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Lecture 6-7: Probabilistic Methods
Instructor: Arindam Khan Scribe: Arka Ray, Prasanna Srikar Regati

These two lectures are the last in series of lectures covering probabilistic methods. These start with the
Chernoff bounds and discuss one of its applications in combinatorial discrepancy. Further in the lectures,
martingales are defined, using which Azuma-Hoeffding inequalities are derived. These can be applied even
if underlying random variables are not independent. Such a martingale sequence can be constructed from
an arbitrary sequence of random variables and hence more generically applicable. Lastly the Lovasz Local
Lemma improves upon the union bound for events with limited dependency.

1 Chernoff Bounds

Recall that in the probability refresher the Chernoff bounds were briefly touched upon. There are many
variants of the Chernoff bounds. Chernoff bounds are used to analyse tails of random variables which are
themselves sum of independent random variables taking two values.

1.1 Two Bounds

Here we look at two variants, one with 0-1 random variables other with -1/1 random variables and will go
on to use the -1/1 variant to prove a bound in combinatorial discrepancy.

Theorem 1. Let X1, X2, ..., Xn be n mutually independent random variables taking the values 0 and 1. Let

X =

n∑
i=1

Xi and µ = EX. If Pr[Xi = 1] = pi then ∀δ ∈ (0, 1),

Pr[|X − µ| ≥ δµ] ≤ 2e−µδ
2/3

Theorem 2. Let X1, X2, ..., Xn be n mutually independent random variables and X =

n∑
i=1

Xi.

If Pr[Xi = 1] = Pr[Xi = −1] = 1
2 then,

Pr[X > a] ≤ e−a
2/2n

1.2 Discrepancy

Discrepancy is in essence the study of gaps in approximating the continuous by the discrete. This has many
applications in numerous areas including computational geometry, approximation algorithms, complexity
theory, machine learning, Monte Carlo methods, etc. Consider approximation algorithms where many a
times problems are solved using linear programs. After obtaining a solution to an appropriate linear program
the values are rounded to give a solution to the original problem. One can notice the connection between
discrepancy the gaps in rounding. For bin packing an improvement to OPT + O(log OPT) was obtained
using this method.

To understand the concept we look at an example,

Example 1. Given n arbitrary points in an unit square, color them with red or blue such that each rectangular
region is colored as evenly as possible. In this scenario we measure the discrepancy as,

Discrepancy = max
rectangles r⊂[0,1]×[0,1]

||r ∩R| − |r ∩B||

where the R,B are the set of red, blue points respectively.
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Take the instantiation of this problem described by the figure 1. The coloring shown has a discrepancy
3. If continuous values were allowed then each point could have been colored half blue and half red. In the
discrete case random coloring gives O(

√
n lnn) discrepancy.

0 3

Figure 1: An example of geometric discrepancy

Now we turn to the notion of combinatorial discrepancy in contrast to geometric discrepancy which
was presented above. We generalize the above problem can be generalized to the following by considering
arbitrary family of subsets instead of rectangles.

Definition 1. Given a family of subset A ⊂ 2Ω of a set Ω. Consider a coloring χ : Ω → {−1, 1} then for

any A ⊂ Ω, χ(A) =
∑
a∈A

χ(a). In this case the discrepancy of A with respect to χ is,

disc(A, χ) = max
A∈A
|χ(A)|

and the discrepancy of A is,
disc(A) = min

χ
disc(A, χ)

An alternate way of looking at combinatorial discrepancy is by using matrices. In this formulation we
restrict ourselves to Ω = [n] but this is a moot point since it is possible to map any finite set to [n] and this
allows a simpler presentation. Except for Ω = [n] the two definitions are equivalent.

For a family of subsets A = {S1, S2, ..., Sm} where Si ⊂ Ω, we call a m×n matrix B = [bij ] the incidence
matrix for A if

bij =

{
1 if j ∈ Si
0 otherwise

Now if we take u = (χ(1), χ(2), ...) to represent the coloring then, BuT = (χ(S1), χ(S2), ...)T . With this
notation in place we define discrepancy as follows.

