
E0 206: Theorist’s Toolkit December 15, 2020

Lecture 22-23: Analysis of Boolean Functions
Instructor: Anand Louis Scribe: Bhargav Thankey

A boolean function is a function defined as f : {0, 1}n → {0, 1} or more generally as f : {0, 1}n → R.
Boolean functions can be used to capture a lot of situations arising in theoretical computer science. For
instance, a boolean function can be used to describe the computation of a boolean circuit: the n inputs of
the circuit correspond to the n arguments of the function and for any x ∈ {0, 1}n, f(x) is the output of
the circuit on input x. One can also model an election between two candidates using a boolean function as
follows: identify the first candidate with 0 and the second with 1. For each of the n voters, let xi represent
their vote. Then the function f models the election rule, f(x1, x2, .., xn) is the winner of the election when
the votes cast are (x1, x2, ..., xn).

Notice that in the second example we could as well have identified the candidates with −1 and 1. As this
example suggests, while f : {0, 1}n → {0, 1} is a common way to define boolean functions, it is not the only
way. In fact, in most cases, the exact domain of the function doesn’t matter as long as it is binary. For the
purpose of this lecture we will use another common way to define boolean functions, f : {−1, 1}n → {−1, 1}
or more generally as f : {−1, 1}n → R. Whatever we will learn for this setting can also be extended to any
binary domain.

Note that the set of all boolean functions f : {−1, 1}n → R is a vector space under the following operations:
for any boolean functions f1, f2 and any α ∈ R, (f1 + f2)(x) = f1(x) + f2(x) and (α · f1)(x) = α · f1(x) for
all x ∈ {−1, 1}n. One way of seeing why this is a vector space is by treating f as a vector in R2n

whose
components are values of f on the vertices of the boolean hypercube {−1, 1}n. Then, the addition and scalar
multiplication operations that we just defined above, are analogous to the normal vector addition and scalar
multiplication in R2n

. This also tells us that the dimension of the space of all boolean functions is 2n.

1 Boolean Functions as Polynomials

Every boolean function can be expressed as a polynomial. For example, consider the function f : {−1, 1} →
R. Notice that

1

2
(1− x) =

{
0 if x = 1

1 if x = −1
and

1

2
(1 + x) =

{
1 if x = 1

0 if x = −1.

Therefore,

f(x) = f(−1)
1

2
(1− x) + f(1)

1

2
(1 + x) .

More generally, for any a ∈ {−1, 1}n,

(
1 + a1x1

2

)
·
(

1 + a2x2

2

)
· · · · ·

(
1 + anxn

2

)
=

{
1 if xi = ai ∀i ∈ [n],

0 otherwise.

To see why this is true, observe that if xi = ai ∀i ∈ [n], then aixi = a2
i = 1 as ai = {−1, 1}n and

1 + aixi
2

= 1

E0 206: Theorist’s Toolkit-1

for all i ∈ [n]. On the other hand, if there exists an i ∈ [n] such that ai 6= xi, then aixi = −1 and

1 + aixi
2

= 0.

Thus,

f(x) =
∑

a∈{−1,1}n
f(a)

∏
i∈[n]

(
1 + aixi

2

)
. (1)

Note that the polynomial on the right is a multilinear polynomial i.e. the highest power of each xi is at most
1. Simplifying this polynomial and writing it in the sum of monomials representation, we get the Fourier
expansion of f ,

f(x) =
∑
S⊆[n]

f̂SχS ,

where χS :=
∏

i∈S xi is a parity function and f̂S ∈ R is called the Fourier coefficient of f on S. The
Fourier expansion is unique: by simplifying 1 we can write every function f : {−1, 1}n → {−1, 1} as a linear
combination of parity functions. Thus, {χS}S⊆[n] spans the space of all boolean functions. Moreover, recall

that the dimension of this space 2n =
∣∣∣{χS}S⊆[n]

∣∣∣. So, {χS}S⊆[n] must be a linearly independent set and

therefore form a basis of the space of boolean functions. Hence, every boolean function can be expressed as
a unique linear combination of the parity functions.

