
Approximation Algorithms for Geometric Packing Problems

A THESIS

SUBMITTED FOR THE DEGREE OF

Master of Technology (Research)

IN THE

Faculty of Engineering

BY

Eklavya Sharma

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

July, 2021

Declaration of Originality

I, Eklavya Sharma, with SR No. 04-04-00-10-22-19-1-16644 hereby declare that the ma-

terial presented in the thesis titled

Approximation Algorithms for Geometric Packing Problems

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the years 2019-2021.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Advisor Signature

a

Arindam Khan

27 April 2021

© Eklavya Sharma

July, 2021

All rights reserved

Acknowledgements

I am very grateful to my advisor, Prof. Arindam Khan, for how much he has cared for my

academic development. His guidance on many aspects of my life as a student and researcher

has been very valuable. Talking to him has been a great source of motivation and enlightenment

for me, and he has been a pillar of support during my tough times.

I am thankful to my parents, for always encouraging my pursuits of knowledge and seconding

my decision to pursue graduate studies. Most of my time as a student at IISc has been spent at

home in their company (because of the Coronavirus pandemic) and they have been very helpful

at ensuring that I get a suitable environment for study and research.

I’m grateful to the Indian Institute of Science (IISc) and its Computer Science and Au-

tomation (CSA) department for its wonderful M.Tech. Research programme, which has been a

gateway to research for me.

I’m grateful to Prof. Siddharth Barman, for giving me helpful suggestions at crucial stages

of my life at IISc. I’m grateful to Prof. Arindam Khan, Prof. Anand Louis, Prof. Chiranjib

Bhattacharyya, Prof. Arpita Patra, and Prof. Sanjit Chatterjee for teaching courses at CSA

that I really enjoyed and learned a lot from. I thank all the other professors at CSA who I got

to meet and learn from.

Finally, I’m thankful to all my friends at IISc for the memorable time I spent with them

at the IISc campus (and remotely afterwards, because of the Coronavirus pandemic). K.V.N.

Sreenivas, in addition to being a good friend, has been a very good research partner and

coauthor. Rameesh Paul has been a great source of intellectual stimulation, especially during

our collaborations on course projects. I’m grateful for the many interesting academic (and non-

academic) discussions with my friends Swati Allabadi, Arka Ray, Janaky Murthy and many

others.

i

Abstract

We study approximation algorithms for the geometric bin packing problem and its variants.

In the two-dimensional geometric bin packing problem (2D GBP), we are given n rectangular

items and we have to compute an axis-parallel non-overlapping packing of the items into the

minimum number of square bins of side length 1. 2D GBP is an important problem in computer

science and operations research arising in logistics, resource allocation, and scheduling.

We first study an extension of 2D GBP called the generalized multidimensional bin packing

problem (GVBP). Here each item i additionally has d nonnegative weights v1(i), v2(i), . . . , vd(i)

associated with it. Our goal is to compute an axis-parallel non-overlapping packing of the

items into bins so that for all j ∈ [d], the sum of the jth weight of items in each bin is at

most 1. Despite being well studied in practice, surprisingly, approximation algorithms for this

problem have rarely been explored. We first obtain two simple algorithms for GVBP having

asymptotic approximation ratios (AARs) 6(d+ 1) and 3(1 + ln(d+ 1) + ε). We then extend the

Round-and-Approx (R&A) framework [14] to wider classes of algorithms, and show how it can

be adapted to GVBP. Using more sophisticated techniques, we obtain algorithms for GVBP

having an AAR of 2(1 + ln((d+ 4)/2)) + ε, which improves to 2.919 + ε for the special case of

d = 1.

Next, we explore approximation algorithms for the d-dimensional geometric bin packing

problem (dD GBP). Caprara [18] gave a harmonic-based algorithm for dD GBP having an

AAR of T d−1
∞ (where T∞ ≈ 1.691). However, their algorithm doesn’t allow items to be rotated.

This is in contrast to some common applications of dD GBP, like packing boxes into shipping

containers. We give approximation algorithms for dD GBP when items can be orthogonally

rotated about all or a subset of axes. We first give a fast and simple harmonic-based algorithm,

called fullhk, having an AAR of T d∞. We next give a more sophisticated harmonic-based

algorithm, which we call HGaPk, having an AAR of T d−1
∞ (1 + ε). This gives an AAR of roughly

2.860 + ε for 3D GBP with rotations, which improves upon the best-known AAR of 4.5. In

addition, we study the multiple-choice bin packing problem that generalizes the rotational case.

Here we are given n sets of d-dimensional cuboidal items and we have to choose exactly one

ii

Abstract

item from each set and then pack the chosen items. Our algorithms fullhk and HGaPk also

work for the multiple-choice bin packing problem. We also give fast and simple approximation

algorithms for the multiple-choice versions of dD strip packing and dD geometric knapsack.

These algorithms have AARs T d−1
∞ and (1− ε)3−d, respectively.

A rectangle is said to be δ-skewed if it has width at most δ or height at most δ. We give an

approximation algorithm for bin packing δ-skewed rectangles whose asymptotic approximation

ratio approaches 1 as δ approaches 0. Our result indicates that hard instances in geometric bin

packing arise due to items that are large in both dimensions.

A packing of rectangles into a bin is said to be guillotine-separable iff we can use a sequence of

end-to-end cuts to separate the items from each other. The asymptotic price of guillotinability

(APoG) is the maximum value of optG(I)/ opt(I) for large opt(I), where opt(I) and optG(I) are

the minimum number of bins and the minimum number of guillotine-separable bins, respectively,

needed to pack I. Computing lower and upper bounds on APoG is an important problem, since

proving an upper bound smaller than 1.5 would beat the state-of-the-art algorithm for 2D GBP.

The best-known lower and upper bounds are 4/3 and T∞ ≈ 1.69103, respectively. We analyze

this problem for the special case of δ-skewed rectangles, where δ is a small constant (i.e., close

to 0). We give a roughly 4/3-asymptotic-approximate algorithm for 2D GBP for this case, and

our algorithm’s output is guillotine-separable. This proves an upper-bound of roughly 4/3 on

APoG for δ-skewed rectangles. We also prove a matching lower-bound of 4/3. This shows that

hard examples for upper-bounding APoG include items that are large in both dimensions.

iii

Publications based on this Thesis

[1] Arindam Khan and Eklavya Sharma. Tight approximation algorithms for geometric bin

packing with skewed items, 2021. To appear in APPROX 2021. arXiv:2105.02827.

[2] Arindam Khan, Eklavya Sharma, and K. V. N. Sreenivas. Geometry meets vectors: Ap-

proximation algorithms for multidimensional packing, 2021. arXiv:2106.13951.

[3] Eklavya Sharma. Harmonic algorithms for packing d-dimensional cuboids into bins, 2020.

arXiv:2011.10963.

iv

http://arxiv.org/abs/2105.02827
http://arxiv.org/abs/2106.13951
http://arxiv.org/abs/2011.10963

Contents

Acknowledgements i

Abstract ii

Publications based on this Thesis iv

Contents v

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Well-Known Packing Problems . 1