Definition 2. Given a family of subsets A ⊂ 2Ω of a set Ω = [n]. If B is the incidence matrix for A and
u ∈ {−1, 1}n represent a coloring then the discrepancy of A with respect to u is,

disc(A, u) = ‖BuT ‖∞

and the discrepancy of A is,

disc(A) = min
u∈{−1,1}n

disc(A, u) = min
u∈{−1,1}n

‖BuT ‖∞

where ‖·‖∞ is the L∞ norm.
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A final remark before showing a bound on the value of discrepancy is if we take vj to be the j-th column
of B then, disc(A) = min‖±v1 ± v2...± vn‖∞ where we minimize over choice of signs in the sum.

Now we show a bound on discrepancy with the help of Chernoff bound’s second variant.

Theorem 3. Let A ⊂ 2Ω be a family of subsets of a set Ω. If |A| = n and |Ω| = m then, disc(A) ≤√
2m ln(2n)

The main idea in proving this is to take a random coloring and consider the events where we violate the
bound for a given set and show the expected number of such sets is less than one, thereby showing a set
which satisfies the bound exists.

Proof. Take random coloring χ : Ω→ {−1, 1}. For A ⊂ Ω, let XA be the indicator random variable for the
event χ(A) > α where α =

√
2m ln(2n). If |A| = a then using second variant of Chernoff bound (and union

bound),

E[XA] = Pr[χ(A) > α] < 2e−α
2/2a < 2e−α

2/2m = 2e−
2m ln(2n)

2m = 2e− ln(2n) =
1

n

Therefore,

E

[∑
A∈A

XA

]
=
∑
A∈A

E[XA] < |A| · 1

n
= 1

Now, it can be concluded that for some χ,
∑
A∈AXA = 0. Hence, disc(A, χ) ≤ α, i.e, disc(A) ≤ α.

A corollary of the theorem is if m = n then disc(A) = O(
√
n lnn). This result was improved by Spencer

in 1985 by showing six standard deviations suffice (note: the mean is 0 and the standard deviation is
√
n)

using partial coloring. There are a lot of open questions in this area.
One might ask (at least should ask) that the result is existential, the naive constructive version is not

efficient (requiring exponential time), but can we get a constructive proof (which is efficient). In fact, Bansal
in 2010 gave an algorithm using semi definite programming and Lovett and Meka in 2012 gave a simpler
(randomized algorithm) using a restricted version of random walks.

2 Martingales

The Chernoff/Hoeffding bounds that we saw can be applied only if the random variables are independent.
However, such independence does not hold in most of the practical scenarios. So we need much generic
bounds that work even for dependent random variables. In this section we study a setting in which such
bounds can be obtained, namely martingales.

Martingales are sequences of random variables satisfying certain conditions that arise in numerous appli-
cations, such as random walks and gambling problems.Here we give a brief introduction to martingales and
then discuss several concepts related to them: Doob Martingales, the martingale stopping theorem and the
Azuma–Hoeffding inequality.

Definition 4 (Martingales). A sequence of random variables Z0, Z1, ... is a martingale with respect to the
sequence X0, X1, ... if, for all n ≥ 0, the following conditions hold:

(i) Zn is a function of X0, X1, ..., Xn ;

(ii) E[|Zn|] <∞;

(iii) E[Zn+1|X0, ..., Xn] = Zn .

Also, a sequence of random variables X0, X1, ... is called a martingale if ,for all n ≥ 0 it holds that:

(i) E[|Xn|] <∞;

(ii) E[Xn+1|X0, ..., Xn] = Xn .
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2.1 Example of a Martingale Sequence

Consider a gambler who plays a sequence of fair games(i.e., the expected money that he can win/lose in each
game is zero).The gambler plays the game multiple times; neither his stakes, nor the outcome of the games
need be independent, but each play is fair. Let Xi be the amount the gambler wins on the ith game (Xi is
negative if the gambler loses), and let Zi be the gambler’s total winnings at the end of the ith game(Zi can
also be negative if the gambler loses more games than he wins). Because each game is fair, E[Xi] = 0 and

E[Zi+1|X1, X2, ..., Xi] = Zi + E[Xi+1]

= Zi

Thus, Z1, Z2, ..., Zn is a martingale with respect to the sequence X1, X2, ..., Xn . The interesting part is that
the sequence is a martingale regardless of the amount bet on each game, even if these amounts are dependent
upon previous results.

