EO 206: Theorist’s Toolkit December 8, 2020

Lecture 20-21: Linear Algebraic Techniques (Cheeger’s Inequality)
Instructor: Anand Louis Scribe: Aditya V. Singh, Adit Vishnu P M

The topics covered in this week’s lectures are a subset of those covered in the lecture notes [Mah15, [Donl3|
Spilb} [Trel6al [Trel6bl Tre1ll [Tre08].

1 Random walks

In the last week’s lecture, we analyzed random walk on a d-regular graph. Now, we look at random walk on
general graphs. Recall the set-up: We have an undirected graph with n vertices. If at time ¢ the random
walk is on a vertex v, it chooses the next vertex uniformly at random from the neighbors of v.

Let p; be the probability distribution at time ¢. Then

pree1 = (AD™Y) puy. (1)

Claim 1. The stationary distribution p* is given by u; = Zdid"
IR

Proof. Note (see ) that the stationary distribution p* satisfies
,U,* — ADfllu*.

The proof now follows from the observation that D1 is an eigenvector of AD~! with eigenvalue 1, which can

be seen as follows
(AD™")(D1) = A1 = (D1).

Exercise 2. Derive mizing time bounds for random walks on general graphs.
Note that AD~! has the same eigenvalues as D~*/24D~1/2 which follows from the theorem below.

Theorem 3. Let M be an n x n matric and let S be an n x n invertible matriz. Then, M and SM S~ have
the same eigenvalues.

Proof. Let v be an eigenvector of M with eigenvalue X. That is, Mv = Av. Let v/ £ Sv. Then

SMS™ ' = SMS™Sv = S(\) = A(Sv) = \'.

2 Expander graphs

Recall from last lecture the definition of a d-regular [-spectral expander graph: A d-regular graph is called

.....
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2.1 How small can 5 be?

Let A be the adjacency matrix of a d-regular S-expander graph G. Using Cheeger’s inequality, it can be
seen that smaller the [, better the expansion of G. We now show that there is a limit to how small 8 can
be. To get a lower bound on 3, note that

=Y ot <d (- 1)8 @

Now,
= Z e] A%e; = Z \|Aei||§ =nd (since A is d-regular). (3)

(In general Tr(A*) = number of walks of length k starting and ending at the same vertez.)
From and , we have

g =

Z:‘f-ﬂ:(l—o(l))x/ﬁ.

Remark It can be shown that § > 24/d — 1 — o(1). This lower bound is essentially tight; see the next
remark.

Remark [Ramanujan graphs] A d-regular graph is called a Ramanujan graph if 8 < 2v/d—1. It can

be shown that for a random n-vertex d-regular graph, 8 < 2v/d — 1 + o(1) with high probability [FT03].
Moreover, explicit constructions of Ramanujan graphs are known for some values of d [LPS88].

2.2 Expander mixing lemma

Theorem 4. Let G be a d-reqular graph on n vertices. Then, for any S, T C V,

d
1B(S,T)] = ~IS|IT]) < BVISIITI.

Proof. Fix S,T C V,and let 15,17 € {0,1}" be their indicator vectors, respectively. Note that we can write

1s = ¢sl + pg, where cg is a constant and pg € R™ is such that (pg, 1) = 0. Moreover, cg = ﬁfﬁ%) = ‘nﬂ
2
Similarly, 17 = ¢r1 + pr, where cr = ‘ | and (pr,1) = 0. Now,
|E(S,T)| =15 A1y
S To/r
= ('1 +ps> A <||1 +pT)
n n
S s
= (|1 -‘rps) <| (d1) + ApT)
S| |T S
a2y 18] ‘ L 1T A +dup51 +pg Apr
n-n ~——
=(A1)Tpr =0
=d(1"pr)=0
S||T
JSUTL, e
n
Therefore,
d
1B(S,T) = ~IS|IT]) = Ipg Apr| < llpslly 1 Aprll, - (4)
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Now,

|Aprlly = \/(Apr)T (Apr) = \/pFAT Apr < \/B2pFpr = B prl, -
Substituting this in , we get
1E(S,T)| = 2ISIIT1| < B s, o7l
. 2 2 2 2 2 2
< Blsly 1z, (Smce 115y = [[(S1/n)Ll5 + Ipsllz: 1z lly = [(T1/n)1]; + ||pT||2)

= BVISIITI.

3 Laplacian matrix

Given a graph G with adjacency matrix A and the associated diagonal matrix D, the Laplacian matrix L is
defined as
L2D- A

Note that 1 is an eigenvector of L with eigenvalue 0, i.e. L1 = 0. This follows from the fact that, for
xS {1,...77’L}, D;; = Zinj‘

Claim. For every z € R", 2" Lx = Y giyen Aij(zi — z;)2.