1.1.1 Classical Bin Packing . 1

1.1.2 Classical Knapsack . 2

1.1.3 Geometric Bin Packing . 3

1.1.4 Guillotine-Separable Geometric Bin Packing 5

1.1.5 Vector Bin Packing . 6

1.2 Contributions of This Thesis . 7

1.2.1 Generalized Multidimensional Bin Packing 7

1.2.2 Harmonic Algorithms for dD GBP with Rotations 10

1.2.3 Guillotine-Separable Packing of Skewed Rectangles 12

1.2.4 Almost-Optimal Bin Packing of Skewed Rectangles 13

1.3 Organization of the Thesis . 14

2 Related Problems and Prior Work 15

2.1 Classical Bin Packing . 15

v

CONTENTS

2.2 Classical Knapsack . 16

2.3 Geometric Bin Packing . 17

2.4 Geometric Knapsack . 18

2.5 Strip Packing . 18

2.6 Vector Bin Packing . 20

2.7 Vector Knapsack . 21

3 Notation and Preliminaries 22

3.1 Notation . 22

3.1.1 General . 22

3.1.2 Items . 22

3.1.3 Packing of Items . 23

3.2 Approximation Algorithms . 23

3.2.1 Minimization Problems . 23

3.2.2 Maximization Problems . 24

3.3 Simple Packing Algorithms . 24

3.4 Configuration Linear Program . 26

3.4.1 Solving the Configuration LP . 28

4 Generalized Multidimensional Bin Packing 29

4.1 Preliminaries . 30

4.2 Simple Algorithms . 30

4.2.1 Steinberg’s Algorithm . 30

4.2.2 Algorithms simplePack and betterSimplePack 32

4.2.3 Extending to Higher Geometric Dimensions 32

4.2.4 Simple Algorithm for the Knapsack Problem 33

4.3 Round-and-Approx Framework . 33

4.3.1 Comparison to Previous Versions of R&A 34

4.3.2 Description of the R&A Algorithm . 35

4.3.3 Fractional structured packing . 37

4.3.4 Properties of round . 39

4.3.5 complexPack . 40

4.3.6 unround . 40

4.3.7 AAR of R&A . 40

4.3.8 Example: simplePack . 42

vi

CONTENTS

4.4 Details of the R&A Framework . 43

4.4.1 Error in previous R&A framework . 48

4.5 The fullh4 Algorithm . 48

5 Improved Algorithm for Generalized Multidimensional Bin Packing 50

5.1 Overview of the Algorithm and its Analysis . 51

5.1.1 Overview of Key Ideas used in the Structural Theorem 52

5.2 Classifying Items . 54

5.3 Getting a Semi-Structured Packing . 55

5.3.1 Rounding One Side . 55

5.3.2 Getting Slack in Weight of Bins . 60

5.3.3 Rounding Weights . 65

5.3.4 Rounding the Other Side . 70

5.4 Rounding Algorithm . 78

5.4.1 Big Items . 79

5.4.2 Wide and Tall Items . 84

5.4.3 Rounding Algorithm . 91

5.5 Existence of Compartmental Packing . 95

5.6 Packing Algorithm . 99

5.6.1 Guessing Bin Configurations . 99

5.6.2 Fractionally Packing Wide, Tall, Small and Light items 100

5.6.3 Getting Containers from a Fractional Packing Solution 103

5.6.4 Packing Light Dense Items . 104

5.6.5 Packing Wide and Tall Non-Dense Items 104

5.6.6 Packing Small Non-Dense Items . 105

5.6.7 The Algorithm and its Approximation Factor 107

5.7 Using the Round-and-Approx Framework . 109

6 Harmonic Algorithms for dD Geometric Bin Packing 112

6.1 Important Ideas from the HDHk Algorithm . 113

6.1.1 Weighting Functions . 113

6.1.2 The Harmonic Function . 114

6.1.3 The HDH-unit-packk Subroutine . 115

6.2 Fast and Simple Algorithm for dMCBP (fullhk) 115

6.3 Better Algorithm for dMCBP (HGaPk) . 116

vii

CONTENTS

6.3.1 Structured Packing . 118

6.3.2 Subroutines . 119

6.3.3 Correctness and Running Time of HGaPk 121

6.4 Details of the HGaPk Algorithm . 122

6.4.1 Preliminaries . 122

6.4.2 Structural Theorem . 124

6.4.3 Guessing Shelves and Bins . 130

6.4.4 chooseAndPack . 130

6.4.5 inflate . 132

6.4.6 Improving Running Time . 134

6.5 HDH-unit-packk . 135

6.5.1 Shelf-Based Packing . 135

6.5.2 Description and Analysis of HDH-unit-packk 136

6.6 Harmonic Algorithm for Strip Packing . 139

6.6.1 Multiple-Choice Strip Packing . 139

6.6.2 Revisiting the HDHk Algorithm . 140

6.6.3 Extending HDH-SPk to dMCSP . 141

6.7 Harmonic Algorithm for dMCKS . 142

6.8 Weighting Function Transform . 144

6.9 Hard Instance for Shelf-Based Packing . 146

7 Guillotine-Separable Packing of Skewed Rectangles 149

7.1 Overview of the Chapter . 149

7.2 Lower Bound on APoG . 150

7.3 Algorithm skewed4Pack . 153

7.3.1 Packing With Slicing . 153

7.3.2 Overview of skewed4Pack . 159

7.3.3 Item Classification and Rounding . 159

7.3.4 Creating Containers . 161

7.3.5 Packing Shelves Into Bins . 163

7.3.6 Packing Items Into Containers . 163

7.3.7 Summary . 165

7.4 APoG for the Rotational Case . 166

viii

CONTENTS

8 Almost-Optimal Bin Packing of Skewed Rectangles 168

8.1 Classifying and Rounding Items . 169

8.1.1 Removing Medium Items . 169

8.1.2 Classifying Items . 170

8.1.3 Linear Grouping . 170

8.2 Structural Theorem . 171

8.2.1 Discretizing Horizontal Positions . 172

8.2.2 Creating Compartments . 175

8.2.3 Existence of Near-Optimal Compartmental Packing 179

8.3 Packing Rounded Items . 179

8.3.1 Enumerating Packing of Compartments 179

8.3.2 Packing Items Into Compartments . 180

8.3.3 Converting a Fractional Packing to a Non-Fractional Packing 182

8.3.4 The Algorithm . 183

8.4 Handling Item Rotations . 185

9 Conclusion and Future Directions 187

Bibliography 189

ix

List of Figures

1.1 An example of classical bin packing. 2

1.2 Packing 13 rectangles into 3 bins (without rotation). 3

1.3 Packing 4 rectangles into square bins. Allowing rotation decreases opt(I). 4

1.4 All six orientations of a cuboid of dimensions 0.2, 0.4 and 0.8. 4

1.5 Two bins that are not guillotinable. 5

1.6 Separating items using 3 stages of guillotine cuts. 6

1.7 Packing five 2D vectors into two bins. 7

1.8 2MCBP example . 11

4.1 Packing items of area at most 1 into three bins using Steinberg’s algorithm. . . . 31

4.2 Example of a fractional packing of two items into a bin. 37

5.1 Example of classifying items as blue, red and green based on an ε1-strip. 53

5.2 A ≺imm D,A 6≺imm C,A � C. 57

5.3 Splitting a bin into 2 bins and 2 boxes. 59

5.4 Linear grouping tall items. Here δlg = 5. 71

5.5 Maximum flow network for the constrained partitioning problem 80

5.6 Example output of greedyStack for 9 rectangles and 3 boxes. 86

5.7 Using horizontal cuts to partition the empty space around the 3 rectangles into

9 rectangular regions. 96

5.8 A compartment with wide items from 4 different fine partitions. This compart-

ment has 5 distinct 1D configurations. 101

5.9 A compartment with 6 slots and 12 containers. 103

6.1 An example of shelf-based packing with 3 shelves. 118

6.2 Six items and their canonical shelving into three tight shelves of width 1. 123

6.3 An example of shelf-based packing for d = 2 with 3 shelves. 135

x

LIST OF FIGURES

6.4 Constructing a hard instance for dD shelf-based packing. 147

7.1 A guillotinable packing of items into a bin and the corresponding guillotine tree. 151

7.2 Structuring a guillotine-separable packing. 151

7.3 Packing 4k items in one bin. Here k = 7. 153

7.4 2D GBP vs. 2D SBP . 154

7.5 Examples of type-1 and type-2 bins produced by greedyPack. 155

7.6 Linear grouping of W (L) for ε = 1/2. 161

7.7 A type-1 bin in the packing of Î computed by skewed4Pack. 164

8.1 Relation ≺ among items in a bin . 173

8.2 Creation of empty space during compaction. 175

8.3 Using horizontal cuts to partition the empty space around the 3 items into 9

rectangular regions. 176

8.4 Creating tall cells in a bin . 177

8.5 Obtaining wide compartments . 178

8.6 Obtaining tall compartments . 178

8.7 Major steps of skewedCPack after rounding I. 180

xi

List of Tables

1.1 Comparison of asymptotic approximation ratios of our algorithms for (2, d) BP. 9

2.1 Online algorithms for classical bin packing. 16

2.2 Offline algorithms for classical bin packing. 16

2.3 Algorithms for 2D geometric bin packing. 17

2.4 Algorithms for vector bin packing. 20

5.1 Values of a and b for Theorem 5.15. 65

5.2 Upper bound on the number of different types of items 94

5.3 Upper bound on the number of distinct widths and heights for compartments of

different types . 98

6.1 Values of Tk. 114

xii

Chapter 1

Introduction

In the classical bin packing problem, we are given a set I of items. Each item i ∈ I has a size

s(i) ∈ (0, 1] associated with it. Our goal is to partition I into the minimum number of bins,

such that the sum of sizes of items in each bin is at most 1. The classical bin packing problem

and its generalizations have diverse applications in computer science and operations research,

like packing goods into trucks, allocating jobs to servers, allocating memory in computers [23],

or assigning advertisements to station breaks in television programming,

This work focuses on approximation algorithms for geometric variants of the classical bin

packing problem. In this chapter, we will first describe the classical bin packing problem and

some of its well-known variants in more detail. With this context, we will then describe the

contributions of this thesis.

1.1 Well-Known Packing Problems

1.1.1 Classical Bin Packing

In the classical bin packing problem, we are given a set I of n items. Each item i ∈ I has a size

s(i) ∈ (0, 1] associated with it. Our goal is to partition I into the minimum number of bins,

such that the sum of sizes of items in each bin is at most 1. See Fig. 1.1 for an example.

Classical bin packing is known to be NP-hard. In fact, deciding whether a set of items can be

packed into two bins is NP-complete, by a simple reduction from the partition problem. Hence,

we look at approximation algorithms. Let opt(I) be the minimum number of bins required to

pack a set I of items. A bin packing algorithm A is said to be α-approximate iff A requires at

most α opt(I) bins to pack I.

Since it is NP-complete to decide whether a set of items can be packed into two bins, it

1

0.4 0.4 0.3 0.3 0.3 0.3

(a) A set of six items: two items have size 0.4 and four items have size 0.3.

0.4

0.4

0.3

0.3

0.3

0.3

(b) A packing of the items into 3 bins.

0.4

0.3

0.3

0.4

0.3

0.3

(c) A packing of the items into 2 bins.

Figure 1.1: An example of classical bin packing. We want to minimize the number of bins, so
the packing into 2 bins is better than the packing into 3 bins.

is NP-hard to obtain a polynomial-time algorithm for bin packing with approximation ratio

less than 3/2. (Using the results of Dósa and Sgall, we can prove that the First-Fit Decreasing

algorithm is 3/2-approximate [29, 28].) However, such a reasoning doesn’t rule out the existence

of an algorithm that uses opt(I) + 1 bins. Therefore, we turn our attention to asymptotic

approximation algorithms.

Definition 1.1 (Asymptotic approximation). A bin packing algorithm A is said to be α-

asymptotic-approximate iff A requires at most α opt(I) + β bins to pack I for some value

β ∈ o(opt(I)) (usually, β is a constant). α is called the asymptotic approximation ratio (AAR)

of A.

Definition 1.2 (APTAS). A bin packing algorithm is called an Asymptotic Polynomial-Time

Approximation Scheme (APTAS) if it accepts a parameter ε > 0 and gives an AAR of 1 + ε.

The running time for such an algorithm usually increases as ε decreases.

For classical bin packing, an APTAS was given by Lueker and Vega [26].

1.1.2 Classical Knapsack

In the classical knapsack problem, we are given a set I of items. Each item i ∈ I has a size

s(i) ∈ (0, 1] and profit p(i) ∈ R≥0 associated with it. Our goal is to pack the maximum profit

subset of I into a bin, i.e., select a subset S ⊆ I such that
∑

i∈S s(i) ≤ 1 and
∑

i∈S p(i) is

maximized. In this problem, the bin is also called knapsack.

2

The classical knapsack problem is NP-hard by a reduction from the subset-sum problem.

Hence, we look at approximation algorithms. Let opt(I) be the maximum profit of a subset of

I that can be packed into the knapsack. An algorithm A for the knapsack problem is said to

be α-approximate iff the profit of the items packed by A is at least opt(I)/α.

An algorithm for the knapsack problem is called a PTAS if it takes a constant ε > 0 as

parameter, is (1 + ε)-approximate, and runs in time polynomial in n. Additionally, if the

running time is polynomial in both n and 1/ε, then the algorithm is called an FPTAS.

FPTASes are known for the classical knapsack problem. There is a simple FPTAS that runs

in O(n3/ε) time [79]. Lawler improved the running time to O(n log(1/ε) + 1/ε4) [55].

1.1.3 Geometric Bin Packing

Figure 1.2: Packing 13 rectangles into 3 bins (without rotation).

In the 2-dimensional geometric bin packing problem (abbreviated as 2D GBP; also called

rectangle bin packing problem), we are given a set I of n rectangular items and an infinite supply

of identical rectangular bins. Our task is to pack the rectangles into the minimum number of

bins such that in each bin, the items don’t overlap. See Fig. 1.2 for an example. For each 2D

3

item i, let w(i) denote the width and h(i) denote the height. Let a(i) := w(i)h(i) be the area

of item i.

There are two commonly-studied versions of 2D GBP. In the non-rotational version, rotating

the items is forbidden. In the rotational version, the items can be rotated by 90◦. In both

versions, the items and bins are oriented parallel to the coordinate axes. See Fig. 1.3 for an

example. Note that if all items have width equal to the bin’s width, then 2D GBP reduces to

the classical bin packing problem.

1

2

3

4

(a) Packing without item rotation

1
2

3
4

(b) Packing with item rotation

Figure 1.3: Packing 4 rectangular items, each of width 0.6 and height 0.4, into square bins of
side length 1. Allowing rotation decreases the minimum number of bins needed to pack these
items.

2D GBP finds applications in the wood-cutting, metal-cutting, paper and cloth industries,

where rectangular pieces need to be cut out of standard-sized sheets, and item rotations are

usually allowed. Non-rotational 2D GBP can be used for placing advertisements on web pages

and newspapers.

The problem can be extended to three dimensions (3D GBP), where the bins and items

are cuboids. Since a cuboid can have 6 possible orientations (see Fig. 1.4), there can be many

versions of 3D GBP depending on which orientations of items are allowed. 3D GBP can be

used to pack boxes into shipping containers. Here the boxes can usually be rotated in any way,

but there are exceptions: for example, some boxes may need to be kept upright due to fragile

contents inside. Such boxes can only be rotated around the vertical axis.

Figure 1.4: All six orientations of a cuboid of dimensions 0.2, 0.4 and 0.8.

We can extend 2D and 3D GBP to even higher dimensions. In dD GBP (d ≥ 1), items and

bins are dD cuboids. A dD cuboid is defined as the cross-product of d intervals from the real

4

line. A cube is a cuboid that has the same length in each dimension. For example, a dD cube

of side length 1 is the set [0, 1]d. Note that 1D GBP is the classical bin packing problem.

In the non-rotational version of dD GBP, we can assume without loss of generality that the

bin is a cube of side length 1. This is because we can scale the dimensions of the bins and items

by the same factor. Note that this assumption doesn’t hold for the rotational version.

For 2D GBP, the algorithm by Bansal and Khan [14] gives the best-known AAR of 1 +

ln(1.5) + ε ≈ 1.40547 + ε. An APTAS cannot exist for 2D GBP unless P = NP [11, 21]. For

non-rotational dD GBP where d ≥ 3, the algorithm by Caprara [18] gives the best-known AAR

of roughly T d−1
∞ , where T∞ ≈ 1.69103.

1.1.4 Guillotine-Separable Geometric Bin Packing

In many practical cases of 2D GBP, there are additional constraints on how items can be packed

into bins, like in the two-dimensional guillotine-separable geometric bin packing problem (2D

GuillBP).

Definition 1.3. A packing of rectangles into a bin is said to be k-stage guillotine-separable

or k-stage guillotinable iff we can separate all the items in the bin using at most k stages of

end-to-end cuts (also called guillotine cuts), where in each stage, all cuts are parallel to the

x-axis or all cuts are parallel to the y-axis. A packing of rectangles into a bin is said to be

guillotine-separable or guillotinable iff it is k-stage guillotinable for some k.

See Fig. 1.6 for an example of 3-stage guillotinable packing and Fig. 1.5 for examples of

non-guillotinable packing.

Figure 1.5: Two bins that are not guillotinable.

2D GuillBP is a variant of 2D GBP where we are given a set I of rectangles and our task is

to pack them into the minimum number of bins such that each bin is guillotinable. Similarly,

in the k-stage 2D bin packing problem, we have to pack a set of rectangles into the minimum

number of bins such that each bin is k-stage guillotinable.

5

"

"

"

" " "

"

Figure 1.6: Separating items using 3 stages of guillotine cuts.

2D GuillBP is relevant in sheet-cutting industries [59, 67, 70], where cutting machines can

only make guillotine cuts. Guillotine cuts simplify the design and programming of cutting

machines and reduce their operational cost, which is important if the raw material being cut is

relatively inexpensive.

Unlike 2D GBP, for which obtaining an APTAS is NP-hard, an APTAS was given for

non-rotational 2D GuillBP by Bansal, Lodi and Sviridenko [15].

2D GuillBP has connections to other interesting problems, like guillotine-separable knap-

sack [51] and maximum independent set of rectangles [1, 52].

1.1.5 Vector Bin Packing

In the d-dimensional vector bin packing problem (dD VBP), we are given a set I of d-dimensional

vectors, and our task is to partition the vectors into bins such that in each bin, the sum of

6

the vectors in that bin have `∞-norm at most 1. Formally, let I := {v(1), v(2), . . . , v(n)} be the

items, where v(i) ∈ (0, 1]d for each i. Then we have to partition the vectors into bins such that

in each bin B,
∑

v∈B vj ≤ 1 for each j ∈ {1, 2, . . . , d}.