2.2 Construction of Martingales

But how often does such Martingales sequences occur? In many scenarios it might not be clear if there is
a Martingale sequence associated with it. But we can create a martingale sequence from essentially any
random variables. Such explicitly constructed martingales are referred to as Doob martingales and it can be
done using the following general approach:

Let X0, X1, ... is a sequence of random variables and Y be a random variable such that E[|Y |] ≤ ∞ and
is a function of X0, X1, ... Then Zi = E[Y |X0, X1, ..., Xi], i = 0, 1, 2.., n, gives a martingale with respect to
X0, X1, ..., Xn, since

E[Zi+1|X0, ..., Xi] = E[E[Y |X0, ..., Xi+1]|X0, ..., Xi]

= E[Y |X0, ..., Xi]

= Zi

The second equality follows from the tower property of conditional expectations: if F ⊆ G then

E[E[X|G]|F ] = E[X|F ].
Frequently in applications we will have A = f(X1, ..., Xn), i.e., A is determined by the random variables

Xi. In this case, Z0 = E[A] and Zn = E[A|X1, ..., Xn] = A. We can think of the martingale as the estimates
obtained from progressively more information about the random variable A. We begin with no information
about A, and the value of the martingale is just the expectation E[A]. At the end of the sequence we have
specified all of the Xi so we have complete information about A and the martingale has the deterministic
value A(X1, ..., Xn).

2.2.1 Examples on construction of Doob Martingales

We now consider two examples of Doob martingales that arise in evaluating the properties of random graphs.
Example-1 : Edge Exposure Martingale:
Let G be a random undirected simple graph Gn,p. There could possibly be m =

(
n
2

)
possible edges and each

such edge exists with probability p independent of other edges. Let,

Xj =

{
1 if there is an edge in jth slot

0 otherwise

Consider any finite-valued function F defined over graphs; for example, let F (G) be the size of the largest
independent set in G. The value of F depends on all the edges present i.e F (G) = f(X1, X2, ...., Xm) Now let
Z0 = E[F (G)] and Zi = E[F (G)|X1, ..., Xi], i = 1, ...,m. The sequence Z0, Z1, ..., Zm is a Doob martingale
that represents the conditional expectations of F (G) as we reveal whether each edge is in the graph, one
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edge at a time. This process of revealing edges gives a martingale that is commonly called the edge exposure
martingale.

Example 2-Vertex Exposure Martingale:
Similarly, instead of revealing edges one at a time, we could also reveal the set of edges connected to a given
vertex, one vertex at a time. Fix an arbitrary numbering of the vertices 1 through n, and let Gi be the
subgraph of G induced by the first i vertices. Then, setting Z0 = E[F (G)] and Zi = E[F (G)|G1, ..., Gi], i =
1, ..., n, gives a Doob martingale that is commonly called the vertex exposure martingale.

2.3 Stopping Times

Consider again the gambler’s problem that we discussed in previous section. Just to make sure not to lose all
his money , the gambler might want to strategize on when he should stop playing. One such naive strategy
could be to quit after exactly k(fixed number) games. Then what would be the gambler’s expected winnings?

Lemma 5. If the sequence Z0, Z1, ..., Zn is a martingale with respect to X0, X1, ..., Xn, then E[Zn] = E[Z0]

Proof. Since Z0, Z1, ... is a martingale with respect to X0, X1, ..., Xn, it follows that Zi = E[Zi+1|X0, ..., Xi].
Taking the expectation of both sides and using the definition of conditional expectation, we have

E[Zi+1] = E[E[Zi+1|X0, ..., Xi]] = E[Zi]. (1)

Repeating this argument yields E[Zn] = E[Z0].

Thus, if the number of games played is initially fixed then the expected gain from the sequence of games
is zero.So a better strategy would be not play fixed number of games instead decide to continue playing or
to stop based on the outcomes of the games already played. For example, the gambler could decide to keep
playing until his winnings total at least a hundred dollars or until his losses are less than hundred dollars.
Hence the following notion of stopping times is quite powerful.

Definition 6. A non-negative integer-valued random variable T is a stopping time for the sequence {Zi, i ≥
0} if the probability of the event T = n is independent of the variables {Zn+j |Z1, ..., Zn, j ≥ 1} (i.e. the
variables Zn+1, Zn+2, ... conditioned on the values of Z1, ..., Zn).

Thus, a stopping time corresponds to a strategy for determining when to stop a sequence based only on
the outcomes seen so far.
Examples:

1. The first time the gambler wins five games in a row is a stopping time. This can be determined by
looking at outcomes of the games played.