Proof.
' Le=x"(D— Az

= Zdll‘? -2 ZAijxixj

i<j

=> DAy 27 -2) Ajaia,
i J

1<j
d;

— A..x2 -9 Aiixia
E : ij g E ijLily
%] i<j

= g Ajj (ZCZ + 2:1323%)
i<j

= g Ajj(z; —xj)”.
i<j

Define normalized Laplacian matrix £ as
L2 D-YV2Lp'/2
Note that D'/?1 is an eigenvector of £ with eigenvalue 0, because
c(p'21) = p72Lp~12 (DV*1) = DV211 =0,

Cheeger’s inequality relates second smallest eigenvalue of £ to graph expansion. Let us express these quan-
tities in a way that makes the connection between them more transparent.
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Let 0 = X1 < Xy < -+ < A\, be eigenvalues of £. Then

.z Lz
Ao = min =
r1D1/21 ' T
T
. (D7Y22) L(D~'?z)
= min =
x1D1/21 T T
T
= min y Ly (
y s.t. yTDy
DY/2y1DV/?1

-y Ly
min
y1D1yT Dy
2
. Z{i,j}eE Aij (yi — y5)
= min 5
yLD1 > diys
Now, we express graph expansion in similar terms. Let z € {0,1}" and let S, = {i : z; # 0} (i.e. S, is the

support of z). Note that for a pair of vertices i, j, (z; — x;)? indicates whether i and j are separated by S,.
Further, we have

(since L= D_l/QLD_l/Q)

letting y = D~ Y2z, ie., z = Dl/Qy) (5)

(since (DY%y, D'/21) =0 < (y,D1) = 0)

Yger Ai(@i—2)? Yics, jevs, Ais

> dixf B ZiGSI d;
Also note that (z,D1) =3, diz; = vol(S;), and that vol(V') = >, d;. Therefore
A (s — )2
oG = mi d(S) = min Z{M}GE 5 5)

N S:vol(S)gxlzlol(V)/Q 2€{0,1}" s.t. >, dia?
(z,D1)<37, di/2

4 Cheeger’s inequality (part I)

Theorem 5. Let G be an undirected graph, and let 0 < Ao < --- < A, be eigenvalues of L (normalized
Laplacian of G). Then, ¢ > Aa/2.

Proof. Fix any S C V such that vol(S) < vol(V)/2. We will show that Ay < 2¢(S). From (), we know that

2
. 2gigyer Qi (i — v;5)
Ao = min 5
yLlD1 > diy;

which implies that, for a given y satisfying (y, D1) = 0, we have

< Z{i,j}eE Ay (yi — Z/j)2

A2

ven Av(i—y;)?
Thus, to show that Ay < 2¢(S), it suffices to construct a vector y such that Z{W}EX]i djy(; ¥) < 2¢(S).

Towards that end, let z = (z1,...,2,) € {0,1}" be the indicator vector of S, i.e.

1 ifief§
€T; = .
0 ifig¢gs

Let y = « + 1 such that (y, D1) = 0. To compute c¢ for which (y, D1) = 0, note that

0= (y,D1) = (z,D1) +¢(1,D1) = ¥ diz; +¢ Y d;
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which implies
_ vol(5)
vol(V)

Observe that for any 4, j, we have y; — y; = ; — z;. Thus

Z Aij(yi —y)° = Z Agj(z; — aj)? = Z Agj.

{i,j}eE {i.j}eE i€S,jEV\S
Zdiy? = Zdi (zi +¢)?

= vol(S) + (VOMS ) ) 2 vol(V) — 2

CcC =

vol(.S) vol(8)

vol(V)

Therefore )
2igyes A (Wi —v)” _ ZZiGS,jeV\S Aij
e o0 vol(d)

= 2¢(S5) (6)
which proves that
A2 < 2¢(S).
We have shown that ¢(S) > A2/2 for arbitrary S C V satisfying vol(S) < vol(V)/2. Thus
A2
> —.
4(S) = >

min
S:vol(S)<vol(V)/2

c

5 Cheeger’s inequality (part II)

Theorem 6. Let G be an undirected graph, and let 0 < Ao < .-+ < A, be eigenvalues of L (normalized
Laplacian of G). Then, ¢g < v/2MXo.

Before proving Theorem [6] we prove three lemmas.

Lemma 7. There exists a polynomial time algorithm that takes a graph G = (V, E) and an x € RY,, and
computes S C supp(z) such that

Z:Z‘GS‘J'E‘/\S Aij < Zu Ajjlzi — ]
Zies dz N Zz dlazz

Note that ratio of edges going from S to V\S to the volume of S is equal to the expansion of S if the volume
of S is less than equal to half the volume of the entire graph.
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Proof. Without loss of generality assume that z; > --- > z, > 0. For ¢ < j, we can write z; — z; =

j—1

—; (x1 —2141) and 2; = Zrz—zz+1 where x,, :== 0. Hence:

Yo Al — x| 3 A S (e — i) 2=t (<xl - xl“)zie[l]’jeV\[l]Aij)
2 dii 200 s — i) 2 ((ffl = Ti41) Diepy di)

For the last equality, note that (z; — x;4+1) will appear for ij when ¢ <[ and j > 1+ 1.