(a) Five 2D vectors. (b) Packing the vectors into two bins. A set of 2D
vectors lies in a bin iff their sum lies inside a square of
side length 1.

Figure 1.7: Packing five 2D vectors into two bins.

dD VBP has applications in resource allocation problems. Consider a set of tasks, each of

which have a d resource requirements. The resources could be CPU time, memory, disk IO,

network IO, etc. We have to assign these tasks to the minimum number of servers, where each

server has a capacity on each resource. This is an example of dD VBP, where the tasks are

items and servers are bins.

For dD VBP, the best-known AAR is ln d + O(1) [10, 12]. For 2D VBP, the best-known

AAR is 1 + ln(1.5) + ε ≈ 1.40547 + ε [12].

1.2 Contributions of This Thesis

In this thesis, we address the following four problems related to geometric bin packing.

1.2.1 Generalized Multidimensional Bin Packing

(Joint work with Prof. Arindam Khan and Sreenivas Karnati.)

Geometric packing and vector packing are well-studied generalizations of the classical bin

packing problem. However, often in practice, we encounter a mixture of geometric and vector

constraints. Consider the following airlines cargo problem [62]: We have boxes to load in an

airline cargo container. In addition to the geometric constraint that all the boxes must fit

within the container, we also have a constraint that the total weight of the loaded boxes should

be within a specified capacity. Thus, in this problem, three dimensions are geometric and the

weight is a vector constraint.

7

Weight has been an important constraint to consider for packing in logistics and supply

chain management, e.g., cranes and other equipment can be damaged by the bins being too

heavy, or by a skewed weight distribution [2]. While the container loading problems mostly

consider packing items inside a container, the container stowage planning problem considers

the stacking of the containers onto and off cargo ships [61]. Even when different cargoes are

packed into a fleet of aircraft for transport, one needs the individual cargoes to be not too heavy

to ensure stability and less fuel consumption [3]. Similar problems find applications in vehicle

routing with loading constraints [17]. Many practical heuristics [73, 75] have been proposed for

these kinds of problems. Several companies (such as Driw, Boxify, Freightcom) and practical

packages [81] have considered the problem. In many cases, we also want to ensure a limit on

other attributes, such as the amount of magnetism, radioactivity, or toxicity. Each of these

properties can be considered as additional vector dimensions.

Such multidimensional packing problems are also getting attention due to their connections

with fair resource allocation [63]. In recent years, a considerable amount of research has focused

on group fairness [47, 76] such that the algorithms are not biased towards (or against) some

groups or categories. One such notion of fairness is restricted dominance [16], which upper

bounds the number (or size) of items from a category. These different categories can be con-

sidered as dimensions. E.g., in a container packing problem for flood relief, one needs to ensure

that the money spent on a container is fairly distributed among different types of items (such

as medicine, food, garments). Hence, for each category, there is an upper bound on the value

that can go into a container.

Formally, we are given n items I := {1, 2, . . . , n} that are (dg, dv)-dimensional, i.e., item

i is a dg-dimensional cuboid of lengths `1(i), `2(i), . . . , `dg(i) and has dv non-negative weights

v1(i), v2(i), . . . , vdv(i). A (dg, dv)-dimensional bin is a dg-dimensional cuboid of length 1 in each

geometric dimension and weight capacity 1 in each of the dv vector dimensions. A feasible

packing of items into a bin is a packing where items are packed parallel to the axes without

overlapping, and for all j ∈ [dv], the sum of the jth weight-dimension of the items in the bin

is at most 1. In the (dg, dv) bin packing problem (BP), we have to feasibly pack all items into

the minimum number of bins. In the (dg, dv) knapsack problem (KS), each item i also has an

associated nonnegative profit p(i), and we have to feasibly pack a maximum-profit subset of

the items into a single bin (also called knapsack). (dg, dv) packing problems generalize both

dg-dimensional geometric packing (when dv = 0) and dv-dimensional vector packing (when

dg = 0). Already for vector packing, if dv is part of the input, there is an approximation

hardness of dv
1−ε unless NP=ZPP [12]. Thus, throughout the paper we assume both dg and dv

to be constants.

8

1.2.1.1 Our Results

We study the first approximation algorithms for general (dg, dv) BP, with a focus on dg =

2. We give two simple algorithms for (2, d) BP, called simplePack and betterSimplePack,

having AARs of 6(d + 1) and 3(1 + ln(d + 1)) + ε, respectively, for any ε > 0. For d = 1,

betterSimplePack’s AAR improves to ≈ 4.21640 + ε.

Next, we modify the Round-and-Approx (R&A) framework [10, 14] so that it works for (dg,

dv) BP. We combine R&A with the simplePack algorithm to get an AAR of 2(1+ln(3(d+1)))+ε

for (2, d) BP. This improves upon the AAR of betterSimplePack for d ≥ 3.

Next, we obtain a more sophisticated algorithm for (2, d) BP, called cbPack (abbreviation

for container-based packing), that fits into the R&A framework and has an even better AAR.

Theorem 1.1. The cbPack algorithm for (2, d) BP accepts a parameter ε > 0, and has an

AAR of 2(1 + ln((d+ 4)/2)) + ε (improves to 2(1 + ln((d+ 3)/2)) + ε when items can be rotated

by 90◦). For d = 1, the AAR improves to 2(1 + ln(19/12)) + ε ≈ 2.919 + ε (further improves to

2(1 + ln(3/2)) + ε ≈ 2.811 + ε when items can be rotated).

Table 1.1: Comparison of asymptotic approximation ratios of our algorithms for (2, d) BP.

Algorithm AAR for (2, d) BP AAR for (2, 1) BP

simplePack 6(d+ 1) 12

betterSimplePack 3(1 + ln(d+ 1)) + ε 3(1 + ln(3/2)) + ε ≈ 4.216 + ε

simplePack with R&A 2(1 + ln(3(d+ 1))) + ε 2(1 + ln 6) + ε ≈ 5.5835 + ε

cbPack (without rotation) 2(1 + ln(d+4
2

)) + ε 2(1 + ln(19/12)) + ε ≈ 2.919 + ε

cbPack (with rotation) 2(1 + ln(d+3
2

)) + ε 2(1 + ln(3/2)) + ε ≈ 2.811 + ε

We also show how to extend simplePack and betterSimplePack to (dg, dv) BP to obtain

AARs 2b(dv+1) and b(1+ln(dv+1)+ε), respectively, where b := 9 for dg = 3 and b := 4dg +2dg

for dg > 3. We also give a similar algorithm for (dg, dv) KS having approximation ratio b(1+ε).

One of our main contributions is the enhancement of the R&A framework [10, 14] to a

wider class of algorithms. The R&A framework is a simple but powerful technique, originally

given by Bansal, Caprara and Sviridenko [10], to improve the AAR of a bin packing algorithm

by combining it with randomized rounding of a linear program. R&A may have the potential

to improve the AARs of several packing problems, but its applicability is limited because it

only works with subset-oblivious bin packing algorithms, and proving that an algorithm is

subset-oblivious is difficult.

9

Bansal and Khan [14] partially removed this limitation by proving that a large class of

algorithms for geometric and vector bin packing, called Rounding-based algorithms, is subset-

oblivious. We make further improvements on this front by showing that an even larger class

of algorithms is subset-oblivious. This class includes some of our algorithms for (dg, dv) BP,

like simplePack and cbPack. We expect that our progress will help in better understanding

the power of R&A and extending it to other set-cover type problems, like round-SAP and

round-UFP [30].

1.2.2 Harmonic Algorithms for dD GBP with Rotations

In his seminal paper, Caprara [18] devised a polynomial-time algorithm for non-rotational dD

GBP called HDHk (Harmonic Decreasing Height), where k ∈ Z is a parameter to the algorithm.

HDHk has AAR equal to T d−1
k , where Tk is a decreasing function of k and T∞ := limk→∞ Tk ≈

1.69103. The algorithm HDHk is based on an extension of the harmonic algorithm [56] for classical

bin packing. For d ≥ 3 and large k, HDHk has the best AAR among all known algorithms for

dD GBP.

A limitation of HDHk is that it does not allow rotation of items. This is in contrast to some

real-world problems, like packing boxes into shipping containers (d = 3), where items can often

be rotated orthogonally, i.e., 90◦ rotation around all or a subset of axes.

Furthermore, known algorithms for rotational 3D GBP have a significantly larger AAR than

what the HDHk algorithm gives for non-rotational 3D GBP. When items can be rotated about

all axes, Miyazawa and Wakabayashi [60] gave a 4.89-asymptotic-approximation algorithm.

Epstein and van Stee [31] improved the AAR to 4.5 when the base of the bin is a square. On

the other hand, HDHk gives an AAR of roughly T 2
∞ ≈ 2.85958 for large k.

Orientation constraints may sometimes limit the vertical orientation of a box to one di-

mension (e.g., some items require a face labeled ‘This side up’ to always be on top) or to

two dimensions (e.g., long but low and narrow box should not be placed on its smallest sur-

face). These constraints are introduced to deter goods and packaging from being damaged and

to ensure the stability of the load. Current algorithms for 3D GBP either allow rotating all

items along the same set of axes or don’t allow rotating any item, i.e., they enforce the same

orientation constraints over all items in the input.

We address these issues by giving algorithms for dD GBP that are similar to HDHk but allow

items to be rotated and allow orientation constraints to vary across items. We first give a fast

and simple algorithm called fullhk that has an AAR of T dk . We next give a more sophisticated

algorithm called HGaPk that has an AAR of T d−1
k (1 + ε).

10

1.2.2.1 Multiple-Choice Packing

fullhk and HGaPk can be extended to work for the dD multiple-choice geometric bin pack-

ing problem (dMCBP), which we will describe now. dMCBP generalizes both the rotational

and non-rotational versions of dD GBP. It also captures the concept of variable orientation

constraints across items. This perspective will help us design algorithms for the rotational case.

In dMCBP, we are given a set I = {I1, I2, . . . , In}, where for each j, Ij is a set of items,

henceforth called an itemset. We have to pick exactly one item from each itemset and pack

those items into the minimum number of bins. See Fig. 1.8 for an example.

1
2

3

4

5
6

7

8

9

4 2

8

5

9

Figure 1.8: 2MCBP example: packing the input I = {{1, 2, 3}, {4}, {5, 6}, {7, 8}, {9}} into two
bins. Here items of the same color belong to the same itemset.

We can model rotation using multiple-choice packing: Given a set I of items, for each item

i ∈ I, create an itemset Ii that contains all allowed orientations of i. Then the optimal solution

to I := {Ii : i ∈ I} will tell us how to rotate and pack items in I.

Some algorithms for 2D bin packing with rotations assume that the bin is square [10, 41, 14].

This assumption holds without loss of generality when rotations are forbidden, because we can

scale the items. But if rotations are allowed, this won’t work because items i1 and i2 that are

rotations of each other may stop being rotations of each other after they are scaled. Multiple-

choice packing algorithms can be used in this case: for each item i ∈ I, we will create an itemset

Ii that contains scaled orientations of i.

Multiple-choice packing problems have been studied before. Lawler gave an FPTAS for the

multiple-choice classical knapsack problem [55]. Patt-Shamir and Rawitz gave an algorithm for

multiple-choice vector bin packing having AAR O(log d) and a PTAS for multiple-choice vector

knapsack [64]. Similar notions have been studied in the scheduling of malleable or moldable

jobs [82, 38].

11

1.2.2.2 Our Results

In our work, we extend and generalize HDHk to dMCBP. dMCBP subsumes the rotational case

for geometric bin packing, and we believe dMCBP is an important natural generalization of

geometric bin packing that may be of independent interest.

In Section 6.2, we show an O(N+n log n)-time algorithm for dMCBP, called fullhk, having

an AAR of T dk , where n is the number of itemsets and N is total number of items across all the

n itemsets. In Section 6.3, we show an algorithm for dMCBP, called HGaPk, having an AAR

of T d−1
k (1 + ε) and having a running time of NO(1/ε2)n(1/ε)O(1/ε)

. For d ≥ 3, this matches the

present best AAR for the case where rotations are forbidden. Also, for large k, this gives an

AAR of roughly T 2
∞ ≈ 2.85958 for 3D GBP when orthogonal rotations are allowed, which is an

improvement over the previous best AAR of 4.5 [31], an improvement after fourteen years.

Our techniques can be extended to some other packing problems, like strip packing and

geometric knapsack. In Section 6.6, we define the dD multiple-choice strip packing problem

(dMCSP) and extend Caprara’s HDHk algorithm [18] to dMCSP. The algorithm has AAR T d−1
k

and runs in time O(N+n log n), where n is the number of itemsets and N is the total number of

items across all itemsets. In Section 6.7, we define the dD multiple-choice geometric knapsack

problem (dMCKS), and for any 0 < ε < 1, we show an O(N logN+Nn/ε)-time algorithm that

is 3d(1 + ε)-approximate.

