
E0 206: Theorist’s Toolkit December 8, 2020

Lecture 20-21: Linear Algebraic Techniques (Cheeger’s Inequality)
Instructor: Anand Louis Scribe: Aditya V. Singh, Adit Vishnu P M

The topics covered in this week’s lectures are a subset of those covered in the lecture notes [Mah15, Don13,
Spi15, Tre16a, Tre16b, Tre11, Tre08].

1 Random walks

In the last week’s lecture, we analyzed random walk on a d-regular graph. Now, we look at random walk on
general graphs. Recall the set-up: We have an undirected graph with n vertices. If at time t the random
walk is on a vertex v, it chooses the next vertex uniformly at random from the neighbors of v.

Let µt be the probability distribution at time t. Then

µt+1 =
(
AD−1

)
µt. (1)

Claim 1. The stationary distribution µ∗ is given by µ∗i = di∑
j dj

.

Proof. Note (see (1)) that the stationary distribution µ∗ satisfies

µ∗ = AD−1µ∗.

The proof now follows from the observation that D1 is an eigenvector of AD−1 with eigenvalue 1, which can
be seen as follows (

AD−1
)

(D1) = A1 = (D1) .

Exercise 2. Derive mixing time bounds for random walks on general graphs.

Note that AD−1 has the same eigenvalues as D−1/2AD−1/2, which follows from the theorem below.

Theorem 3. Let M be an n×n matrix and let S be an n×n invertible matrix. Then, M and SMS−1 have
the same eigenvalues.

Proof. Let v be an eigenvector of M with eigenvalue λ. That is, Mv = λv. Let v′ , Sv. Then

SMS−1v′ = SMS−1Sv = S(λv) = λ(Sv) = λv′.

2 Expander graphs

Recall from last lecture the definition of a d-regular β-spectral expander graph: A d-regular graph is called
a β-spectral expander if max

i∈{2,...,n}
|σi| ≤ β, where σ1 ≥ · · · ≥ σn are the eigenvalues of the adjacency matrix.

E0 206: Theorist’s Toolkit-1



2.1 How small can β be?

Let A be the adjacency matrix of a d-regular β-expander graph G. Using Cheeger’s inequality, it can be
seen that smaller the β, better the expansion of G. We now show that there is a limit to how small β can
be. To get a lower bound on β, note that

Tr(A2) =
∑
i

σ2
i ≤ d2 + (n− 1)β2. (2)

Now,

Tr(A) =
∑
i

e>i A
2ei =

∑
i

‖Aei‖22 = nd (since A is d-regular) . (3)

(In general Tr(Ak) = number of walks of length k starting and ending at the same vertex.)
From (2) and (3), we have

β ≥
√
n− d
n− 1

·
√
d = (1− o(1))

√
d.

Remark It can be shown that β ≥ 2
√
d− 1 − o(1). This lower bound is essentially tight; see the next

remark.

Remark [Ramanujan graphs] A d-regular graph is called a Ramanujan graph if β ≤ 2
√
d− 1. It can

be shown that for a random n-vertex d-regular graph, β ≤ 2
√
d− 1 + o(1) with high probability [F+03].

Moreover, explicit constructions of Ramanujan graphs are known for some values of d [LPS88].

2.2 Expander mixing lemma

Theorem 4. Let G be a d-regular graph on n vertices. Then, for any S, T ⊂ V ,∣∣∣∣|E(S, T )| − d

n
|S||T |

∣∣∣∣ ≤ β√|S||T |.
Proof. Fix S, T ⊂ V , and let 1S ,1T ∈ {0, 1}n be their indicator vectors, respectively. Note that we can write

1S = cS1 + pS , where cS is a constant and pS ∈ Rn is such that 〈pS ,1〉 = 0. Moreover, cS = 〈1S ,1〉
‖1‖22

= |S|
n .

Similarly, 1T = cT1 + pT , where cT = |T |
n and 〈pT ,1〉 = 0. Now,

|E(S, T )| = 1>SA1T

=

(
|S|
n

1 + pS

)>
A

(
|T |
n

1 + pT

)
=

(
|S|
n

1 + pS

)>( |T |
n

(d1) +ApT

)
= d
|S|
n

|T |
n

1>1 +
|S|
n

1>ApT︸ ︷︷ ︸
=(A1)>pT

=d(1>pT )=0

+d
|T |
n
p>S 1︸︷︷︸
=0

+p>SApT

= d
|S||T |
n

+ p>SAp
T .

Therefore, ∣∣∣∣|E(S, T )| − d

n
|S||T |

∣∣∣∣ =
∣∣p>SApT ∣∣ ≤ ‖pS‖2 ‖ApT ‖2 . (4)
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Now,

‖ApT ‖2 =

√
(ApT )

>
(ApT ) =

√
p>TA

>ApT ≤
√
β2p>T pT = β ‖pT ‖2 .