2. The first time the gambler has won at least a hundred dollars is also a stopping time.

3. The last time the gambler wins five games in a row is not a stopping times since it cant be determined
by looking at already played games.

But consider the case where the gambler’s stopping time is the first T such that ZT > B, where B is a fixed
constant greater than 0. In this case, the expected gain when the gambler quits playing is greater than 0.
The subtle problem with this stopping time is that it might not be finite, so the gambler may never finish
playing. The martingale stopping theorem shows that, under certain conditions and in particular when the
stopping time is bounded or has bounded expectation, the expected value of the martingale at the stopping
time is equal to E[Z0].

Theorem 7. If Z0, Z1, ... is a martingale with respect to X1, X2, ... and if T is a stopping time for X1, X2, ...,
then

E[ZT ] = E[Z0]

whenever one of the following holds:
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(i) The Zi are bounded, so there is a constant c such that, for all i, |Zi| ≤ c;

(ii) T is bounded;

(iii) E[T ] <∞, and there is a constant c such that E[|Zi+1 − Zi||X1, ..., Xi] < c.

2.3.1 Applying Stopping Theorem on Gambler’s ruin Problem

Coming back to the gambling problem we discussed already, say a player wins a dollar with probability 1/2
or loses a dollar with probability 1/2 in each game. Let Xi be the amount won on the ith game, and let
Zi be the total amount won by the player after i games (again, Xi and Zi can negative if the player loses).
Assume that the player quits the game when she either loses l1 dollars or wins l2 dollars.We would like to
answer the question:

W hat is the probability that the player wins l2 dollars before losing l1 dollars?
The players stops playing at time T (which is the stopping time), then T is the first instance of time that

the player has won l2 or lost l1. The sequence {Z0, Z1, ...} is a martingale with respect to {X1, X2, ....} and
Z0=0.As the extreme values that Zi can take are l2 and −l1 , they are clearly bounded. So we can apply
the martingale stopping theorem. We therefore have E[ZT ] = E[Z0] = 0. Let q be the probability that the
gambler quits playing after winning l2 dollars. Then

E[ZT ] = l2 ∗ q − l1 ∗ (1− q) = 0

q =
l1

l1 + l2

2.4 Azuma-Hoeffding Inequalities

Perhaps the most useful property of martingales for the analysis of algorithms is that Chernoff-like tail
inequalities can apply, even when the underlying random variables are not independent. The main results
in this area are Azuma’s inequality and Hoeffding’s inequality. They are quite similar, so they are often
together referred to as the Azuma–Hoeffding inequality.

Theorem 8. Let X0, ..., Xn be a martingale such that |Xk −Xk−1| ≤ ck , then for all t ≥ 1 and any λ ≥ 0

Pr(|Xt −X0| ≥ λ) ≤ 2e−λ
2/(2

∑t
k=1 ck

2) (2)

Below is a more general form of the Azuma–Hoeffding inequality that yields slightly tighter bounds in
our applications.

Theorem 9. Let X0, ..., Xn be a martingale such that

Bk ≤ Xk −Xk−1 ≤ Bk + dk (3)

for some constants dk and for some random variables Bk that may be functions of X0, X1, ..., Xk−1. Then,
for all t ≥ 0 and any λ ≥ 0,

Pr(|Xt −X0| ≥ λ) ≤ 2e−λ
2/(2

∑t
k=1 dk

2) (4)

2.4.1 Application:Chromatic Number

Given a random graph G in Gn,p, the chromatic number χ(G) is the minimum number of colors needed in
order to color all vertices of the graph so that no adjacent vertices have the same color. We use the vertex
exposure martingale defined already to obtain a concentration result for χ(G).

Let Gi be the random subgraph of G induced by the set of vertices 1, ..., i, let Z0 = E[χ(G)], and let
Zi = E[χ(G)|G1, ..., Gi].Since a vertex uses no more than one new color, we have that the gap between Zi
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and Zi−1 is at most 1, so we can apply the general framework of the Azuma–Hoeffding inequality from
Theorem 13.6. We conclude that

Pr(|χ(G)− E[χ(G)]| ≥ λ
√
n) ≤ 2e−2λ2

(5)

This result holds even without knowing the value of E[χ(G)].