Let us now look at some functions and their Fourier expansions.

Example 1. Define

max (x1, x2) =

{
−1 if x1 = x2 = −1

1 otherwise.

Then,

max(x1, x2) = max(1, 1)

(
1 + x1

2

)(
1 + x1

2

)
+ max(1,−1)

(
1 + x1

2

)(
1− x2

2

)
+ max(−1, 1)

(
1− x1

2

)(
1 + x2

2

)
+ max(−1,−1)

(
1− x1

2

)(
1− x2

2

)
=

1

4
(1 + x1) (1 + x1) +

1

4
(1 + x1) (1− x2) +

1

4
(1− x1) (1 + x2)− 1

4
(1− x1) (1− x2)

=
1

2
+

1

2
x1 +

1

2
x2 −

1

2
x1x2.

Here note that the Fourier coefficients are not in {−1, 1} even though the range of max is {−1, 1}. In general,
the Fourier coefficients can be any real numbers, even when the range of the function is {−1, 1}.

Example 2. Define

f (x1, x2, x3) =

{
−1 if x has an odd numer of -1s,

1 has an even number of -1s.

It can be verified that f(x1, x2, x3) = x1x2x3. More generally, if f is analogously defined over {−1, 1}n, then
f(x) =

∏
i∈[n] xi.

E0 206: Theorist’s Toolkit-2

As the Fourier expansion is just a linear combination of parity functions, let us study these functions in more
detail.

2 Parity Functions

As we have already seen, the set of all boolean functions f : {−1, 1}n → R forms a vector space of dimension
2n over R. Now, for any vector space over R (in fact, over the set of complex numbers C) we can define an
inner product. For two functions f, g, their inner product is defined as follows:

〈f, g〉 := E
x∼{−1,1}n

[f(x)g(x)] .

Then, for any S, T ⊆ [n],

〈χS , χT 〉 = E
x∼{−1,1}n

∏
i∈S

xi
∏
j∈T

xj


= E

x∼{−1,1}n

 ∏
i∈S∩T

x2
i

∏
j∈S∆T

xj


= E

x∼{−1,1}n

 ∏
j∈S∆T

xj


since x2

i = 1. Thus,

〈χS , χT 〉 =

{
1 if S = T

0 if S 6= T.

As we have already seen, {χS}S⊆[n] is a basis of the space of all boolean functions. This along with what
we have just shown, yields the following theorem.

Theorem 3. {χS}S⊆[n] forms an orthonormal basis of the vector space of functions f : {−1, 1}n → R.

Moreover, as we saw in the last lecture, {χS}S⊆[n] are the eigenfunctions of the hypercube graph.

Proposition 4. f̂S = 〈f, χS〉.

Proof.

〈f, χS〉 =

〈 ∑
T⊆[n]

f̂TχT , χS

〉
= E

x

 ∑
T⊆[n]

f̂TχT

 · χS

 = f̂S 〈χS , χS〉 = f̂S .

Also, ‖f‖2 =
√
〈f, f〉 =

√
Ex [f(x)2]. Thus, for f : {−1, 1}n → {−1, 1}, ‖f‖2 = 1.

The distance between two boolean functions f and g - denoted by dist(f, g) - is defined as dist(f, g) :=
Prx [f(x) 6= g(x)]. Then, we can relate the distance to the inner product as follows:

〈f, g〉 = E
x

[f(x)g(x)]

E0 206: Theorist’s Toolkit-3

= Pr
x

[f(x) = g(x)]− Pr
x

[f(x) 6= g(x)] (as f(x)g(x) ∈ {−1, 1})

= 1− 2 Pr
x

[f(x) 6= g(x)] (as Pr
x

[f(x) = g(x)] + Pr
x

[f(x) 6= g(x)] = 1)

= 1− 2dist(f, g).