Substituting this in (4), we get∣∣|E(S, T )| − d
n |S||T |

∣∣ ≤ β ‖pS‖2 ‖pT ‖2
≤ β ‖1S‖2 ‖1T ‖2

(
since ‖1S‖22 = ‖(|S|/n)1‖22 + ‖pS‖22 ; ‖1T ‖22 = ‖(|T |/n)1‖22 + ‖pT ‖22

)
= β

√
|S||T |.

3 Laplacian matrix

Given a graph G with adjacency matrix A and the associated diagonal matrix D, the Laplacian matrix L is
defined as

L , D −A.

Note that 1 is an eigenvector of L with eigenvalue 0, i.e. L1 = 0. This follows from the fact that, for
i ∈ {1, . . . , n}, Dii =

∑
j Aij .

Claim. For every x ∈ Rn, x>Lx =
∑
{i,j}∈E Aij(xi − xj)2.

Proof.
x>Lx = x>(D −A)x

=
∑
i

dix
2
i − 2

∑
i<j

Aijxixj

=
∑
i

∑
j

Aij


︸ ︷︷ ︸

di

x2
i − 2

∑
i<j

Aijxixj

=
∑
i,j

Aijx
2
i − 2

∑
i<j

Aijxixj

=
∑
i<j

Aij
(
x2
i + x2

j − 2xixj
)

=
∑
i<j

Aij(xi − xj)2.

Define normalized Laplacian matrix L as

L , D−1/2LD1/2.

Note that D1/21 is an eigenvector of L with eigenvalue 0, because

L
(
D1/21

)
= D−1/2LD−1/2

(
D1/21

)
= D1/2L1 = 0.

Cheeger’s inequality relates second smallest eigenvalue of L to graph expansion. Let us express these quan-
tities in a way that makes the connection between them more transparent.
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Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be eigenvalues of L. Then

λ2 = min
x⊥D1/21

x>Lx
x>x

= min
x⊥D1/21

(
D−1/2x

)>
L
(
D−1/2x

)
x>x

(
since L = D−1/2LD−1/2

)
= min

y s.t.

D1/2y⊥D1/21

y>Ly

y>Dy

(
letting y = D−1/2x, i.e., x = D1/2y

)

= min
y⊥D1

y>Ly

y>Dy

(
since 〈D1/2y,D1/21〉 = 0 ⇐⇒ 〈y,D1〉 = 0

)
= min
y⊥D1

∑
{i,j}∈E Aij (yi − yj)2∑

i diy
2
i

.

(5)

Now, we express graph expansion in similar terms. Let x ∈ {0, 1}n and let Sx = {i : xi 6= 0} (i.e. Sx is the
support of x). Note that for a pair of vertices i, j, (xi − xj)2 indicates whether i and j are separated by Sx.
Further, we have ∑

{i,j}∈E Aij(xi − xj)2∑
i dix

2
i

=

∑
i∈Sx,j∈V \Sx

Aij∑
i∈Sx

di
.

Also note that 〈x,D1〉 =
∑
i dixi = vol(Sx), and that vol(V ) =

∑
i di. Therefore

φG = min
S:vol(S)≤vol(V )/2

φ(S) = min
x∈{0,1}n s.t.
〈x,D1〉≤

∑
i di/2

∑
{i,j}∈E Aij(xi − xj)2∑

i dix
2
i

.

4 Cheeger’s inequality (part I)

Theorem 5. Let G be an undirected graph, and let 0 ≤ λ2 ≤ · · · ≤ λn be eigenvalues of L (normalized
Laplacian of G). Then, φG ≥ λ2/2.

Proof. Fix any S ⊂ V such that vol(S) ≤ vol(V )/2. We will show that λ2 ≤ 2φ(S). From (5), we know that

λ2 = min
y⊥D1

∑
{i,j}∈E Aij (yi − yj)2∑

i diy
2
i

which implies that, for a given y satisfying 〈y,D1〉 = 0, we have

λ2 ≤
∑
{i,j}∈E Aij (yi − yj)2∑

i diy
2
i

.

Thus, to show that λ2 ≤ 2φ(S), it suffices to construct a vector y such that
∑
{i,j}∈E Aij(yi−yj)2∑

i diy
2
i

≤ 2φ(S).

Towards that end, let x = (x1, . . . , xn) ∈ {0, 1}n be the indicator vector of S, i.e.

xi =

{
1 if i ∈ S
0 if i /∈ S

.

Let y = x+ c1 such that 〈y,D1〉 = 0. To compute c for which 〈y,D1〉 = 0, note that

0 = 〈y,D1〉 = 〈x,D1〉+ c〈1, D1〉 =
∑
i

dixi + c
∑
i

di
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which implies

c = − vol(S)

vol(V )
.