2.5 McDiarmid’s Inequality

Another variation of Azuma-Hoeffding inequality can be derived which operates on functions of random
variables. To formalize that we need to understand the Lipschitz condition.

Definition 10. A function f(X) = f(X1, X2, ..., Xn) satisfies Lipschitz condition with bound c, if for any
i and for any set of values x1, x2, ..., xn and yi,

|f(x1, ..., xi, ..., xn)− f(x1, ..., yi, ..., xn)| ≤ c (6)

That is, changing the value of any single coordinate can change the function value by at most c.

Theorem 11 (McDiarmid’s Inequality). Let f be a function on n variables that satisfies the above Lipschitz
condition with bound c. Let X1, ..., Xn be independent random variables such that f(X1, ..., Xn) is in the
domain of f . Then

Pr(|f(X1, ...., Xn)− E[f(X1, ...., Xn)]| ≥ λ) ≤ 2e(−2λ2/nc2) (7)

2.5.1 Application : Balls and Bins

Suppose there are m balls and n bins and we are throwing each ball into a bin at random. Let Xi is the
random variable that tells us the bin in which ith ball falls i.e. Xi ranges from 1 to n. Let the F be the
number of empty bins after all the m balls are thrown. We can see that F is a function of the random
variables X1, X2, ..., Xm i.e F = f(X1, X2, ...., Xn).

To check for the Lipschitz condition, we have to find a bound c such that by changing one ofX1, X2, ...., Xn,
F does not change by a value more than c. Say, Xi changes, i.e the ith falls in a different bin. There are
four cases here: (let Xi value changes from k to l )

1. The kth bin has only ith ball and lth bin has no balls. After the change, the value of f remains same.

2. The kth bin has only ith ball and lth bin has more than zero balls. After the change, the value of f
increases by 1.

3. The kth bin has balls other than ith ball and lth bin has no ball balls. After the change, the value of f
decrease by 1.

4. The kth bin has balls other than ith ball and lth bin has more than zero balls. After the change, the
value of f remains same.

Therefore the function f satisfies the Lispchitz condition with bound c = 1. Hence we obtain:

Pr(|F − E[F ]| ≥ ε) ≥ 2e−2ε2/n (8)
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3 The Lovász Local Lemma

The is the final topic of probabilistic methods. Suppose we want to show that no bad event happens with
some non-zero probability. If they are mutually independent it is simple. Say E1, ..., En are the bad events
then E1, ..., En are also mutually independent. Hence the probability that no bad events happen is given by
the expression,

Pr

 ⋂
i∈[n]

Ei

 =
∏
i∈[n]

Pr
[
Ei
]

which has a non-zero probability given Pr[Ei] < 1 for i ∈ [n].
In some situations mutual independence might be too much to ask for. One option is to use union

bound but it will give us loose bounds. The Lovász local lemma(LLL) can be used to get better bounds for
situations with limited dependency.

3.1 The Result

Before stating the result we first need the following definitions.

Definition 3. An event En+1 is said to be independent of the events E1, E2, ..., En if for every subset I ⊂ [n],

Pr

[
En+1

∣∣∣∣∣⋂
i∈I

Ei

]
= Pr[En+1]

Definition 4 (Dependency di-graph). For a set of events E1, E2, ..., En a graph G = (V,E) with V = [n]
such that for all i ∈ [n], Ei is independent of {Ej |(i, j) 6∈ E}.

The dependency (di)graph is defined in terms of a negative which might make it a bit opaque. So as an
example consider the following graph: In this case A1 is independent of A4, A5, A7. In general dependency

A1

A2

A3

A4

A5

A6

A7

Figure 2: Example of a dependency graph

graph is directed but we’ll work mostly with undirected version. Also note that there can be multiple choices
for dependency graph for a particular set of events on a probability space.

The general setup for Lovász local lemma is,

• A collection of independent random variables x1, x2, ..., xn.

• Each event Ai only depends on {xj |j ∈ Si} for Si ⊂ [n].

A valid dependency graph can be formed by placing i ∼ j whenever Si ∩ Sj 6= φ.
For example, we’ll analyze satisfiability formulas later in the lecture. Consider the formula (x1 ∨ x2 ∨

x3) ∧ (x1 ∨ x2 ∨ x3), it has two clauses with 3 literals each. When we analyze the problem we’ll define Ei =
event that i-th clause of the formula. Also let Xk be the assignment of xk. Clearly, Ei depends on the
variables in the i-th clause. Therefore, we add an edge Ei ∼ Ej whenever they share a variable.