Now let us prove two important theorems, Plancherel’s theorem and its special case Parseval’s theorem.

Theorem 5 (Plancherel’s theorem). For any f, g : {−1, 1}n → R, 〈f, g〉 =
∑

S⊆[n] f̂S ĝS .

Proof.

〈f, g〉 =

〈∑
S⊆[n]

f̂SχS ,
∑

T⊆[n]

ĝTχT

〉

= E
x

 ∑
S,T⊆[n]

f̂S ĝTχSχT


=

∑
S,T⊆[n]

f̂S ĝT E
x

[χSχT]

=
∑
S⊆[n]

f̂S ĝS .

Theorem 6 (Parseval’s theorem). For any f : {−1, 1}n → R, 〈f, f〉 =
∑

S⊆[n] f̂
2
S .

Proof. Use Plancherel’s theorem with g = f .

We now relate the expected value, variance and covariance of functions with their Fourier coefficients. Let
g(x) = 1 for all x ∈ {−1, 1}n. Then, ĝS = 1 if and only if S = ∅. So,

E
x

[f(x)] = 〈f, g〉 =
∑
S⊆[n]

f̂S ĝS = f̂∅.

Also,

var(f(x)) = E
x

[f(x)2]−
(
E
x

[f(x)]

)2

= 〈f, f〉 −
(
f̂∅

)2

=
∑
S 6=∅

f̂S .

Similarly,

Cov(f(x), g(x)) = E
x

[f(x)g(x)]− E
x

[f(x)]E
x

[g(x)] =
∑
S 6=∅

f̂S ĝS .

3 Fourier expansion over the domain {0, 1}n

For b ∈ F2, let χ(b) := (−1)b, i.e. χ(0F2
) = 1 and χ(1F2

) = −1. For S ∈ [n], define

χS :=
∏
i∈S

χ(xi) = (−1)
∑

i∈S xi .

Then, it can be shown that, just as before,

E0 206: Theorist’s Toolkit-4

f(x) =
∑

a∈{0,1}n
f(a)

∏
i∈[n]

(
1 + χ(ai)χ(xi)

2

)
=
∑
S⊆[n]

f̂SχS .

Having seen the basics of analysis for boolean functions, we now look at an application to property testing.

4 Property Testing for Boolean Functions

Property testing is the problem of finding whether a given function has a certain property or not, for example,
whether it is linear or not. We will only be interested in property testing for boolean functions. In many
cases, we can check whether a boolean function has a certain property or not in time 2O(n) by querying the
function value at all possible inputs. So, our goal will be to do property testing in sub-exponential time,
ideally, in polynomial time. However, notice that this is not a realistic goal: checking whether f(x) = 1 for
all x ∈ {−1, 1}n can not be done without querying the function at all 2n possible inputs. Hence, we will aim
for the following more realistic goal: Given black box access to a boolean function f :

1. If f has property P , output yes with “high” probability.

2. If f is “far” from property P , output no with “high” probability.

To make the goal more precise, we now define what if means for a function to be “far” from a property. We
say that two functions, f, g : {−1, 1}n → {−1, 1} are ε−close to each other if dist(f, g) ≤ ε. Let P be the set
of all functions satisfying property P . Then, f is ε−close to P , if

dist(f,P) := min
g∈P

dist(f, g) ≤ ε.

Now let us see a simple example of property testing, that of checking whether f = 1 ∀x ∈ {−1, 1}n. Consider
the following algorithm:

Algorithm 1: A simple property testing algorithm

Input: Blackbox access to f .
1 Sample k independent random inputs x1, ..., xk.
2 if f(xi) = 1 ∀i ∈ [k] then
3 return yes
4 end
5 else
6 return no
7 end

Analysis: If f = 1, then Pr[Algorithm 1 outputs yes] = 1. On the other hand, if f is ε−far from 1, then
Prx[f(xi) 6= 1] ≥ ε. Thus, f(x) = 1 for at most 1− ε fraction of inputs . Hence,

Pr[Algorithm 1 outputs yes] ≤ (1− ε)k .