Our algorithms produce shelf-based packings (we formally define shelf-based later). An

interesting property of Caprara’s HDHk algorithm is that it is, in some sense, optimal for shelf-

based packing. Formally, Caprara [18] showed that no shelf-based algorithm for 2D GBP can

get an AAR better than T∞ ≈ 1.69103, and his HDHk algorithm achieves an AAR of T d−1
k for

dD GBP. In Section 6.9, we extend that result to show that no shelf-based algorithm for dD

GBP can get an AAR better than T d−1
∞ .

1.2.3 Guillotine-Separable Packing of Skewed Rectangles

(Joint work with Prof. Arindam Khan.)

Unlike 2D GBP, for which obtaining an APTAS is NP-hard, an APTAS was given for

non-rotational 2D GuillBP by Bansal, Lodi and Sviridenko [15]. A natural question, then, is

whether the optimal solution to 2D GuillBP a good approximation for 2D GBP.

Formally, let optg(I) be the minimum number of guillotinable bins needed to pack I. Let

α be the smallest constant such that optg(I) ≤ α opt(I) + β, where β ∈ o(opt(I)). We call α

the Asymptotic Price of Guillotinability (APoG). Hence, if we use the APTAS for 2D GuillBP

as an approximation algorithm for 2D GBP, then the AAR would be α(1 + ε). Therefore, we

12

would like to obtain tight upper and lower bounds on APoG.

It is a simple and well-known fact that APoG ≥ 4/31. Caprara’s HDHk algorithm [18] outputs

a 2-stage packing, so APoG ≤ T∞ ≈ 1.69103.

We consider the special case where the rectangles are δ-skewed, i.e., each rectangle has

height at most δ or width at most δ, where δ is a small constant. We prove an upper-bound

on APoG for skewed rectangles by giving an algorithm for 2D GBP, called skewed4Pack, that

outputs a 4-stage packing and has an AAR of

4

3

(
1 +

4δ

1− δ

)
(1 + ε).

We also prove a lower-bound of 4/3 on APoG by giving a set of δ-skewed rectangles that cannot

be efficiently packed by a guillotine-separable packing. Therefore, when δ is close to zero, we

get that APoG is roughly 4/3.

This indicates that to tighten the bound on APoG for the general case, we should focus on

big rectangles, i.e., rectangles that have width and height more than a constant δ.

The δ-skewed case has also recently received attention in the 2D strip packing problem [34].

1.2.4 Almost-Optimal Bin Packing of Skewed Rectangles

(Joint work with Prof. Arindam Khan.)

For a constant δ > 0, a rectangle is said to be δ-skewed iff either its width is at most δ or its

height is at most δ. We give an approximation algorithm for bin packing δ-skewed rectangles

where the algorithm’s AAR approaches 1 as δ approaches 0. Formally, we give an algorithm

for 2D GBP, called skewedCPack (abbreviates skewed compartmental packing), that accepts a

parameter ε, and we show that for every constant ε ∈ (0, 1), there exists a constant δ ∈ (0, ε)

such that the algorithm has an AAR of 1+ε when all items in the input are δ-skewed rectangles.

Our result shows that the approximability of the δ-skewed case is very different from the

general 2BP problem, since it is NP-hard to obtain an asymptotic approximation ratio better

than 1 + 1/2196 for general 2BP [21].

The best-known AAR for 2D GBP is 1+ln(1.5)+ε ≈ 1.405+ε. Our result indicates that to

improve upon algorithms for 2D GBP, we should focus on big rectangles, i.e., rectangles whose

width and height are both more than a constant δ.

1Consider a set I of items containing 2m rectangles of width 0.6 and height 0.4 and 2m rectangles of width
0.4 and height 0.6. Then opt(I) = m and optg(I) = d4m/3e.

13

1.3 Organization of the Thesis

• In Chapter 2, we describe prior work on well-known packing problems (problems of Sec-

tion 1.1 and other related problems).

• In Chapter 3, we describe the notation and preliminaries needed for the rest of the thesis.

• In Chapter 4, we describe our simple algorithms for generalized multidimensional bin

packing ((2, d) BP) and our extension of the Round-and-Approx framework.

• In Chapter 5, we describe the cbPack algorithm for (2, d) BP, which improves upon the

algorithms of Chapter 4.

• In Chapter 6, we describe our algorithms for d-dimensional multiple-choice geometric

packing problems (which generalize packing with item rotations). We mostly focus on

multiple-choice bin packing but also describe algorithms for multiple-choice strip packing

and multiple-choice knapsack.

• In Chapter 7, we show how to bound the asymptotic price of guillotinability (APoG) for

skewed rectangular items. We show a simple lower bound of 4/3 and prove an upper bound

of roughly 4/3 by giving a 4-stage 4
3
(1 + 4δ)(1 + ε)-asymptotic-approximation algorithm

for 2D GBP for δ-skewed rectangles.

• In Chapter 8, we give an algorithm for almost-optimally packing δ-skewed rectangles into

bins.

• In Chapter 9, we give concluding remarks and future directions.

14

Chapter 2

Related Problems and Prior Work

2.1 Classical Bin Packing

In the online version of bin packing, the items arrive one-by-one, and for each item, we have

to immediately and irrevocably pack it into a bin. In the online version, the (asymptotic)

approximation ratio is also called the (asymptotic) competitiveness ratio. (The non-online

version is called the offline version, i.e., where we can read the whole input before we start

packing.)

The Next-Fit algorithm [46] is one of the simplest algorithms for the online classical bin

packing problem. In this algorithm, we start with an empty bin, and designate it as the open

bin. We repeatedly pack items into the open bin till we come across an item that doesn’t fit

in the open bin. We then close that bin and open a new bin and resume. Let s(I) denote the

sum of sizes of all items in I. It is easy to prove that Next-Fit uses at most d2s(I)e bins. Since

s(I) ≤ opt(I), we get that Next-Fit is 2-approximate.

Lee and Lee [56] gave an algorithm for online classical bin packing, called the Harmonick

algorithm. This algorithm takes as input a set I of items and an integer parameter k ≥ 2. The

number of bins used by Harmonick to pack I is less than Tk opt(I)+k, where Tk is a decreasing

function of k and T∞ := limk→∞ Tk ≈ 1.6910302.

Many other algorithms have been devised for the online classical bin packing problem. See

Table 2.1 for examples and [23] for a detailed survey. The best algorithm we are aware of is

the Advanced Harmonic algorithm by Balogh, Békési, Dósa, Epstein and Levin [6] that has an

AAR of 1.57829.

Balogh, Békési and Galambos gave a lower bound of 248/161 ≈ 1.54037 on the asymptotic

competitive ratio [8]. This bound was recently improved to 1.54278 [7], which is the best-known

15

Table 2.1: Online algorithms for classical bin packing.

Algorithm Approximation guarantee

Next-Fit [46] ≤ 2 opt(I)

First-Fit [29] ≤ b1.7 opt(I)c
Harmonick [56] < Tk opt(I) + k (T∞ ≈ 1.69103)

Advanced Harmonic [6] ≤ 1.57829 opt(I) +O(1)

lower bound we are aware of. See [23] for a detailed survey on lower bounds.

For the offline version of classical bin packing, First-Fit Decreasing (FFD) is a popular

algorithm. Johnson [46] showed that the number of bins used by FFD is at most (11/9) opt(I)+

4. The additive constant 4 was improved by Dósa to 2/3, which is tight [28].

Lueker and Vega gave the first APTAS for classical bin packing [26]. This was later improved

upon by Karmarkar and Karp to an algorithm that uses at most opt(I)+O(log2 opt(I)) bins [48].

Rothvoss gave an algorithm that uses at most opt(I) + O(log opt(I) log log opt(I)) bins [68].

Hoberg and Rothvoss gave an algorithm that uses at most opt(I) +O(log opt(I)) bins [37] (see

Table 2.2).

Table 2.2: Offline algorithms for classical bin packing.

Algorithm Approximation guarantee

First-Fit Decreasing (FFD) [28] ≤ 11
9

opt(I) + 2
3

Lueker, Vega [26] ≤ (1 + ε) opt(I) +O(1/ε2)

Karmarkar, Karp [48] ≤ opt(I) +O(log2 opt(I))

Rothvoss [68] ≤ opt(I) +O(log opt(I) log log opt(I))

Hoberg, Rothvoss [37] ≤ opt(I) +O(log opt(I))

On the hardness side, to the best of our knowledge, an opt(I) + 1 algorithm hasn’t yet been

proven to not exist.

2.2 Classical Knapsack

There is a simple FPTAS for classical knapsack that runs in O(n3/ε) time [79]. Lawler improved

the running time to O(n log(1/ε)+1/ε4) [55]. The running time was improved to O(n log(1/ε)+

(1/ε)12/5) by Chan [19] and to O(n log(1/ε) + (1/ε)9/4) by Jin [45].

16

2.3 Geometric Bin Packing

The Next-Fit Decreasing Height (NFDH) algorithm by Coffman, Garey, Johnson and Tar-

jan [24] is one of the simplest algorithms for 2D GBP (for both the rotational and non-rotational

versions), which is 4-asymptotic-approximate. Chung, Garey and Johnson [22] gave an algo-

rithm for non-rotational 2D GBP, which we call FFDH-FF, and proved that it has an AAR of

17/8 = 2.125. Kenyon and Rémila [49] gave an APTAS for a problem called 2D strip packing,

which gives a (2 + ε)-asymptotic-approximation algorithm for non-rotational 2D GBP.

Caprara [18] gave an algorithm for dD GBP, called HDHk, that takes a parameter k as input

and has an AAR of roughly T d−1
∞ (recall that T∞ ≈ 1.69103) when k is large. Caprara also

simplified and improved the proofs of approximation of some known algorithms, e.g., the AAR

of FFDH-FF is 187/90 = 2.078. Their results, along with those of Baker and Coffman [5],

imply that the AAR of NFDH is 2T∞ ≈ 3.38206. All the results in [18] (including the HDHk

algorithm) only work for the non-rotational version.

Bansal, Caprara and Sviridenko gave an algorithm for 2D GBP, for both the non-rotational

version and the rotational version when the bin is square, having an AAR of 1 + ln(T∞) +

ε ≈ 1.52534 + ε [10]. Their algorithm was a combination of the Round-and-Approx (R&A)

framework [10] and the HDH algorithm by Caprara [18]. Jansen and Prädel gave a (1.5 + ε)-

asymptotic-approximation algorithm for 2D GBP [39, 41] for both the non-rotational version

and the rotational version when the bin is square. Bansal and Khan [14] combined Jansen and

Prädel’s algorithm with the Round-and-Approx framework to improve the AAR to 1 + ln 1.5 +

ε ≈ 1.40547 + ε.

Table 2.3: Algorithms for 2D geometric bin packing.

Algorithm Asymptotic Approximation Ratio Works for rotational version?

NFDH [24] 4 Yes

NFDH [24, 18, 5] 2T∞ ≈ 3.38206 No

FFDH-FF [24, 18] 187/90 ≈ 2.078 No

HDH [18] T∞ ≈ 1.69103 No

HDH with R&A [10] 1 + ln(T∞) + ε ≈ 1.52534 + ε Yes (square bin only)

Jansen, Prädel [39, 41] 1.5 + ε Yes (square bin only)

Bansal, Khan [14] 1 + ln(1.5) + ε ≈ 1.40547 + ε Yes (square bin only)

Bansal, Correa, Kenyon and Sviridenko [11] give an APTAS for dD BP for the case where all

items are dD cubes (recall that a cube is a cuboid having the same length in each dimension).

17

Bansal, Correa, Kenyon and Sviridenko [11] proved that if P 6=NP, then an APTAS does not

exist for 2D GBP. Chleb́ık and Chleb́ıková [21] proved that it is NP-hard to solve 2D GBP with

an AAR better than 1 + 1/3792 ≈ 1.000264 for the non-rotational version and an AAR better

than 1 + 1/2196 ≈ 1.000455 for the rotational version. Hence, unlike classical bin packing, an

APTAS cannot exist for 2D GBP.

For the version of 3D GBP where items can be rotated about all axes, Miyazawa and

Wakabayashi [60] gave a 4.89-asymptotic-approximation algorithm. Epstein and van Stee [31]

improved the AAR to 4.5 when the base of the bin is a square.

2.4 Geometric Knapsack

In the dD geometric knapsack problem (dD GKS), we are given a set I of items, where each

item i ∈ I is a dD cuboid and has a profit p(i) ≥ 0 associated with it. Our goal is to pack

the maximum profit subset of I into a dD cuboidal bin. In this problem, the bin is also called

knapsack. We can have different versions of the problem depending on whether items are

allowed to be rotated or not.

Jansen and Zhang give a (2 + ε)-approximation algorithm [44] for both the rotational and

non-rotational versions of 2D GKS. Gálvez, Grandoni, Heydrich, Ingala, Khan and Wiese give

a 17/9 + ε ≈ 1.89 + ε approximation algorithm for non-rotational 2D GKS and a (3/2 + ε)-

approximation algorithm for the rotational version when the knapsack is square.