Observe that for any i, j, we have yi − yj = xi − xj . Thus∑
{i,j}∈E

Aij(yi − yj)2 =
∑
{i,j}∈E

Aij(xi − xj)2 =
∑

i∈S,j∈V \S

Aij .

Now ∑
i

diy
2
i =

∑
i

di (xi + c)
2

=
∑
i

dix
2
i + c2

∑
i

di + 2c
∑
i

dixi

= vol(S) +

(
vol(S)

vol(V )

)2

vol(V )− 2
vol(S)

vol(V )
vol(S)

= vol(S)

(
1− vol(S)

vol(V )

)
≥ 1

2
vol(S).

Therefore ∑
{i,j}∈E Aij (yi − yj)2∑

i diy
2
i

≤ 2

∑
i∈S,j∈V \S Aij

vol(S)
= 2φ(S) (6)

which proves that
λ2 ≤ 2φ(S).

We have shown that φ(S) ≥ λ2/2 for arbitrary S ⊂ V satisfying vol(S) ≤ vol(V )/2. Thus

min
S:vol(S)≤vol(V )/2

φ(S)︸ ︷︷ ︸
φG

≥ λ2

2
.

5 Cheeger’s inequality (part II)

Theorem 6. Let G be an undirected graph, and let 0 ≤ λ2 ≤ · · · ≤ λn be eigenvalues of L (normalized
Laplacian of G). Then, φG ≤

√
2λ2.

Before proving Theorem 6, we prove three lemmas.

Lemma 7. There exists a polynomial time algorithm that takes a graph G = (V,E) and an x ∈ Rn≥0, and
computes S ⊆ supp(x) such that ∑

i∈S,j∈V \S Aij∑
i∈S di

≤
∑
ij Aij |xi − xj |∑

i dixi

Note that ratio of edges going from S to V \S to the volume of S is equal to the expansion of S if the volume
of S is less than equal to half the volume of the entire graph.
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Proof. Without loss of generality assume that x1 ≥ · · · ≥ xn ≥ 0. For i < j, we can write xi − xj =∑j−1
l=i (xl − xl+1) and xi =

∑
xl−xl+1

where xn := 0. Hence:

∑
ij Aij |xi − xj |∑

i dixi
=

∑
i<j Aij

∑j−1
l=i (xl − xl+1)∑

i di
∑n
l=i(xl − xl+1)

=

∑n
l=1

(
(xl − xl+1)

∑
i∈[l],j∈V \[l]Aij

)
∑n
l=1

(
(xl − xl+1)

∑
i∈[l] di

)
For the last equality, note that (xl − xl+1) will appear for ij when i ≤ l and j ≥ l + 1.

Claim. For a1, . . . , an, b1, . . . , bn, c1, . . . , cn > 0, we have

c1a1 + · · ·+ cnan
c1b1 + · · ·+ cnbn

≥ min
i

ai
bi

Proof. Let α = mini ai/bi. Then ai ≥ αbi for all i. Therefore,

c1a1 + · · ·+ cnan
c1b1 + · · ·+ cnbn

≥ c1αb1 + · · ·+ cnαbn
c1b1 + · · ·+ cnbn

= α

Using our claim, we get that∑
ij Aij |xi − xj |∑

i dixi
=

∑n
l=1

(
(xl − xl+1)

∑
i∈[l],j∈V \[l]Aij

)
∑n
l=1

(
(xl − xl+1)

∑
i∈[l] di

) ≥ min
l:xl−xl+1>0

∑
i∈[l],j∈V \[l]Aij∑

i∈[l] di

Therefore, S = [l∗] for optimal l∗ above suffices, since (xl∗ − xl∗+1) > 0, S ⊆ supp(x).

Lemma 8. There exists a polynomial time algorithm that takes a graph G + (V,E) and a y ∈ Rn≥0, and
computes an S ⊆ supp(y) such that ∑

i∈S,j∈V \S Aij∑
i∈S di

≤

√
2
yTLy

yTDy

Idea: use Lemma 7 with x where xi := y2
i .

Proof. Let xi = y2
i . Note that supp(x) = supp(y).∑

ij

Aij |xi − xj | =
∑
ij

Aij |yi − yj |(yi + yj)

≤
√∑

ij

Aij(yi − yj)2

√∑
ij

Aij(yi + yj)2

=
√
yTLy

√∑
ij

Aij(y2
i + y2

j + 2yiyj)

≤
√
yTLy

√
2
∑
ij

Aij(y2
i + y2

j )

=
√
yTLy

√
2
∑
i

diy2
i

Hence, ∑
ij Aij |xi − xj |∑

i dixi
≤
√
yTLy

√
2
∑
i diy

2
i∑

i diy
2
i

=

√
2
yTLy

yTDy
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Lemma 9. There exists a polynomial time algorithm that takes a graph G = (V,E) and a z ∈ Rn such that

〈z,D1〉 = 0, and computes an S such that vol(S) ≤ vol(V )/2 and φ(S) ≤
√

2 z
TLz
zTDz

.