Claim. For ay,...,an,b1,...,bn,c1,...,¢cn > 0, we have

c1a1 + -+ cpap . ay
> min —
ciby + -+ cpby i b

Proof. Let a = min; a;/b;. Then a; > ab; for all i. Therefore,

cia; + -+ cpan ciaby + -+ cpab,
by + - +cpby, T abi+ -+ cpby

O
Using our claim, we get that
Zij Aijlz; — 4] B D1 ((Il — Z41) Ziem,jev\[z]Aij) > min Zie[l],jev\[l] Aij
2 dii 2 ((901 = Ti11) Dieq di) Clmme>0 e di
Therefore, S = [I*] for optimal I* above suffices, since (x;» — 2;+41) > 0, .S C supp(z). O

Lemma 8. There exists a polynomial time algorithm that takes a graph G 4+ (V,E) and a y € RYy, and

computes an S C supp(y) such that
Yiesjev\s Aij <[5 yT'Ly
Yiesdi T\ y"Dy

Idea: use Lemma [7| with @ where x; := y2.

Proof. Let x; = y?. Note that supp(x) = supp(y).
D Agles =l = Agly — yjl(ys + )
ij i

< DDA —ui)? D Aiiyi +y5)?
ij

ij

=V Ly > A2+ v? + 2i;)
ij

<VYTLy 2D Ay(y? +v3)

i
=VyTLy [2> diy?

Hence,

i Aile — 25l VyTLyV23 iyt |,y Ly
22 diws B > diy? y" Dy
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Lemma 9. There exists a polynomial time algorithm that takes a graph G = (V, E) and a z € R™ such that
(z,D1) = 0, and computes an S such that vol(S) < vol(V)/2 and ¢(S) < \/2%.

Idea:

e Shift every entry of z such that the colume of the support of the positive part of z and the negative
part of z is at most half of the total volume.

e Use Lemma |8 on only the positive part or the negative part, whichever is “better”.

Proof. For a € R, let a* := max{a,0} and a~ := max{—a,0}. Note that a = a™ —a~. Let u = z + ¢l for
an appropriate constant ¢ such that vol(supp(u™)), vol(supp(u™)) < vol(V)/2.

Do Aizi—z)? =) Aylui —uy)?

Zdzuf = Zdi(zi + 0)2
ZZCIZZZ?-FCQZCL—FQZGZV%
i % i

2y Aij(ui — uy)? o 2 Az — z;)?
Zi diug - Zz dizi2
Claim. (a —b)? > (at —b")2 4+ (a= —b7)?
Proof. If a,b > 0 then a* = a, b* = b, and a= = b~ = 0 and we have equality. If @ > 0 and b < 0, then
at =a,b” = —b, and a~ = bt = 0. Hence,
(a —b)* = a® + b* — 2ab
<a®+ b
=(at =b")2+(a” —b7)2

Therefore, we have
DAyl —wy)? = Y A(uf —uf )+ Y Aluy —uy)?
ijeE ek e

and
Zdzu% = Zdz(uj')Q + Zdz(u:)2
Combining the two equations above, we get

ijen Aij(ui — uj)? L Yijen Agj(uf —ul )+ 3 e p Ay (uy —up)?
> diuf - S di(uf)? 4+ 30, di(ug)?
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2idi (uj)Q ’ > di(uy

Use Lemma [§] on the minimizer above. Without loss of generality, assume that z; > --- > z,. Then

> mi > ijeE Ajj(uf — U;F)Q Dijer Aij(u; — u;)z
> min 2

2T Lz
zT'Dz

min (1)) <

Zi N Aij
where QS(S) = Irlirl{viisf,‘;giV\S)} . u

Theorem [6] can now be proved easily.

Proof of Theorem[f. Use Lemma@with 2z = D72y, Then (z,D1) = 0 and ZZ;IL)E = Ao and this completes

the proof of Cheeger’s inequality. O

6 Tightness of Cheeger’s inequality

Cheeger’s inequality is tight. For one side of the tightness, we can look at the cycle on n vertices. We can
verify that it’s expansion is ¢¢ = 2/n and Ay = 1 — cos 2Z =~ © (-7). Therefore, ¢g = O(v/A2).
For the tightness in the other direction, we can consider a hypercube. V = {—1,1}¢ and {z,y} € F if z and

y differ in exactly one coordinate. Xg :=[[,.q#; where S C [d]. Therefore Xg € {—1,1}2".

i€s
Theorem 10. Xg is an eigenvector of the normalized adjacency matriz with eigenvalue 1 — 2|S|/d.
Let S # T. Then

<Xs, XT> = Z (H € Sx; H $1)

ze(=1,1)4 i €T

=2'E, (1134 (( I =5 I :17,-))

i€SNT i€ESAT

=27 H E; (17
i€SAT

=0
Fix S C [d]. Then for any x € {—1,1}¢

(AXS)Q, = Z

YyEN ()

=2 v

yEN(z) jES
=> | -Ilw |+ (IT=
€S JjES iZS \JES

= (d—2[S]) [T =
jes
= (d = 2|S])Xs (x).
Therefore, AXg = (d—2|S|)Xs. Therefore, eigenvalues of £ are {2/ : i = 0,...,d} where 2i/d has multiplicity
(‘Z) Let S;={z eV :x; =1}
b0 = 0(5) = 7
R D)
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