For the special case of 2D GKS where p(i)/a(i) is lower and upper bounded by constants

for each item i ∈ I, there is a PTAS to pack a maximum-profit subset of I into a knapsack [9].

This works for both the non-rotational and rotational version.

For 3D GKS, [27] give a (7 + ε)-approximation algorithm for the non-rotational version.

When items can be rotated by 90◦ either around the vertical axis only or around all axes, they

obtain algorithms with approximation ratios 6 + ε and 5 + ε, respectively, assuming that the

knapsack is a cube.

2.5 Strip Packing

In the dD strip packing problem (dD SP), we are given a set I of dD cuboidal items. Our goal

is to pack the items into a single dD cuboid, called strip, where the first d−1 dimensions of the

strip are given and the dth dimension of the strip (called height) must be minimized. We get

different versions of the problem depending on whether items are allowed to be rotated or not.

18

For any dD cuboid, the first d − 1 dimensions are called base dimensions, and the dth

dimension is called the height. When item rotations are not allowed, we can assume without

loss of generality that the strip has length 1 in each base dimension, and that the maximum

height of an item is at most 1. This is because we can scale the dimensions of the bins and

items by the same factor.

Definition 2.1 (Asymptotic approximation for SP). A strip packing algorithm A is said to

be α-asymptotic-approximate iff for each input I, A packs I into a strip of height at most

α opt(I) + βhmax for some value β ∈ o(opt(I)) (usually, β is a constant), where hmax is the

maximum height of any item in I. α is called the asymptotic approximation ratio (AAR) of A.

We can similarly define what it means for a strip packing algorithm to be an APTAS.

When all items in a dD SP instance have the same height, and item rotations are not

allowed, then the problem reduces to (d − 1)D GBP. Therefore, dD SP is a generalization of

(d− 1)D GBP.

Coffman, Garey, Johnson and Tarjan [24] gave two algorithms for non-rotational 2D SP,

called Next-Fit Decreasing Height (NFDH) and First-Fit Decreasing Height (FFDH). NFDH

packs items into a strip of height less than 2 opt(I) + hmax, where hmax is the maximum height

of any item in the input. FFDH packs items into a strip of height less than 1.7 opt(I) + hmax.

The approximation guarantee of NFDH also holds for the rotational version, regardless of how

we orient the items in the packing. FFDH can be made to work for the rotational version with

a bit more work.

Kenyon and Rémila gave an APTAS for non-rotational 2D SP [49]. Jansen and van Stee

gave an APTAS for rotation 2D SP [43], under the assumptions that items have width and

height at most 1 and that the strip has width equal to 1.

Caprara [18] gave an algorithm for the non-rotational dD SP, called HDHk, that takes a

parameter k as input and has an AAR of roughly T d−1
∞ for large k (recall that T∞ ≈ 1.69103).

Li and Cheng [57] give a 3.25-asymptotic-approximation algorithm for non-rotational 3D

SP. Jansen and Solis-Oba [42] improve the AAR to 2 + ε. Bansal, Han, Iwama, Sviridenko and

Zhang [13] improve the AAR to T∞ ≈ 1.69103. Jansen and Prädel [40] further improve the

AAR to 1.5 + ε.

Miyazawa and Wakabayashi [60] gave a 2.64-asymptotic-approximation algorithm for 3D SP

when items can be rotated about all axes. Epstein and van Stee [31] give a 2.25-asymptotic-

approximation algorithm for 3D SP where the base of the strip is a square and the items can

be rotated either about all axes or about the height axis only.

19

2.6 Vector Bin Packing

Lueker and Vega [26] gave a (d+ ε)-asymptotic-approximation algorithm for dD VBP.

Chekuri and Khanna [20] showed that if d is not a constant, then for all ε > 0, it is NP-

hard to obtain an algorithm for dD VBP having an AAR of d1/2−ε. They showed this by

reducing from the graph coloring problem. Bansal, Khan and Elias [12] show how to improve

the hardness to d1−ε. Due to these hardness results, we now focus only on the case where d is

a constant.

Chekuri and Khanna [20] gave an algorithm for dD VBP (for constant d) having an AAR of

2 +Hd−1, where Hk := 1 + 1/2 + . . .+ 1/k is the kth harmonic number. Using the well-known

inequality Hk ≤ ln(k + 1) + γ, where γ ≈ 0.5772156649 is the Euler–Mascheroni constant, we

get that the AAR is at most 2 + γ + ln d.

Bansal, Caprara and Sviridenko [10] improved the AAR to 1 + ln d + ε by combining the

R&A framework with Lueker and Vega’s (d+ ε)-asymptotic-approximation algorithm.

Bansal, Khan and Elias [12] gave an algorithm for 2D VBP having an AAR of 1+ln(1.5)+ε ≈
1.40547+ε. They also give an algorithm for dD VBP having an AAR of (1.5−ln 2)+ln(d+1)+ε,

which improves upon the previous (1 + ln d+ ε)-asymptotic-approximation algorithm [10] when

d ≥ 5. Their algorithms also use the R&A framework. They also give an algorithm having an

absolute approximation ratio of 3/2 + ε, which is tight (hardness of 3/2 follows from classical

bin packing).

Table 2.4: Algorithms for vector bin packing.

Algorithm Asymptotic Approximation Ratio

Lueker, Vega [26] d+ ε

Chekuri, Khanna [20] 2 +Hd−1 ≤ 2.57722 + ln d

Bansal, Caprara, Sviridenko [10] 1 + ln d+ ε

Bansal, Khan and Elias [12] (1.5− ln 2) + ln(d+ 1) + ε ≈ 0.80685 + ln(d+ 1) + ε

Bansal, Khan and Elias [12] 1 + ln(1.5) + ε ≈ 1.40547 + ε (for d = 2)

Woeginger [80] proved that it is NP-hard to obtain an APTAS for 2D VBP. Recently,

Sandeep [69] showed that there exists a constant c > 0 such that it is NP-hard to obtain an

AAR less than c log d for dD VBP.

20

2.7 Vector Knapsack

In the dD vector knapsack problem (dD VKS), we are given a set I of dD vectors, where each

vector has a non-negative profit associated with it, and we have to pack a maximum-profit

subset of I into a single bin (here the bin is also called knapsack).

A PTAS for dD VKS was given by Frieze and Clarke [33].

21

Chapter 3

Notation and Preliminaries

3.1 Notation

3.1.1 General

For an integer n ≥ 0, define [n] := {1, 2, . . . , n}. Define poly(n) as the set of polynomial and

sub-polynomial functions of n. For a set X, define |X| as the cardinality of the set and define

sum(X) :=
∑

x∈X x.

For a vector x ∈ Rd, we denote the ith entry by xi or x[i]. Define sum(x) :=
∑d

i=1 xi. Define

the support of x as the set of indices of x with non-zero value, i.e., support(x) := {i ∈ [d] :

xi 6= 0}. The `p-norm of x, denoted as ‖x‖p, is defined as

‖x‖p :=

(
d∑
i=1

|xi|p
)1/p

.

Note that if all entries of x are non-negative, then sum(x) = ‖x‖1.

For a matrix A, we define the entry at the ith row and jth column by Ai,j or A[i, j].

3.1.2 Items

Let i be a dD cuboidal item (this means that i is the cross-product of d intervals on the real

line). Denote the length of i along the jth dimension by `j(i). The first d − 1 dimensions of i

are called base dimensions and the dth dimension of i is called height, denoted by h(i) := `d(i).

22

The volume of i is defined as

vol(i) :=
d∏
i=1

`j(i).

When d = 2, we say that i is a rectangular item. Define the width of i as w(i) := `1(i) and

the area of i as a(i) := vol(i) = w(i)h(i). For 1D items (i.e., items in a classical bin packing

instance), vol is also called size.

For a set I of items, let f : I 7→ R be a function mapping each item to a real number.

Then for a set X ⊆ I, define f(X) :=
∑

i∈X f(i) (unless stated otherwise). For example,

vol(X) :=
∑

i∈X vol(i).

3.1.3 Packing of Items

Let I be a set of items. Hence, |I| is the number of items in I. Let P be a packing of items

into bins. Define |P | as the number of bins used by P . Let A be an algorithm for bin packing.

Define A(I) as the packing of I output by A. Hence, the number of bins used by A to pack I

is |A(I)|.
Let I be a bin packing instance. Define opt(I) as the minimum number of bins needed to

pack I. Sometimes, we may be considering multiple versions of bin packing, like 2D GBP with

rotations (denoted as 2BPR) and 2D GBP without rotations (denoted as 2BPNR). Hence, to

disambiguate, we will use the problem name in subscript, e.g., opt2BPR(I) and opt2BPNR(I). We

will sometimes look at other kinds of packing problems, like strip packing (SP) and knapsack

(KS). If the problem is clear from context, we will use opt(I) to denote the objective value of

the optimal solution to I. Otherwise, to disambiguate, we will use optBP(I), optSP(I), optKS(I),

etc.

3.2 Approximation Algorithms

3.2.1 Minimization Problems

In a minimization problem, there is a set of feasible solutions associated with each input, and

each feasible solution has a cost associated with it. Our task is to output a feasible solution of

minimum cost for the given input. For an input I, let opt(I) denote the cost of the minimum-

cost feasible solution. The bin packing problem is an example of a minimization problem.

Let A be an algorithm for the minimization problem. Define A(I) as the output of A on

23

input I. Algorithm A is said to be α-approximate iff for each input I, the cost of A(I) is at

most α opt(I). The minimum value α for which A is α-approximate is called the approximation

ratio of A. Note that α is always at least 1.

The algorithm A is called a PTAS (Polynomial-Time Approximation Scheme) iff it takes a

constant ε > 0 as a parameter, is (1 + ε)-approximate, and runs in time polynomial in n. Note

that ε is a constant, so n1/ε is polynomial in n. A PTAS is called an FPTAS iff it is a PTAS

and runs in time polynomial in both n and 1/ε.

3.2.2 Maximization Problems

In a maximization problem, there is a set of feasible solutions associated with each input, and

each feasible solution has a score. Our task is to output a feasible solution of maximum score

for the given input. For an input I, let opt(I) denote the score of the maximum-score feasible

solution. The knapsack problem is an example of a maximization problem.

Let A be an algorithm for the maximization problem. Define A(I) as the output of A on

input I. Algorithm A is said to be α-approximate iff for each input I, the score of A(I) is at

least opt(I)/α. The minimum value α for which A is α-approximate is called the approximation

ratio of A. Note that α is always at least 1.

The algorithm A is called a PTAS (Polynomial-Time Approximation Scheme) iff it takes a

constant ε > 0 as a parameter, is (1 + ε)-approximate, and runs in time polynomial in n. A

PTAS is called an FPTAS iff it is a PTAS and runs in time polynomial in both n and 1/ε.

(Some authors use a slightly different definition of α-approximate. By this definition, algo-

rithm A is α-approximate iff for each input I, the score of A(I) is at least α opt(I). Note that

α is always at most 1 by this definition.)

3.3 Simple Packing Algorithms

Lemma 3.1. Let I be a classical bin packing instance. Then |Next-Fit(I)| < 2 size(I) + 1.

Equivalently, |Next-Fit(I)| ≤ d2 size(I)e.

Proof. Assume I is non-empty (otherwise, the lemma is trivially true). Let m := |Next-Fit(I)|.
Let Jj be the items packed into the jth bin by Next-Fit. For j ≤ m−1, by the definition of Next-

Fit, the first item in the (j+1)th bin didn’t fit into the jth bin. Therefore, size(Jj)+size(Jj+1) >

24

1. This gives us

size(I) =
size(J1) + size(Jm)

2
+

m−1∑
j=1

size(Jj) + size(Jj+1)

2
>

m−1∑
j=1

1

2
=
m− 1

2

=⇒ m < 2 size(I) + 1 ⇐⇒ m ≤ d2 size(I)e .

Lemma 3.2. Let I be a classical bin packing instance, where each item has size at most ε.

Then |Next-Fit(I)| ≤ dsize(I)/(1− ε)e.

Proof. Assume I is non-empty (otherwise, the lemma is trivially true). Let m := |Next-Fit(I)|.
Let Jj be the items packed into the jth bin by Next-Fit. For j ≤ m−1, we have size(Jj) > 1−ε.
Therefore,

size(I) >
m−1∑
j=1

size(Jj) ≥ (m− 1)(1− ε)

=⇒ m < 1 +
size(I)

1− ε
⇐⇒ m ≤

⌈
size(I)

1− ε

⌉
.

Lemma 3.3 (NFDH for strip packing [24]). Let I be a set of rectangular items of width at

most 1. Then I can be packed (without rotation) into a rectangular bin of width 1 and height

less than 2a(I) +maxi∈Ih(i) using the Next-Fit Decreasing Height (NFDH) algorithm.

Proof. Let there be p shelves output by NFDH. Let Sj be the items in the jth shelf. Let hj be

the height of the jth shelf. Let H be the sum of heights of all the shelves.