Idea:

• Shift every entry of z such that the colume of the support of the positive part of z and the negative
part of z is at most half of the total volume.

• Use Lemma 8 on only the positive part or the negative part, whichever is “better”.

Proof. For a ∈ R, let a+ := max{a, 0} and a− := max{−a, 0}. Note that a = a+ − a−. Let u = z + c1 for
an appropriate constant c such that vol(supp(u+)), vol(supp(u+)) ≤ vol(V )/2.

∑
ij

Aij(zi − zj)2 =
∑
ij

Aij(ui − uj)2

∑
i

diu
2
i =

∑
i

di(zi + c)2

=
∑
i

diz
2
i + c2

∑
i

di + 2
∑
i

dizi

≥
∑
i

diz
2
i

∑
ij Aij(ui − uj)2∑

i diu
2
i

≤
∑
ij Aij(zi − zj)2∑

i diz
2
i

Claim. (a− b)2 ≥ (a+ − b+)2 + (a− − b−)2

Proof. If a, b ≥ 0 then a+ = a, b+ = b, and a− = b− = 0 and we have equality. If a ≥ 0 and b < 0, then
a+ = a, b− = −b, and a− = b+ = 0. Hence,

(a− b)2 = a2 + b2 − 2ab

≤ a2 + b2

= (a+ − b+)2 + (a− − b−)2.

Therefore, we have ∑
ij∈E

Aij(ui − uj)2 ≥
∑
ij∈E

Aij(u
+
i − u

+
j )2 +

∑
ij∈E

Aij(u
−
i − u

−
j )2

and∑
i

diu
2
i =

∑
i

di(u
+
i )2 +

∑
i

di(u
−
i )2.

Combining the two equations above, we get∑
ij∈E Aij(ui − uj)2∑

i diu
2
i

≥
∑
ij∈E Aij(u

+
i − u

+
j )2 +

∑
ij∈E Aij(u

−
i − u

−
j )2∑

i di(u
+
i )2 +

∑
i di(u

−
i )2
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≥ min

{∑
ij∈E Aij(u

+
i − u

+
j )2∑

i di(u
+
i )2

,

∑
ij∈E Aij(u

−
i − u

−
j )2∑

i di(u
−
i )2

}
Use Lemma 8 on the minimizer above. Without loss of generality, assume that z1 ≥ · · · ≥ zn. Then

min
l
φ([l]) ≤

√
2
zTLz

zTDz

where φ(S) =
∑

i∈S,j∈V \S Aij

min{vol(S),vol(V \S)} .

Theorem 6 can now be proved easily.

Proof of Theorem 6. Use Lemma 9 with z = D−1/2v. Then 〈z,D1〉 = 0 and zTLz
zTDz

= λ2 and this completes
the proof of Cheeger’s inequality.

6 Tightness of Cheeger’s inequality

Cheeger’s inequality is tight. For one side of the tightness, we can look at the cycle on n vertices. We can
verify that it’s expansion is φG = 2/n and λ2 = 1− cos 2π

n ≈ Θ
(

1
n2

)
. Therefore, φG = Θ(

√
λ2).

For the tightness in the other direction, we can consider a hypercube. V = {−1, 1}d and {x, y} ∈ E if x and

y differ in exactly one coordinate. XS :=
∏
i∈S xi where S ⊆ [d]. Therefore XS ∈ {−1, 1}2d

.

Theorem 10. XS is an eigenvector of the normalized adjacency matrix with eigenvalue 1− 2|S|/d.

Let S 6= T . Then

〈XS ,XT 〉 =
∑

x∈(−1,1)d

(
∏
i

∈ Sxi
∏
i∈T

xi)

= 2dEx {−1,1}d

(
(
∏

i∈S∩T
x2
i )(

∏
i∈S∆T

xi)

)
= 2d

∏
i∈S∆T

Ex {−1,1}xi

= 0

Fix S ⊆ [d]. Then for any x ∈ {−1, 1}d

(AXS)x =
∑

y∈N(x)

=
∑

y∈N(x)

∏
j∈S

yj

=
∑
i∈S

−∏
j∈S

xj

+
∑
i6∈S

∏
j∈S

xj


= (d− 2|S|)

∏
j∈S

xj

= (d− 2|S|)XS(x).

Therefore, AXS = (d−2|S|)XS . Therefore, eigenvalues of L are { 2i
d : i = 0, . . . , d} where 2i/d has multiplicity(

d
i

)
. Let Si = {x ∈ V : xi = 1}.

φG = φ(Si) =
1

d
=
λ2

2
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