So, for k ≥ 1/ε, Pr[Algorithm 1 outputs yes] ≤ 1/e. This probability can be made arbitrarily close to 0 by
picking larger values of k.

E0 206: Theorist’s Toolkit-5

4.1 Linearity Testing

A function g : Fn
2 → F2 is said to be linear if for all x, y ∈ Fn

2 , g(x + y) = g(x) + g(y).1 Alternatively, g is
said to be linear if for all x ∈ Fn

2 , g(x) =
∑

i∈[n] aixi for some a1, ..., an ∈ F2. It is easy to show that these

two definitions are equivalent. If g(x) =
∑

i∈[n] aixi, then

g(x+ y) =
∑
i∈[n]

ai(xi + yi) =
∑
i∈[n]

aixi +
∑
i∈[n]

aiyi = g(x) + g(y).

Conversely, if g(x+ y) = g(x) + g(y) ∀x, y, then

g(x) = g(x1e1 + · · ·+ xnen)

= g(e1 + · · ·+ e1︸ ︷︷ ︸
x1 times

) + · · ·+ g(en + · · ·+ en︸ ︷︷ ︸
xn times

)

= x1g(e1) + · · ·+ xng(en)

= a1x1 + · · ·+ anxn,

where ei is the vector whose i−th coordinate is 1 and all other coordinates are 0 and ai = g(ei). Having seen
two equivalent definitions of a linear function, let us now see the Blum, Luby, Rubinfeld (BLR) linearity
test.

Algorithm 2: BLR linearity test

Input: Blackbox access to g.
1 Sample x, y ∼ Fn

2 .
2 if g(x+ y) = g(x) + g(y) then
3 return yes
4 end
5 else
6 return no
7 end

Analysis: It is clear that if g is linear, then Pr[Algorithm 2 outputs yes] = 1. To prove the converse we
will first construct a function f : {−1, 1}n → {−1, 1} such that f is a parity function if and only if g is a lin-
ear function and then show that the BLR test outputs yes with high probability only if f is a parity function.

For any y ∈ {−1, 1}n, let x ∈ Fn
2 be a string such that for all i ∈ [n], yi = (−1)xi and define f(y) = (−1)g(x).

If g is linear, then g(x) =
∑

i∈[n] aixi and

f(y) = (−1)
∑

i∈[n] aixi =
∏

i∈[n]:
ai=1

(−1)xi =
∏

i∈[n]:
ai=1

yi.

Conversely, if f(y) =
∏

i∈S yi, then

f(y) = (−1)
∑

i∈S xi = (−1)
∑

i∈[n] aixi ,

where ai = 0 for i /∈ S and ai = 1 for i ∈ S. Since, by definition, f(y) = (−1)g(x), we have that
g(x) =

∑
i∈[n] aixi mod 2 =

∑
i∈[n] aixi, because we are working over F2.

1Here the sum is over F2, i.e. modulo 2.

E0 206: Theorist’s Toolkit-6

Observe that, when f = χS , for some S ⊆ [n], f(x ·y) = f(x)f(y), where (x ·y)i := xiyi. Hence, the following
algorithm is equivalent to the BLR linearity test.

Algorithm 3: BLR linearity test - equivalent form

Input: Blackbox access to f .
1 Sample x, y ∼ {−1, 1}n.
2 if f(x · y) = f(x)f(y) then
3 return yes
4 end
5 else
6 return no
7 end

Note that the test outputs 1 if and only if f(x)f(y)f(x ·y) = 1. To analyse the test, we will use the fact that

1

2
+

1

2
f(x)f(y)f(x · y)

is an indicator for whether or not the test outputs yes. Thus,

Pr[Algorithm 3 outputs yes] = E
x,y

[
1

2
+

1

2
f(x)f(y)f(x · y)