Let us take a final example of dependency graph construction before going into the result. Say, x1, x2, x3 ∈
0, 1 are independent random variables distributed uniformly (they take the value 1 with probability 1/2 and
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the value 0 with probability 1/2). Notice they constitute a set of independent and identically distributed
(i.i.d) random variables. Now,consider the following events:

1. A1 : x1 +2 x2 = 0

2. A2 : x2 +2 x3 = 0

3. A3 : x3 +2 x1 = 0

where +2 denotes the addition modulo 2. We see that,

Pr[A1] = Pr[A2] = Pr[A3] =
1

2

Pr[A1 ∩A2] =
1

4
= Pr[A1] Pr[A2]

Pr[A2 ∩A3] =
1

4
= Pr[A2] Pr[A3]

Pr[A3 ∩A1] =
1

4
= Pr[A3] Pr[A1]

But,

Pr[A1 ∩A2 ∩A3] =
1

4
6= Pr[A1] Pr[A2] Pr[A3]

Therefore these events are pairwise independent but not mutually independent. Therefore, the empty graph
is not a valid dependency graph. Following are some of the possible dependency graph.

A1

A2

A3

On the left side we have a valid dependency
graph. This is correct as the only edge missing is
between A1, A3 and as we showed above A1 is in-
dependent of A3 and vice versa. Notice, we can not
remove any of the edges present. Say we were to
remove A1 ∼ A2, then it would mean A1 is indepen-
dent of A3, A2 which we showed is not correct.

A1

A2

A3 A1

A2

A3

On the right we give two more examples of valid
dependency (di)graph. Note that A1 6∼ A2 in the
first figure and A1 6∼ A3 in the second figure are
both consistent.

Now, we state the Lovász local lemma in the
general form.

Theorem 12 (Lovász Local Lemma). Let E1, E2, ..., En be a set of events in an arbitrary probability space,
and G = (V,E) be their dependency di-graph. Suppose ∃x1, x2, ..., xn ∈ [0, 1) such that ∀i ∈ [n]

Pr[Ei] ≤ xi
∏
i,j∈E

(1− xj)

then,

Pr

 ⋂
i∈[n]

Ei

 ≥ ∏
i∈[n]

(1− xi)

In particular with non-zero probability none of the events happen.
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Proof. Let S ⊂ [n] and |S| = s < n. Using induction on s we show that ∀k 6∈ S,

Pr

Ek
∣∣∣∣∣∣
⋂
j∈S

Ej

 ≤∏
j∈S

xj

This intuitively means that Ek is a low probability event even if other events don’t occur.
For base case we consider s = 0 for which by from the precondition of the theorem,

Pr[Ek] ≤ xk
∏

(k,j)∈E

(1− xj) ≤ xk

For the inductive step assume the statement holds for s′ < s. Partition S into

S1 = {j ∈ S|(k, j) ∈ E}

and
S2 = S − S1

Before proceeding recall that,

Pr

 ⋂
i∈[n]

Ai

 =
∏
i∈[n]

Pr

Ai
∣∣∣∣∣∣
⋂

j∈[i−1]

Aj


and

Pr[A|B ∩ C] =
Pr[A ∩B|C]

Pr[B|C]

Using the second identity,

Pr

Ek
∣∣∣∣∣∣
⋂
j∈S

Ej

 =
Pr
[
Ek ∩

⋂
j∈S1

Ej

∣∣∣⋂j∈S2
Ej

]
Pr
[⋂

j∈S1
Ej

∣∣∣⋂j∈S2
Ej

]
The above quantity can be bounded from above by obtaining a upper bound and lower bound for the
numerator and denominator respectively. The upper bound for numerator is,

Pr

Ek ∩ ⋂
j∈S1

Ej

∣∣∣∣∣∣
⋂
j∈S2

Ej

 ≤ Pr

Ek
∣∣∣∣∣∣
⋂
j∈S2

Ej

 (∵ Pr[A ∩B] ≤ Pr[A])

= Pr[Ek] ≤ xk
∏

(k,j)∈E

(1− xj)

and let S1 = {j1, j2, ..., jr} then lower bound for the denominator is,

Pr

 ⋂
j∈S1

Ej

∣∣∣∣∣∣
⋂
j∈S2

Ej

 =
∏
i∈[r]