For j ≤ p − 1, all items in the jth shelf have height at least hj+1. The combined width of

the items in Sj and the first item in Sj+1 is more than 1. Therefore, a(Sj) + a(Sj+1) > hj+1.

This gives us

a(I) =
a(S1) + a(Sp)

2
+

p−1∑
j=1

a(Sj) + a(Sj+1)

2
>

p−1∑
j=1

hj+1

2
=
H − h1

2

=⇒ H < 2a(I) + h1 = 2a(I) + max
i∈I

h(i).

Lemma 3.4 (NFDH for small items [24]). Let I be a set of rectangular items where each item

has width at most δW and height at most δH . Let there be a rectangular bin of width W and

height H. If a(I) ≤ (W −δW)(H−δH), then the Next-Fit Decreasing Height (NFDH) algorithm

can pack I into the bin (without rotating the items).

25

Proof. NFDH packs the items into shelves of width W . Let the number of shelves be p. Let hj

be the height of the jth shelf. Let Sj be the items in the jth shelf. Let H̃ be the total height of

the shelves. We need to prove that H̃ ≤ H.

For j ≤ p− 1, all items in the jth shelf have height at least hj+1, and the total width of the

items in Sj is more than W − δW , because otherwise we could have fit another item into the

jth shelf. Therefore, a(Sj) > (W − δW)hj+1 for j ≤ p− 1. This gives us

(W − δW)(H − δH) ≥ a(I) >

p−1∑
j=1

a(Sj) ≥ (W − δW)

p−1∑
j=1

hj+1 = (W − δW)(H̃ − h1)

=⇒ H − δH > H̃ − h1 =⇒ H̃ < H − (δH − h1) ≤ H.

Lemma 3.5 (NFDH for bin packing). Let I be a set of rectangular items of width and height

at most 1. Then the number of square bins of side length 1 that Next-Fit Decreasing Height

(NFDH) uses to pack I is less than 4a(I) + 3.

Proof. The bin packing version of NFDH first packs I into shelves and then packs the shelves

into bins using Next-Fit. Let H be the sum of heights of all the shelves.

By Lemma 3.3, we get H < 2a(I) + 1. By Lemma 3.1, the number of bins needed is less

than 2H + 1. Therefore, the number of bins needed is less than 4a(I) + 3.

3.4 Configuration Linear Program

Let I be a bin packing instance. We will now describe a linear program (LP) associated with

I, called the configuration LP. Configuration LPs are defined for a large class of bin packing

problems, like classical bin packing, geometric bin packing and vector bin packing.

For a set I of items, define a configuration of I as a non-empty subset of I that can fit into

a bin, and a way of packing those items into a bin. An equivalent definition of bin packing is

that we need to find a small number of configurations such that each item belongs to at least

one of those configurations.

Let C be a configuration. We say that i ∈ C iff item i belongs to the set of items corre-

sponding to C. We can denote each configuration as a vector C ∈ {0, 1}n, where Ci = 1 iff

i ∈ C. Let C be the set of all possible configurations.

We can express bin packing as the problem of finding integer solutions to the following linear

program, called the configuration LP, where xC ∈ {0, 1} denotes the number of bins that have

26

configuration C:

min
x∈R|C|

∑
C∈C

xC

where
∑
C3i

xC ≥ 1 ∀i ∈ [n]

and xC ≥ 0 ∀C ∈ C

Define the configuration matrix A ∈ {0, 1}n×|C| as a matrix where A[i, C] is 1 if configuration

C contains item i and 0 otherwise. We can also write the configuration LP as

min
x∈R|C|

sum(x) where Ax ≥ 1 and x ≥ 0.

Linear programs are a useful tool in the area of approximation algorithms. Many optimiza-

tion problems can be expressed as integer programs. Rounding-based algorithms first solve the

LP relaxation of these integer programs, and then round the relaxed solution to get an approx-

imate solution to the original problem [77, 78, 54]. This approach has also been successfully

applied to bin packing: the Round-and-Approx framework [10, 14] applies randomized rounding

to a solution to the configuration LP.

We would like to solve the configuration LP in polynomial time. However, the number of

configurations can be up to 2n − 1, which is exponential in the input size. One may wonder

what it would even mean to solve the LP in polynomial time, since even writing down a feasible

solution to the LP can take exponential time! The key observation (which we will soon show)

is that there exists an optimal solution to the configuration LP whose support contains at most

n configurations. Therefore, we can restrict ourselves to solutions of poly(n)-sized support

without loss of generality. Such solutions can be written down in polynomial time.

Definition 3.1 (Extreme point; Definition 1.2.1 in [54]). Let P ⊆ Rd and x ∈ P . x is called

an extreme point of P iff there is no y 6= 0 such that x+ y ∈ P and x− y ∈ P .

Lemma 3.6. If a linear program is bounded (i.e., it attains the optimal objective value at some

point), then it contains an optimal solution that is an extreme point of the set of all feasible

solutions.

Lemma 3.7 (Rank Lemma; Lemma 2.1.4 in [54]). Let P := {x : Ax ≥ b and x ≥ 0}. Let

x̂ be an extreme point of P . Let S := {ai : (Ax̂)i = bi}, where ai is the ith row of A. Then

| support(x̂)| is equal to the maximal number of linearly independent vectors in S.

27

Corollary 3.8. Let P := {x : Ax ≥ b and x ≥ 0} and let x̂ be an extreme point of P . Then

| support(x̂)| is at most the number of inequalities in Ax ≥ b.

By Corollary 3.8, we get that there exist extreme point optimal solutions to the configuration

LP, and these solutions have at most n configurations in their support.

3.4.1 Solving the Configuration LP

Karmarkar and Karp [48] gave an FPTAS for solving the configuration LP of any classical

bin packing instance. They do this by slightly modifying the Ellipsoid algorithm of Grötschel,

Lovász and Schrijver [36].

The algorithm of Plotkin, Shmoys and Tardos [65] can be used to obtain a PTAS for the

configuration LP of any variant of bin packing, given a PTAS for the corresponding knapsack

problem. Bansal, Caprara, Jansen, Prädel and Sviridenko [9] showed how to use this to solve

the configuration LP for 2D GBP (both the rotational and non-rotational versions).

28

Chapter 4

Generalized Multidimensional Bin

Packing

In this chapter, we study the (dg, dv) BP problem, also known as the generalized multidi-

mensional bin packing problem. This problem generalizes both dg-dimensional geometric bin

packing and dv-dimensional vector bin packing. Here dg and dv are constants. See Section 1.2.1

for a detailed introduction to this problem and its significance.

Overview

• In Section 4.1, we describe some preliminaries related to (dg, dv) BP.

• In Section 4.2, we give two simple algorithms for (2, d) BP, called simplePack and

betterSimplePack, having AARs of 6(d + 1) and 3(1 + ln(d + 1)) + ε, respectively, for

any ε > 0. For d = 1, betterSimplePack’s AAR improves to ≈ 4.21640 + ε. We also

extend these algorithms to (dg, dv) BP.

• In Section 4.3, we describe our version of the Round-and-Approx (R&A) framework and

show how it can be applied to simplePack. We defer some formal proofs related to R&A

to Section 4.4.

• In Chapter 5, we describe a more sophisticated algorithm for (2, d) BP, called cbPack,

that improves upon the algorithms of this chapter.

29

4.1 Preliminaries

For (dg, dv)-dimensional items, define vmax(i) := maxdvj=1 vj(i). For convenience, let v0(i) :=

vol(i). Define span(i) := max(vol(i), vmax(i)) = maxdvj=0 vj(i). span(i) is, intuitively, the mea-

sure of largeness of item i. See Section 3.1.2 to recall the definition of vol(X), vmax(X) and

span(X), where X is a set of (dg, dv)-dimensional items.

Note that unlike geometric packing problems, we cannot trivially handle items of zero volume

in (dg, dv) BP. Assume without loss of generality that vol(i) = 0 implies (∀j ∈ [dg], `j(i) = 0).

For simplicity, throughout this chapter, we will assume that the bins are squares of side

length 1. This assumption isn’t true when items can be rotated, but our algorithms simplePack

and betterSimplePack can be easily extended to handle rotation and non-square bins.

Lemma 4.1. For (dg, dv) items I, dspan(I)e ≤ (dv+1) opt(I). This holds for both the rotational

and non-rotational versions.

Proof. Let J1, . . . , Jm be an optimal bin packing of I. Therefore,

dspan(I)e =

⌈
m∑
k=1

∑
i∈Jk

dv
max
j=0

vj(i)

⌉
≤

⌈
m∑
k=1

∑
i∈Jk

dv∑
j=0

vj(i)

⌉
=

⌈
m∑
k=1

dv∑
j=0

∑
i∈Jk

vj(i)

⌉

≤

⌈
m∑
k=1

dv∑
j=0

1

⌉
= (dv + 1)m.

Lemma 4.2. For (dg, dv) items I, dvmax(I)e ≤ dv opt(I). This holds for both the rotational

and non-rotational versions.

Proof sketch. In the proof of Lemma 4.1, replace j ∈ {0, . . . , dv} by j ∈ {1, . . . , dv}.

4.2 Simple Algorithms

In this section, we look at simple algorithms for (2, d) BP and (dg, dv) BP. We will not rotate

the items while packing them. Nevertheless, we will show that our approximation guarantees

hold for both the rotational and non-rotational versions.

4.2.1 Steinberg’s Algorithm

A key ingredient in our algorithms for (2, d) BP is Steinberg’s algorithm [74] for rectangle

packing.

30

Lemma 4.3 (Steinberg’s algorithm [74]). Let I be a set of rectangles. Let wmax := maxi∈I w(i)

and hmax := maxi∈I h(i). Consider a bin of width W and height H, where wmax ≤ W and

hmax ≤ H. Then there is a O(n log2 n/ log log n)-time algorithm to pack I into the bin if

2a(I) ≤ WH −max(2wmax −W, 0) ·max(2hmax −H, 0).

Lemma 4.4. Let I be a set of rectangles, where a(I) ≤ 1. Then there is a O(n log2 n/ log log n)-

time algorithm to pack I into 3 square bins of side length 1.

1

2

3

4

5

6

7
8

9

10

11

12

13

Steinberg’s
Algorithm

"

1

2

3

4

56

7
8

9

10
11

12

13

1

4

6

7

12

2

3

9

5

8

10
11

13

Figure 4.1: Packing items of area at most 1 into three square bins: First use Steinberg’s
algorithm to pack the items into a bin of width 2 and height 1. Then make a vertical cut in
the middle of the bin and use that to split the items into three bins.

Proof. Pack I into a bin of width 2 and height 1 using Steinberg’s algorithm (see Lemma 4.3).

Then cut the bin vertically into 2 unit-sized squares. The items which lie completely inside the

left half can be packed into a unit-sized bin. The items which lie completely inside the right

half can be packed into a unit-sized bin. The items which lie on the cutting line are stacked

one-over-the-other, so we can pack them into a unit-sized bin. See Fig. 4.1 for an example.

31

4.2.2 Algorithms simplePack and betterSimplePack

Let I be a (2, d) BP instance. Let Î := {span(i) : i ∈ I}, i.e., Î is a classical bin packing

instance. The algorithm simplePack(I) first runs the Next-Fit algorithm on Î. Let [Ĵ1, Ĵ2, . . . ,

Ĵm] be the resulting bin packing of Î into m bins. For each Ĵj ⊆ Î, let Jj be the corresponding

items from I. Then ∀k ∈ [dv], vk(Jj) ≤ 1 and vol(Jj) ≤ 1. simplePack then uses Steinberg’s

algorithm to pack each Jj into at most 3 bins, giving a packing of I into at most 3m bins.

By the property of Next-Fit (see Lemma 3.1 in Section 3.3), we get that m ≤ d2 span(I)e.
By Lemma 4.1, we get 3m ≤ 6(d+ 1) opt(I). This gives us the following theorem.

Theorem 4.5. For (2, d) BP, simplePack(I) uses at most 3 d2 span(I)e bins, so simplePack

is a 6(d + 1)-approximation algorithm. simplePack runs in O(nd + n log2 n/ log log n) time,

where n := |I|.

The algorithm betterSimplePack first computes Ĩ, which is a (d + 1)D VBP instance

obtained by replacing the geometric dimensions of each item i ∈ I by a single vector dimension

a(i). It computes a bin packing of Ĩ using any algorithm A. It then uses Steinberg’s algorithm

to obtain a bin packing of I into at most 3|A(Ĩ)| bins.

Note that opt(Ĩ) ≤ opt(I). If A has an AAR of α, then |A(Ĩ)| ≤ α opt(Ĩ)+O(1). Therefore,

betterSimplePack has an AAR of 3α. The (d+ 1)D VBP algorithm by Bansal, Caprara and

Sviridenko [10] (parametrized by a constant ε > 0) gives α = 1+ln(d+1)+ε and the algorithm

by Bansal, Elias and Khan [12] gives α = 1.5+ln((d+2)/2)+ε (improves to α = 1+ln(1.5)+ε

for d = 1).

