · µ0.
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Induction step. By the induction hypothesis, µt(j) is the probability of the random walk landing at vertex
vj at time t. Let µt+1(i) be the probability of the random walk landing at vertex vi at time t+ 1. Then,

µt+1(i) =
∑

j:(i,j)∈E(G)

µt(j)
1

d
.

Therefore,

µt+1 =
1

d
A · µt.

The matrix 1
dA is usually called as a random walk matrix.

Definition 24 (Stationary distribution). If one step of a random walk on a distribution µ∗ results in the
same distribution, then µ∗ is said to be a stationary distribution.

µ∗ =
A

d
µ∗.

Remark µ∗ is the eigenvector of the matrix A with eigenvalue d.

Let us consider a connected undirected graph G. We know that the top eigenvalue of its adjacency matrix
is d with multiplicity 1. Therefore 1/n is a unique stationary distribution of G.

Definition 25 (δ-mixing time). The smallest time t such that dTV (µt, µ∗) ≤ δ for any starting distribution
µ0. Here, the total variation distance dTV is defined as follows,

dTV
(
µt, µ∗

)
=

1

2
‖µt − µ∗‖1.

5.1 Applications of Random Walks on Expanders

In the following example, we will use random walks to reduce the amount of randomness required by a
randomized algorithm.

Consider the set B of binary strings of length n. Let ALG be a randomized algorithm to decide whether
an input string x belongs to B or not. Suppose ALG used R bits of randomness and satisfies the following
properties,

If x ∈ B, Pr
r

[ALG (x, r) = yes] ≥ 1

2
.

If x /∈ B, Pr
r

[ALG (x, r) = no] = 1.

We can easily boost the probability of success by repeating the algorithm multiple times. Consider a second
algorithm.

ALG2. Run ALG with k independent r1, . . . , rk, output yes if any of the runs return yes. ALG2 satisfies
the following properties,

If x ∈ B, Pr
r1,...,rk

[ALG2 (x, r) = yes] ≥ 1− 1

2k
.

If x /∈ B, Pr
r1,...,rk

[ALG2 (x, r) = no] = 1.

The first inequality follows from the independence of r1, . . . , rk. Number of bits of randomness needed =
kR. In order to reduce the number of bits of randomness, we use a third algorithm that does a random
walk on a d-regular spectral expander graph to choose ri in the ith iteration instead of choosing r1, . . . , rk
independently.
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ALG3.

1. Construct a d-regular expander graph G on 2R vertices for some d = O(1) and β ≤ 0.8d. Then, jth
vertex can represented by its R bit string rj , for all j ∈ 2R.

2. Sample r1 to be a uniform random vertex in G.

3. Do l − 1 steps of random walk starting from r1, i.e., sample ri+1 to be a uniform random neighbor of
ri for all 1 ≤ i ≤ l − 1.

4. Output yes if any of the vertices visited by the random walk output yes. Otherwise output no.

Clearly Step 2 requires log2 2R = R bits of randomness to choose a starting vertex uniformly at random.
Each of the subsequent l−1 steps of random walk in Step 3 take dlog2 de bits of randomness. Hence, number
of random bits used = R+ dlog2 de (l − 1).

Lemma 26. Total number of walks of length l between i and j =
(
Al
)
ij

.

Proof. We will prove this by induction on l.
Base step. For l = 1, walk of length 1 between two vertices i and j exists only when both the vertices
adjacent to each other. Hence, total number of walks of length 1 between i and j = Aij .
Induction step. By the induction hypothesis, (Al)ik is the number of walks of length l between vertices i and
k, and Akj is the number of walks of length 1 between the vertices k and j. Therefore, for all k ∈ [n] such
that (Al)ik 6= 0 and Akj 6= 0, there exists a walk of length l+ 1 between i and j, and the walk is i k  j.
Therefore, the total number of walks of length l + 1 between i and j =

∑
k∈[n]

(
Al
)
ik
Akj =

(
Al+1

)
ij

.