]

= E
x,y

1

2
+

1

2

∑
S⊆[n]

f̂S
∏
i∈S

xi

 ∑
T⊆[n]

f̂T
∏
i∈T

yi

 ∑
U⊆[n]

f̂U
∏
i∈U

xiyi


=

1

2
+

1

2

∑
S,T,U⊆[n]

f̂S f̂T f̂U E
x,y

[∏
i∈S

xi
∏
i∈T

yi
∏
i∈U

xiyi

]

=
1

2
+

1

2

∑
S,T,U⊆[n]

f̂S f̂T f̂U E
x,y


∏

i∈S∩U
x2
i︸ ︷︷ ︸

=1

∏
i∈S∆U

xi
∏

i∈T∩U
y2
i︸ ︷︷ ︸

=1

∏
i∈T∆U

yi


=

1

2
+

1

2

∑
S,T,U⊆[n]

f̂S f̂T f̂U E
x

[∏
i∈S∆U

xi

]
E
y

[∏
i∈T∆U

yi

]

=
1

2
+

1

2

∑
S⊆[n]

f̂3
S ,

where the last equality follows Ex

[∏
i∈S∆U xi

]
= 0 when S 6= U and Ey

[∏
i∈T∆U yi

]
= 0 when T 6= U .

Thus,

Pr[Algorithm 3 outputs yes] ≤ 1

2
+

1

2

∑
S⊆[n]

f̂2
S

 max
S⊆[n]

f̂S

=
1

2
+

1

2
max
S⊆[n]

f̂S ,

where the last equality follows from Parseval’s theorem. Hence, if Pr[Algorithm 3 outputs yes] ≥ 1−ε, then

maxS⊆[n] f̂S ≥ 1−2ε. Recall that, f̂S = 〈f, χS〉 = 1− 2 dist(f, χS). Thus, for S∗ = argmaxS⊆[n] f̂S , we have
dist(f, χS∗) ≤ ε.

E0 206: Theorist’s Toolkit-7

5 Local Correctability

As seen in the previous section, by making just 3 queries to a function we can say with high probability
whether it is ε−close to a parity function. However, the BLR test does not tell us which parity function χS∗

it is close to. Notice that we can indeed compute χS∗ correctly on at least 1− ε fraction of inputs by simply
outputting f(x). We now prove the following theorem.

Theorem 7. If f is ε−close to χS∗ , then there exists an algorithm that makes only two queries to f and
for all x ∈ {−1, 1}n, outputs χS∗(x) with probability at least 1− 2ε.

Proof. Consider the following algorithm.

Algorithm 4: Local Correctability

Input: x ∈ {−1, 1}n and blackbox access to f .
1 Sample y ∼ {−1, 1}n.
2 Output f(y)f(x · y).

Analysis: While y and x · y are not independent, they are uniformly distributed over {−1, 1}n. Hence,
Pry [f(y) = χS∗(y)] ≥ 1− ε and Pry [f(x · y) = χS∗(x · y)] ≥ 1− ε. So, by union bound, with probability as
least 1− 2ε over the choice of y, f(y) = χS∗(y) and f(x · y) = χS∗(x · y). In this case,

f(y)f(x · y) = χS∗(y)χS∗(x · y) = χS∗(x).

6 Other Applications of Analysis of Boolean Functions

The analysis of boolean functions has found applications in multiple areas of theoretical computer science,
including but not limited to:

• Social choice theory

• Learning theory

• Hardness of approximation and PCPs.

More applications can be found in [O’D14].

References

[O’D14] Ryan O’Donnell, Analysis of boolean functions, Cambridge University Press, 2014.

E0 206: Theorist’s Toolkit-8

	Boolean Functions as Polynomials
	Parity Functions
	Fourier expansion over the domain { 0,1 }n
	Property Testing for Boolean Functions
	Linearity Testing

	Local Correctability
	Other Applications of Analysis of Boolean Functions