Pr

Eji
∣∣∣∣∣∣
⋂

m∈[i−1]

Ejm ∩
⋂
j∈S2

Ej


=
∏
i∈[r]

1− Pr

Eji
∣∣∣∣∣∣
⋂

m∈[i−1]

Ejm ∩
⋂
j∈S2

Ej


≥
∏
i∈[r]

(1− xji) (Induction Hypothesis)

=
∏

(k,j)∈E

(1− xj)
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Using the two bounds we obtain,

Pr

Ek
∣∣∣∣∣∣
⋂
j∈S

Ej

 ≤ xk
hhhhhhhh
∏

(k,j)∈E(1− xj)
hhhhhhhh
∏

(k,j)∈E(1− xj)
= xk

Therefore we have shown the required claim. Now to finish the proof,

Pr[
⋂
i∈[n]

Ei] =
∏
i∈[n]

Pr

Ei
∣∣∣∣∣∣
⋂

j∈[i−1]

Ej


=
∏
i∈[n]

1− Pr

Ei
∣∣∣∣∣∣
⋂

j∈[i−1]

Ej


≥
∏
i∈[n]

(1− xi)

The above form may be a bit cumbersome to use so, generally the following form is used.

Theorem 13 (Symmetric LLL). Let E1, E2, ..., En be events satisfying:

1. ∀i ∈ [n],Pr[Ei] ≤ p

2. Maximum degree of some dependency graph of Ei be less than d

3. ep(d+ 1) ≤ 1 where e is the base of natural logarithm.

Then,

Pr

 ⋂
i∈[n]

Ei

 > 0

Proof. For d = 0 it is trivial as the events are mutually independent. For d ≥ 1, assume the dependency
graph has edges E. For i ∈ [n] take xi = 1

d+1 < 1, Now,

xi
∏

(i,j)∈E

(1− xj) ≥
1

d+ 1

(
1− 1

d+ 1

)d

≥ 1

e(d+ 1)

(
∵ ∀d ≥ 1,

(
1− 1

d+ 1

)d+1

>

(
1− 1

d+ 1

)d
>

1

e

)
≥ p ≥ Pr[Ei]

As the xi along with the events and the dependency (di)graph meet the conditions of LLL,

Pr

 ⋂
i∈[n]

Ei

 ≥ ∏
i∈[n]

(1− xi) > 0
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The question now is can we have a smaller constant as compared to e in the statement. Let us look
at an example, take events A1, A2, ..., Ad+1 with probabilities equal to 1

d+1 . In that case p(d + 1) = 1 and

Pr
[⋂

i∈[n]Ei

]
= 0. So, 1 clearly does not work. In fact this constant has been shown to be tight by Shearer.

Notice that the necessary condition for LLL to yield Pr
[⋂

i∈[n]Ei

]
> 0 is p ≤ 1

e(d+1) = Θ(d) while for

union bound we need p < 1
n .

The proof of LLL shown is non-constructive. In a breakthrough, Robin Moser gave a proof of constructive
version Lovász Local Lemma.

Theorem 14. Let E1, E2, ..., En be a set of events in an arbitrary probability space that are determined by
mutually independent random variable y1, y2, ..., yl, and let G = (V,E) be the dependency graph for these
events. Suppose the following hold for d and p:

1. Each event Ei is adjacent to at most d other events.

2. Pr[Ei] ≤ p

3. ep(d+ 1) ≤ 1

Then there is an assignment of the yi so that
⋂
i∈[n]Ei occurs, and a resampling algorithm that in expectation

the number of times that the algorithms resamples Ei is at most 1/d. Hence the expected running time of
the algorithm is at most n/d.

Theorem 15. Let E1, E2, ..., En be a set of events in an arbitrary probability space that are determined by
mutually independent random variable y1, y2, ..., yl, and let G = (V,E) be the dependency graph for these
events. Assume there exist x1, x2, ..., xn ∈ [0, 1] such that, ∀i ∈ [n],

Pr[Ei] ≤ xi
∏

(i,j)∈E

(1− xj)

Then there is an assignment of the yi so that
⋂
i∈[n]Ei occurs, and a resampling algorithm that in expectation

the number of times that the algorithms resamples Ei is at most xi/(1 − xi). Hence the expected running

time of the algorithm is at most
∑
i∈[n]

xi/(1− xi).