Remark Total number of walks of length l = 1Al1 = dln.

Theorem 27. The error probability of ALG3 is at most 1
2k

.

Proof. Since ALG outputs no for a no instance with probability 1, we have the following,

If x /∈ B, Pr
r1,...,rk

[ALG3 (x, r) = no] = 1.

We now analyse the case when x ∈ B.
Fix an x ∈ B. Let S = {r : ALG (x, r) = yes}. Since ALG outputs yes with probability at least 1

2 , there
are at least 2R/2 vertices in the expander graph such that ALG with the random string at those vertices
outputs yes. Hence, |S| ≥ n

2 where n = 2R is the total number of vertices in G. Since |S| is “large”,
probability of a random walk avoiding S is small.
Let us define A as follows,

Aij =

{
0 if i or j ∈ S,
Aij otherwise.

Let λ1, . . . , λn be the eigenvalues of A with corresponding eigenvectors v1, . . . , vn. Then λlmax is the largest

eigen value of A
l
. From Lemma 26 we have that the total number of walks of length l that avoid S =

1>
(
A
)l

1 ≤ λlmaxn.

If we show that λmax < d, it follows that the probability of avoiding S is at most
λlmaxn
dln

=
(
λmax

d

)l
, which is

very small. Let us look at an example. Consider the all 1 s vector 1.

1TA1

1T1
=

∑
i

∑
j Aij

n
=

∑
i∈V \S

∑
j∈V \S Aij

n
≤
∑
i∈V \S d

n
=
n− |S|
n

d ≤ d

2
.

The last inequality follows from the fact that |S| ≥ n
2 . Therefore, for the vector 1, the probability of avoiding

S is at most 1
2l

.
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Now, for any vector x ∈ Rn, define zi =

{
0 if i ∈ S,
xi if i 6∈ S.

Then we have,

x>Ax =
∑
ij

Aijxixj =
∑
ij

Aijzizj = z>Az.

Write z = c11 + z⊥. Here 1 is the top eigenvector of A. And c11 is the component of the vector z parallel
to 1, and z⊥ is the component of z perpendicular to 1. Then,

zTAz = (c11 + z⊥)
T
A (c11 + z⊥) = (c11 + z⊥)

T
(dc11 +Az⊥)

= d ‖c11‖2 + c11
TAz⊥ + 0 + zT⊥Az⊥

(
∵ 1>z⊥ = 0

)
= d ‖c11‖2 + zT⊥Az⊥

(
∵ 1>Az⊥ =

(
A>1

)>
z⊥ = d1>z⊥ = 0

)
.

Since G is a β-spectral expander,

zT⊥Az⊥
zT⊥z⊥

≤ max
y⊥1

yTAy

yT y
≤ β. (1)

We know that 〈z,1〉 = c1〈1,1〉+ 0. Therefore, c1 = 〈z,1〉/n. Then,

‖c11‖2 = c21n = n
1

n2
〈z,1〉2 =

1

n

(∑
i

zi

)2

=
1

n

(∑
i∈S

0 +
∑
i/∈S

zi · 1

)2

≤ 1

n
|S|
∑
i

z2i (Cauchy-Schwarz inequality)

=
1

n
(n− |S|)

∑
i

z2i ≤
1

2
zT z (∵ |S| ≥ n

2
).

Therefore,

‖c11‖2 ≤
1

2
‖z‖2. (2)

Therefore,

zTAz ≤ d ‖c11‖2 + β ‖z⊥‖2 = d ‖c11‖2 + β
(
‖z‖2 − ‖c11‖2

)
(from Equation (1))

= (d− β) ‖c11‖2 + β
(
‖z‖2

)
≤ (d− β)

(
1

2
‖z‖2

)
+ β‖z‖2 (∵ β < d, using Equation (2))

=
d+ β

2
‖z‖2.