Although simplePack has a worse AAR than betterSimplePack, the number of bins used

by simplePack is upper-bounded in terms of span, which is a useful property. Because of this,

we will use it as a subroutine in other algorithms (like cbPack).

Since | simplePack(I)| is upper-bounded in terms of span(I), and | betterSimplePack(I)| is
upper-bounded in terms of opt(Ĩ), their approximation guarantees hold for both the rotational

and non-rotational versions of (2, d) BP.

4.2.3 Extending to Higher Geometric Dimensions

The algorithms for (2, d) BP can be extended to (dg, dv) BP. We just need an algorithm for

the following problem: given a set J of dg-dimensional cuboids where vol(J) ≤ 1, pack J into

a small number of bins.

We used Steinberg’s algorithm when dg = 2. When dg = 3, we can use the algorithm of [27,

Section 2] to pack J into at most 9 bins. For dg > 3, we can use the fullh4 algorithm, which

32

is a variant of Caprara’s HDHk algorithm [18], to pack J into at most 4dg + 2dg − 1 bins. We

fully describe and analyze fullhk in Section 6.2, but we give a smaller, self-contained analysis

in Section 4.5.

Therefore, simplePack will use b d2 span(I)e bins, where b := 3 when dg = 2, b := 9 when

dg = 3, and b := 4dg + 2dg − 1 when dg > 3. Hence, simplePack is 2b(dv + 1)-approximate.

Similarly, the AAR of betterSimplePack is b(1 + ln(dv + 1) + ε).

4.2.4 Simple Algorithm for the Knapsack Problem

Using similar ideas, we can get an algorithm for the (dg, dv) KS problem. Let I be a set of (dg,

dv)-dimensional items. Let p(i) be the profit of item i. We want to pack a maximum-profit

subset of I into a bin.

Let Ĩ be a set of (dv + 1)D vectors obtained by replacing the geometric dimensions of each

item i by a single vector dimension vol(i). Let A be a (dv + 1)D vector knapsack (VKS)

algorithm having approximation ratio α ≥ 1. A gives us a packing of items Ĵ ⊆ Ĩ into a bin.

Let J be the corresponding items in I. Then vol(J) ≤ 1 and ∀k ∈ [dv], vk(J) ≤ 1. We can pack

J into at most b bins, where b = 3 for dg = 2 (by Steinberg’s algorithm), b = 9 for dg = 3 (by

[27]), and b = 4dg + 2dg − 1 for dg > 3 (by the fullh4 algorithm).

Let J1, J2, . . . , Jb be the bins that J is packed into. Without loss of generality, assume

p(J1) ≥ p(J2) ≥ . . . ≥ p(Jb). Then output the packing J1 as the answer to the (dg, dv)

KS problem. Since any feasible solution to the (dg, dv) KS instance I also gives a feasible

solution to the VKS instance Ĩ, we get optKS(Ĩ) ≥ optKS(I). Since A is α-approximate, we get

p(J) ≥ opt(Ĩ)/α. Hence,

p(J1) ≥ p(J)

b
≥ opt(Ĩ)

bα
≥ opt(I)

bα
.

Therefore, we get a bα-approximation algorithm for (dg, dv) KS. Using the PTAS for (dv + 1)D

VKS by Frieze and Clarke [33], we get α = 1 + ε.

4.3 Round-and-Approx Framework

The R&A framework is a simple but powerful technique, originally given by Bansal, Caprara

and Sviridenko [10], to improve the AAR of a bin packing algorithm by combining it with

randomized rounding of the configuration LP (recall the definition of configuration LP from

Section 3.4). R&A may have the potential to improve the AARs of several packing problems, but

33

its applicability is limited because it only works with subset-oblivious bin packing algorithms,

and proving that an algorithm is subset-oblivious is difficult.

Bansal and Khan [14] partially removed this limitation by proving that a large class of

algorithms for geometric and vector bin packing, called rounding-based algorithms, is subset-

oblivious. We make further improvements on this front by showing that an even larger class of

algorithms is subset-oblivious. This class includes some of our algorithms for (dg, dv) BP, like

simplePack and cbPack. Algorithms in this class are characterized as a combination of three

simpler subroutines, called round, complexPack and unround.

We describe our version of the R&A framework as a meta-algorithm, i.e., the R&A frame-

work takes four subroutines as input—solveConfigLP, round, complexPack and unround—and

returns an algorithm for bin packing, called rnaPack. rnaPack(I) first uses solveConfigLP to

(approximately) solve the configuration LP of I. Based on the (approximate) solution to the

configuration LP, it packs a large fraction of the items in I. It then packs the remaining items

using the subroutines round, complexPack and unround. We prove that if round, complexPack

and unround satisfy some special properties, then rnaPack has a low AAR.

In Section 4.3.2, we describe the rnaPack algorithm in detail. In Section 4.3.1, we highlight

the differences between our version of R&A and the previous versions of R&A [10, 14]. In

Sections 4.3.3, 4.3.4, 4.3.5 and 4.3.6, we describe the subroutines round, complexPack and

unround, and mention the properties that they should satisfy. In Section 4.3.7, we prove an

upper-bound on the AAR of rnaPack. In Section 4.3.8, we show how to apply the R&A

framework to the simplePack algorithm.

4.3.1 Comparison to Previous Versions of R&A

To use R&A, we need to solve the configuration LP. All previous applications (dD VBP and 2D

GBP) of R&A solved the configuration LP (1+ε)-approximately using a (1+O(ε))-approximate

solution to the corresponding knapsack problem. Due to the unavailability of a PTAS for

(2, d) KS, we had to adapt and use a different linear programming algorithm [72] that uses

an η-approximation algorithm for the knapsack problem to (1 + ε)η-approximately solve the

configuration LP, for any constants η > 1 and 0 < ε < 1.

Second, we introduce more freedom in choosing the packing structure. Unlike the R&A

framework in [14], that worked only for container-based packing, we allow either relaxing the

packing structure to non-container-based (like in simplePack) or imposing packing constraints

in addition to being container-based (like in cbPack). This generalization can help in finding

better algorithms for other variants of bin packing.

34

The rounding-based algorithms in [14] work by rounding up the large dimensions of items

to O(1) different types. In addition, we also allow rounding down some dimensions, if we can

find a suitable way of unrounding a packing of rounded items. For example, in cbPack, we

round down the width and height of some items to 0. It was shown in [50] that if the large

coordinates of items are rounded to O(1) types, we cannot obtain AARs better than d and 4/3

for dD VBP and 2D GBP, respectively. However, as we now allow rounding down, we may be

able to use the R&A framework with algorithms having better approximation ratios.

We also fix a minor error in the R&A framework of [14] (see Section 4.4.1 for details).

4.3.2 Description of the R&A Algorithm

The algorithm rnaPack(I, β, ε) takes as input a set I of (dg, dv)-dimensional items and param-

eters β ≥ 1 and ε ∈ (0, 1). The steps of the algorithm are as follows (see Algorithm 1 for a

more formal description).

1. Solve the Configuration LP of I. Use solveConfigLP to obtain a µ-asymptotic-

approximate solution x̂ to the configuration LP of I. Note that each index of x̂ corresponds

to a configuration.

2. Randomized rounding of configuration LP: For T := d(ln β)‖x̂‖1e steps, do the

following: Select a configuration C with probability x̂C/‖x̂‖1. Pack T bins according to

each of these selected T configurations. Let S be the remaining items that are not packed,

called the residual instance.

3. Rounding of items: We define a subroutine round that takes items I and parameter

ε as input1. It discards a set D ⊆ I of items such that span(D) ≤ ε span(I) and then

modifies each item in I −D to get a set Ĩ of items. We denote the output of round(I, ε)

as (Ĩ , D), where items in Ĩ are called rounded items. Intuitively, after rounding, the items

in Ĩ are of O(1) types, which makes packing easier. Also, since span(D) is small, D ∩ S
can be packed into a small number of bins using simplePack.

We impose some restrictions on round, which we denote as conditions C1 and C2, that

we describe in Section 4.3.4. We also allow round to output a O(poly(n))-sized list of

guesses of (Ĩ , D).

1The input to round is I instead of S because S is random and we want to round items deterministically,
i.e., the rounding of each item i ∈ S should not depend on which other items from I lie in S. In fact, this is
where the old R&A framework [50] introduced an error. See Section 4.4.1 for details.

35

4. Pack rounded items: Let S̃ be the rounded items corresponding to S−D. Pack S̃ into

bins using any bin packing algorithm that satisfies ‘condition C3’, which we describe in

Section 4.3.5. Let us name this algorithm complexPack.

5. Unrounding: Given a bin packing of S̃, let unround be a subroutine that computes

a bin packing of S − D. unround is trivial in previous versions of R&A, because they

only increase dimensions of items during rounding. In our applications, we may round

down items, so unround can be non-trivial. unround can be any algorithm that satisfies

‘condition C4’, which we describe in Section 4.3.6.

Algorithm 1 rnaPack(I, β, ε): Computes a bin packing of I. I is a set of (dg, dv)-dimensional
items and β ≥ 1

1: x̂ = solveConfigLP(I)
2: repeat T := d(ln β)‖x̂‖1e times
3: Select a configuration C with probability x̂C/‖x̂‖1.
4: Pack a bin according to C.
5: end repeat
6: Let S be the unpacked items from I. // S is called the set of residual items.
7: Initialize Jbest to null.
8: for (Ĩ , D) ∈ round(I) do // round(I) outputs a set of pairs.
9: JD = simplePack(S ∩D)

10: Let π be a bijection from I −D to Ĩ. Let S̃ := {π(i) : i ∈ S −D}.
11: J̃ = complexPack(S̃)

12: J = unround(J̃)
13: if Jbest is null or |JD ∪ J | < |Jbest| then
14: Jbest = JD ∪ J
15: end if
16: end for
17: Pack S according to Jbest.

The R&A framework requires that round, complexPack and unround satisfy four conditions

C1, C2, C3, C4, which we describe in Sections 4.3.4, 4.3.5 and 4.3.6. Prospective users of the

R&A framework need to design these three subroutines and prove that they satisfy these four

conditions. In Section 4.3.7, we prove that if these conditions are satisfied, then rnaPack has a

small AAR.

Intuitively, rnaPack first packs some items into T bins using randomized rounding of x̂.

We can prove that Pr[i ∈ S] ≤ 1/β, so S contains a small fraction of the items in I (see

Lemma 4.8 in Section 4.4). We will then try to prove that if the rest of the algorithm

36

(round+ complexPack+ unround) packs I into m bins, then it will pack S into roughly m/β

bins. This notion was referred to in [10] as subset-obliviousness. We will use subset-obliviousness

to bound the AAR of rnaPack.

Section 4.3.8 shows how simplePack can be broken up into round, complexPack and

unround and used with the R&A framework.

4.3.3 Fractional structured packing

Let (Ĩ , D) be an output of round(I) and let X̃ be an arbitrary subset of Ĩ. Our analysis of

rnaPack is based around a concept called fractional structured packing of X̃. Note that the

notion of fractional structured packing only appears in the analysis of rnaPack. It is not needed

to describe the algorithm.

We first define what it means to slice an item. From a geometric perspective, slicing an

item perpendicular to the kth dimension means cutting the item into 2 parts using a hyperplane

perpendicular to the kth axis. E.g., for dg = 2, if k = 1 for item i, then we slice i using a

vertical cut, and if k = 2, we slice i using a horizontal cut. The vector dimensions get split

proportionately across the slices.

Definition 4.1 (Slicing an item). Let i be a (dg, dv)-dimensional item. Slicing i perpendicular

to geometric dimension k with proportionality α (where 0 < α < 1) is the operation of replacing

i by two items i1 and i2 such that: (i) ∀j 6= k, `j(i) = `j(i1) = `j(i2), (ii) `k(i1) = α`k(i) and

`k(i2) = (1− α)`k(i), (iii) ∀j ∈ [dv], vj(i1) = αvj(i) ∧ vj(i2) = (1− α)vj(i).

Definition 4.2 (Fractional packing). Let Ĩ be (dg, dv)-dimensional items, where for each item

i ∈ Ĩ, we are given a set X(i) of axes perpendicular to which we can repeatedly slice i (X(i)

can be empty, which would mean that the item i cannot be sliced). If we slice items as per their

given axes and then pack the slices into bins, then the resulting packing is called a fractional

bin packing.

0.4 0.5

0.4

0.4

0.4

1 + 0.4

"

0.5 0.5

Figure 4.2: Example of a fractional packing of two items into a bin.

37

We will now review a common approach used in the design of approximation algorithms for

packing problems, which we will use to define fractional structured packing.

Suppose we wanted to use a brute-force algorithm for bin packing. Such an algorithm would

enumerate all possible packings of the items into bins, and pick the packing that required the

minimum number of bins. Of course, such an approach wouldn’t work, since the number of

possible packings is exponential. So, instead of enumerating all possible packings, we will only

consider a small subset of packings. We will do this by carefully choosing a set of constraints, and

we will only consider packings that satisfy those constraints. We call such packings structured.