The high level idea of the algorithms is to start with some assignments yi. If an event is not satisfied
then resample random variables on which the event depends on. The algorithm ensures progress and quick
termination given limited dependency.

3.2 Applications of Lovasz Local Lemma

3.2.1 Satisfiability

In the first example, we look at how the lemma can be applied to the satisfiability (SAT ) problem. In this
problem, there are several clauses. Each clause is a disjunction of literals (a boolean variable or its negation).
The goal is to find if there is a satisfying assignment of values to the boolean variables such that all clauses
can be satisfied (i.e resulting value of each clause is True). In particular, a k − SAT problem has exactly k
literals in each of its clauses. Note that any particular clause cannot contain both a variable and its negation.
Using the lemma we show that as long as no variable in the k − SAT appears in too many clauses,there is
a satisying assignment.

Theorem 16. If no variable in a k-SAT formula appears in more than T = 2k/4k clauses, then the formula
has a satisfying assignment.
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Proof. Let there are m-clauses in our k − SAT problem and for each i in i = 1, 2, ..m Ei denote the event
that ith clause is not satisfied. As a clause is a disjunction operation between k literals, for it to be not
satisfied none of the literals can be true.So out of two values (True, False) a literal can take, it has to take
False. Note that this does not mean that each variable is False. Therefore,

Pr(Ei) = 1/2k (9)

And each such event Ei is independent of the events related to clauses,which do not share any variables with
clause i. Also note that each of the variable in a clause cannot appear in more than T = 2k/4k clauses. Now
if we construct a dependency graph for these set of events, it can be observed that the degree of each vertex
in the dependency graph is bounded by

d ≤ k(T − 1) ≤ k.T − k ≤ 2k−2 − k (10)

as each literal appears in at most T clauses,each literal in a particular clause appears in at most (T − 1)
other clauses.

ep(d+ 1) ≤ e.2−k(2k−2 − k + 1) ≤ e.2−k2k−2 ≤ e

4
≤ 1 (11)

The second inequality holds because k ≥ 1 and hence 1 − k ≤ 0. As all the conditions in the Theorem 14
hold, we can conclude that

Pr

(
m⋂
i=1

Ei

)
≥ 0 (12)

i.e there exists a satisfying assignment.

3.2.2 Coloring in HyperGraphs

Definition 17. A Hypergraph G can be defined as a pair (V,E), where V is a set of vertices, and E is a set
of hyperedges between the vertices. Each hyperedge is a set of vertices: E ⊆ {{u, v, ...} ∈ 2V } . (Hyperedges
are undirected.)

Here we look at 2-coloring of such a hyper graph. A 2-coloring is an assignment of one of the two colors
to each vertex such that no edge is monochromatic i.e. none of the edges have all its vertices assigned to
one color. But when would such 2-coloring be possible in a hyper graph? More precisely ,let each edge has
at least k vertices and each edge intersects with at most d other edges.
For what values of k, d can a hyper graph have a 2-coloring?

Step 1: Define the probability Space Consider the probability space obtained from randomly assigning
one of the two colors to each vertex independently.
Step 2: Define bad events In our example , bad events are the colorings that assign same color to all
vertices in an edge.For each edge e,let the event Ae = Event that edge e is monochromatic. Then,

Pr(Ae) =
1

2k
(13)

Step 3: Construct the Dependency Graph In the dependency graph, let each vertex corresponds to
an edge in the hyper graph. And there exists an edge between the two vertices in the dependency graph if
the edges in the hyper graph corresponding to these vertices share a vertex. As each edge in hyper graph
intersects with at most d other edges, the degree of any vertex in dependency graph is bounded by d.

Step 4: Check for the conditions

1. As each edge in hyper graph intersects with at most d other edges, the degree of any vertex in depen-
dency graph is bounded by d.
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2. p = Pr(Ae) = 2
2k

3. ep(d+ 1) ≤ 1

To apply the Lovász Local Lemma and conclude that

Pr

(⋂
e

Ae

)
≥ 0 (14)

the third condition must satisfy. Therefore,

ep(d+ 1) ≤ e.21−k(d+ 1) ≤ 1

d ≤ 2k − 1

e
− 1 (15)

For such values of d,k that satisfy the above condition, a hypergraph is 2-colorable.
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