Hence,

xTAx = zTAz ≤ d+ β

2
‖z‖2 ≤ d+ β

2
‖x‖2,

where the last inequality follows from the definition of z. Since A is a symmetric matrix, A is also a symmetric
matrix. Recall that λ1, . . . , λn are the eigenvalues of A with corresponding eigenvectors v1, . . . , vn. Then, for
any arbitrary vector x = c1v1+· · ·+cnvn, where c1, . . . , cn are non-negative numbers such that

∑
i∈[n] ci = 1,

RA(x) =
x>Ax

x>x
=

∑
i∈[n] c

2
iλi∑

i∈[n] c
2
i

.
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Therefore,

d+ β

2
≥ max

x
RA(x) = λmax.

Hence,

Pr [Avoiding S] ≤
(
λmax

d

)l
≤ (0.9)

l
(using β ≤ 0.8d).

Therefore, for l = O(k), we showed that using R + O (k) bits of randomness, we can reduce the error
probability to 1

2k
.

5.2 Mixing Time of Random Walks on Graphs

In this section we look at the upper bound on mixing time of random walks on graphs.

Theorem 28. For a d-regular β-spectral expander graph G, for t = O
(

log(n/δ)
log(d/β)

)
, we have dTV (µt, µ∗) ≤ δ.

Proof. Let µ0 be the starting distribution over the vertices of the graph. We know that 1/
√
n is the top

eigenvector of A with eigenvalue d, and hence its a stationary distribution µ∗ for a random walk on the
matrix A/d. Then,

µ0 =

〈
µ0,

1√
n

〉
1√
n

+ µ0
⊥ =

(
Σiµ

0
i

) 1

n
+ µ0

⊥ =
1

n
+ µ0

⊥.

and

µt =

(
A

d

)
µt−1 (from Lemma 23)

=

(
A

d

)(
A

d

)
µt−2 = · · · =

(
A

d

)t
µ0 =

(
A

d

)t(
1

n
+ µ0

⊥

)
=

1

n
+

(
A

d

)t
µ0
⊥

(
∵
A

d
1 = 1

)
.

If a graph is β-spectral expander, then∥∥∥∥µt − 1

n

∥∥∥∥2
2

=

∥∥∥∥∥
(
A

d

)t
µ0
⊥

∥∥∥∥∥
2

2

=
(
µ0
⊥
)T (A

d

)2t (
µ0
⊥
)

≤
(
β

d

)2t ∥∥µ0
⊥
∥∥2
2

(∵ eigenvalues of Ak are kth powers of eigenvalues of A)

≤
(
β

d

)2t

.

The last inequality is because
∥∥µ0
⊥
∥∥
2
≤
∥∥µ0

∥∥
2
≤
∥∥µ0

∥∥
1

= 1. Then we have,∥∥∥∥µt − 1

n

∥∥∥∥
1

≤
√
n

∥∥∥∥µt − 1

n

∥∥∥∥
2

≤
√
n

(
β

d

)t
(using Cauchy-Schwarz inequality).

Therefore, dTV (µt, µ∗) = 1
2‖µ

t − µ∗‖1 ≤
√
n
2

(
β
d

)t
. Then for t ≤ log(n/δ)

log(d/β) , we have,

t ≤ log(n/δ)

log(d/β)
=

log(δ/n)

log(β/d)

=⇒ t log(β/d) ≤ log(δ/n) =⇒ (β/d)
t ≤ (δ/n) =⇒

√
n

2
(β/d)

t ≤ δ

2
√
n
< δ.
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Theorem 29. In terms of the eigenvalues of the adjacency matrix of the d regular graph, the mixing time

of a random walk is t = O
(

log(n/δ)

1−σ∗d

)
, where σ∗ = max{|σ2|, |σn|}.

Proof. Similar to the previous theorem, start with the initial distribution µ0. Then after t steps of random
walk, ∥∥∥∥µt − 1

n

∥∥∥∥2
2

≤
(
µ0
⊥
)T (A

d

)2t (
µ0
⊥
)
. (3)

Since µ0
⊥ is perpendicular to the eigenvector corresponding to the largest eigenvalue of A, we have that

(
µ0
⊥
)T (A

d

)2t (
µ0
⊥
)
≤
(
σ∗

d

)2t ∥∥µ0
⊥
∥∥2
2
≤
(
σ∗

d

)2t

,

where σ1 ≥ σ2 ≥ · · · ≥ σn are eigenvalues of the adjacency matrix A and σ∗ = max {|σ2|, |σn|}. Therefore
from Equation (3) we have, ∥∥∥∥µt − 1

n

∥∥∥∥2
2

≤
(
σ∗

d

)2t

.

Now using the Cauchy-Schwarz inequality,

dTV (µt, µ∗) =
1

2

∥∥∥∥µt − 1

n

∥∥∥∥
1

≤
√
n

2

∥∥∥∥µt − 1

n

∥∥∥∥
2

≤
√
n

(
σ∗

d

)t
.

Let
√
n
(
σ∗

d

)t
≤ δ√

n
, then,

(σ∗/d)
t
< δ/n =⇒ t log (σ∗/d) < log(δ/n) =⇒ t <

log(δ/n)

log (σ∗/d)
=⇒ t <

log(n/δ)

log (d/σ∗)
.

For any x > 0, log
(
1
x

)
≥ 1− x. Therefore,

t <
log(n/δ)

log (d/σ∗)
=⇒ t <

log(n/δ)

1− σ∗

d

. (4)

Note that we can’t upper bound this quantity with log(n/δ)
λ2

since 1− |σn|d could be smaller than λ2 (for eg.,
for a bipartite graph, σn = −d). Therefore, we use the following random walk matrix instead of A/d.

Lazy Random Walk. To avoid the problem mentioned above, consider the lazy random walk matrix
W = 1

2 (I +A/d). That is, at every vertex v, the random walk stays at the vertex v with probability 1/2
or chooses one of its neighbours uniformly at random with probability 1/2d. Let vi be the eigenvector of A
corresponding to the eigenvalue σi. Then,

Wvi =
1

2

(
I +

A

d

)
vi =

1

2

(
vi +

σi
d
vi

)
=

1

2

(
1 +

σi
d

)
vi.

Therefore, vi is also an eigenvetor of W with eigenvalue 1
2

(
1 + σi

d

)
, for all i ∈ [n]. Let σ̂i

def
= 1

2

(
1 + σi

d

)
, for

all i ∈ [n]. We know that d ≥ σ1 ≥ σ2 ≥ · · · ≥ σn ≥ −d. Therefore, 1 ≥ σ̂1 ≥ σ̂2 ≥ · · · ≥ σ̂n ≥ 0. Therefore,
the second largest eigenvalue of W in absolute value is always σ̂2. We can now relate this to λ2, the second
(smallest) eigenvalue of the normalised Laplacian of the graph G, as follows,

λ2 = 1− σ2
d

= 2(1− σ̂2),

to use the Cheeger’s inequality. Note that 1/n is a stationary distribution of the random walk matrix W as
well. Hence using a similar analysis we can show the following result,
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Theorem 30. For a d-regular graph G with expansion φG, a lazy random walk on G has mixing time

t = O
(

log(n/δ)
φ2
G

)
, such that dTV (µt, µ∗) ≤ δ.

Proof-Sketch. Using the lazy random walk matrix W with the second largest eigenvalue σ̂2, similar to the
result in Theorem 29 we can show that,

t <
log(n/δ)

1− σ̂2
.

From Cheeger’s inequality we have,
√

2λ2 ≥ φG =⇒ 4(1− σ̂2) ≥ φ2G. Therefore,

t <
4 log(n/δ)

φ2G
.
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