By carefully choosing the constraints, we hope that the optimal structured packing would be

a good approximation to the optimal packing, and that the optimal structured packing would

be easier to find than the optimal packing.

This idea of using structured packings isn’t always enough by itself. However, this idea

has been successfully combined with the idea of fractional packing. For example, Jansen and

Prädel [41] showed that given any packing of a 2D GBP instance into m bins, we can slice (a

carefully chosen subset of) the items and then repack the items into (1.5+ε)m+O(1) bins such

that the resulting packing is container-based. Container-based roughly means that in each bin,

items are packed into rectangular regions called containers, and containers’ heights and widths

belong to a fixed set of O(1) values. In their algorithm, they find an almost-optimal fractional

container-based packing of the input, and show how to convert such a fractional packing into

a non-fractional packing without increasing the number of bins by too much.

This approach of using fractional packing together with structured packing has been used

in many approximation algorithms for bin packing [41, 15] and knapsack [35]. Each of these

algorithms uses a different definition of structured. For example, according to Jansen and

Prädel’s algorithm, a packing is structured iff it is container-based. The common idea in these

algorithms is to first show that the optimal fractional structured packing is a good approximation

to the optimal packing and then find a non-fractional packing that is roughly as good as the

optimal fractional structured packing. We would like to formalize this idea and see if we can

show that such algorithms are subset-oblivious.

Formally, a fractional configuration of Ĩ is a packing of slices of some items from Ĩ into a

bin. Let S be a set of fractional configurations of Ĩ. Intuitively, S is the set of all structured

fractional configurations. For a set X̃ ⊆ Ĩ, a fractional bin packing of X̃ is said to be structured

(with respect to S) iff the configuration of each bin in the packing belongs to S.

We will assume that S is downward-closed. Intuitively, downward-closed means that if we

remove some items from a structured packing, the packing will remain structured. Formally,

for two fractional configurations C1 and C2, we say that C1 is a subconfiguration of C2 iff we

38

can remove some items (or slices thereof) from C2 to get C1. We say that S is downward-closed

iff for each C ∈ S, all subconfigurations of C also lie in S. This assumption is necessary in

our analysis of rnaPack, but this is a very mild assumption, since all published examples of

structured packing that we have come across are downward closed.

The R&A framework of Bansal and Khan [14], only worked with bin packing algorithms

that used ‘container-based’ as their definition of structured packing. Our R&A framework,

on the other hand, gives algorithm designers the freedom to define the notion of structured

packing (i.e., deciding on S) in any way they want, as long as it satisfies the downward closure

property. Typically, the choice of which definition of structured packing to use will depend on

the ease of proving Conditions C2 and C3 (which we describe in Sections 4.3.4 and 4.3.5) for

that definition.

Define fsopt(X̃) as the number of bins used in the optimal fractional structured packing of

X̃ ⊆ Ĩ. To analyze the AAR of rnaPack, we will bound the number of bins used to pack the

residual instance S in terms of fsopt(S̃), and then we will bound fsopt(S̃) in terms of opt(I).

4.3.4 Properties of round

Definition 4.3 (Density vector). The density vector of a (dg, dv)-dimensional item i is the

vector vspan := [v0(i)/span(i), v1(i)/span(i), . . . , vdv(i)/span(i)]. Recall that v0(i) := vol(i) and

note that ‖vspan‖∞ = 1.

The subroutine round(I) returns a set of pairs of the form (Ĩ , D). Condition C1 is defined

as the following constraints over each pair (Ĩ , D):

• C1.1. Small discard: D ⊆ I and span(D) ≤ ε span(I).

• C1.2. Bijection from I − D to Ĩ: Each item in Ĩ is obtained by modifying an item in

I −D. Let π be the bijection from I −D to Ĩ that captures this relation.

• C1.3. Homogeneity properties: round partitions items in Ĩ into a constant number of

classes: K̃1, K̃2, . . . , K̃q. These classes should satisfy the following properties, which we

call homogeneity properties:

– All items in a class have the same density vector.

– For each class K̃j, we decide the set X of axes perpendicular to which we can slice

items in K̃j. If items in a class K̃j are not allowed to be sliced perpendicular to

dimension k, then all items in that class have the same length along dimension k.

39

(For example, if dg = 2 and vertical cuts are forbidden, then all items have the same

width.)

• C1.4. Bounded expansion: Let C be any configuration of I and K̃ be any one of the

classes of Ĩ. Let C̃ := {π(i) : i ∈ C−D}. Then we need to prove that span(K̃∩C̃) ≤ cmax

for some constant cmax. Let us call this result ‘bounded expansion lemma’.

Intuitively, the homogeneity properties allow us to replace (a slice of) an item in a fractional

packing by slices of other items of the same class. Thus, while trying to get a fractional packing,

we can focus on the item classes, which are constant in number, instead of focusing on the n

items. Intuitively, the bounded expansion lemma ensures that we do not round up items too

much.

Condition C2 (also called structural theorem): For some constant ρ > 0 and for some

(Ĩ , D) ∈ round(I), fsopt(Ĩ) ≤ ρ opt(I) +O(1).

Intuitively, the structural theorem says that allowing slicing as per round and imposing a

structure on the packing does not increase the minimum number of bins by too much. The

AAR of rnaPack increases with ρ, so we want ρ to be small.

4.3.5 complexPack

Condition C3: For some constant α > 0 and for any (Ĩ , D) ∈ round(I) and any X̃ ⊆ Ĩ,

complexPack(X̃) packs X̃ into at most α fsopt(X̃) +O(1) bins.

Intuitively, condition C3 says that we can find a packing that is close to the optimal fractional

structured packing. The AAR of rnaPack increases with α, so we want α to be small.

4.3.6 unround

Condition C4: For some constant γ > 0, if complexPack(S̃) outputs a packing of S̃ into m

bins, then unround modifies that packing to get a packing of S −D into γm+O(1) bins.

Intuitively, condition C4 says that unrounding does not increase the number of bins by too

much. The AAR of rnaPack increases with γ, so a small γ is desirable. If round only increases

the dimensions of items, then unrounding is trivial and γ = 1.

4.3.7 AAR of R&A

Recall that simplePack is a 2b(dv + 1)-approximation algorithm for (dg, dv) BP (see Sec-

tion 4.2.2), where b := 3 when dg = 2, b := 9 when dg = 3, and b := 4dg + 2dg − 1 when

40

dg > 3.

Lemma 4.6. Let S̃ be as computed by rnaPack(I, β, ε). Then

fsopt(S̃) ≤ fsopt(Ĩ)/β + 2bµε opt(I) +O(1/ε2) with high probability.

Lemma 4.6 (proved in Section 4.4) is the key ingredient in the analysis of R&A. Our proof of

Lemma 4.6 is inspired by the analysis in [50]. We prove it by analyzing the fractional structured

configuration LP of Ĩ. By the homogeneity property (C1.3), the number of constraints in this

LP is a constant. So by rank lemma (Corollary 3.8) and downward closure property (see

Lemma 4.9 in Appendix), we can show fsopt to be approximately equal to the optimal solution

to the LP. We then harness the randomness of S̃ and bounded expansion property (C1.4) to

use the independent bounded difference inequality [58] to compare the optimal LP objectives

of S̃ and Ĩ.

Theorem 4.7. With high probability, the number of bins used by rnaPack(I, β, ε) is at most(
(ln β)µ+

γαρ

β
+ 2b(dv + 1 + γαµ)ε

)
opt(I) +O(1/ε2).

Proof. Let JLP be the set of bins packed in the randomized rounding of configuration LP step

(see line 4 in Algorithm 1 in Section 4.4), JD be the set of bins used to pack the discarded items

D ∩ S, J be the set of bins used to pack the rest of the items S −D, and J̃ be the set of bins

used by complexPack to pack items in S̃.

Then |JLP| ≤ T = d(ln β)‖x̂‖1e ≤ (ln β)µ opt(I) +O(1).

Now, we have |JD| ≤ b d2 span(D)e ≤ 2bε span(I) + b ≤ 2b(dv + 1)ε opt(I) + b. The

first inequality follows from the property of simplePack, the second follows from C1.1 (Small

Discard) and the last follows from Lemma 4.1.

Finally, |J | ≤ γ|J̃ |+O(1) (property of unround (C4))

≤ γα fsopt(S̃) +O(1) (property of complexPack (C3))

≤ γα
(

fsopt(Ĩ)/β + 2bµε opt(I)
)

+O(1/ε2) (by Lemma 4.6)

≤ γα (ρ/β + 2bµε) opt(I) +O(1/ε2).

Here, the last inequality follows from the structural theorem (C2), which says that ∃(Ĩ , D) ∈

41

round(I) such that fsopt(Ĩ) ≤ ρ opt(I) +O(1). Hence, the total number of bins is at most

|JLP|+ |JD|+ |J | ≤
(

(ln β)µ+
γαρ

β
+ 2b(dv + 1 + γαµ)ε

)
opt(I) +O(1/ε2).

The AAR of rnaPack(I) is roughly µ ln β + γαρ/β. This is minimized for β = γαρ/µ and

the minimum value is µ (1 + ln (αγρ/µ)). As we require β ≥ 1, we get this AAR only when

γαρ ≥ µ. If µ ≥ γαρ, the optimal β is 1 and the AAR is roughly γαρ.

4.3.8 Example: simplePack

We will show how to use simplePack with the R&A framework. Recall that simplePack is

a 2b(dv + 1)-approximation algorithm for (dg, dv) BP (see Section 4.2.2), where b := 3 when

dg = 2, b := 9 when dg = 3, and b := 4dg + 2dg − 1 when dg > 3. Using the R&A framework on

simplePack will improve its AAR from 2b(dv + 1) to b(1 + ln(2(dv + 1))) + O(ε). To do this,

we need to show how to implement solveConfigLP, round, complexPack and unround.

1. solveConfigLP(I): Using the knapsack algorithm of Section 4.2.4 and the LP algorithm

of [72], we get a b(1 + ε)-approximate solution to configLP(I). Therefore, µ = b(1 + ε).

2. round(I): returns just one pair: (Ĩ , {}), where Ĩ := {π(i) : i ∈ I} and π(i) is an item

having height (dth
g geometric dimension) equal to span(i), all other geometric dimensions

equal to 1, and all vector dimensions equal to span(i). There is just one class in Ĩ and all

items are allowed to be sliced perpendicular to the height, so the homogeneity properties

are satisfied. Also, cmax = dv + 1 by Lemma 4.1.

3. Structural theorem: We take structured packing to be the set of all possible packings

(i.e., S is the set of all possible fractional configurations). Then fsopt(Ĩ) = dspan(I)e ≤
(dv + 1) opt(I). Therefore, ρ = dv + 1.

4. complexPack(S̃): We can treat S̃ as the classical bin packing instance {span(i) : i ∈ S}
and pack it using Next-Fit. Therefore, by Lemma 3.1, we get | complexPack(S̃)| ≤
d2 span(S)e ≤ 2 dspan(S)e = 2 fsopt(S̃). Therefore, α = 2.

5. unround(J̃): For each bin in J̃ , we can pack the corresponding unrounded items into b

bins (using Steinberg’s algorithm or [27] or fullh4). Therefore, γ = b.

Therefore, we get an AAR of µ(1 + ln(γαρ/µ)) +O(ε) ≈ b(1 + ln(2(dv + 1))) +O(ε).

42

For dg = 2, we can slightly improve the AAR by using the (2 + ε)-approximation algorithm

of [53] for (2, dv) KS. This gives us an AAR of 2(1 + ln(3(dv + 1))) +O(ε). This is better than

the AAR of betterSimplePack for dv ≥ 3.

The above example is presented only to illustrate an easy use of the R&A framework.

It doesn’t exploit the full power of the R&A framework. The algorithm cbPack, which we

outline in Chapter 5, uses more sophisticated subroutines round, complexPack and unround,

and uses a more intricate definition of fractional structured packing to get an even better AAR

of 2(1 + ln(d+4
2

)) + ε (improves to 2(1 + ln(19/12)) + ε ≈ 2.919 + ε for d = 1).

4.4 Details of the R&A Framework

Let configLP(I) denote the configuration LP of items I and let configLP∗(I) denote the optimal

objective value of configLP(I).

Lemma 4.8. ∀i ∈ I, Pr(i ∈ S) ≤ exp
(
− T
‖x̂‖1

)
≤ 1

β
.

Proof. Let C1, C2, . . . , CT be the configurations chosen during randomized rounding (line 3 in

Algorithm 1). Let Ci be the configurations that contain the element i.

Pr(i ∈ S) = Pr

(
T∧
t=1

(Ct 6∈ Ci)

)
=

T∏
t=1

Pr(Ct 6∈ Ci) (all Ct are independent)

=
T∏
t=1

(
1−

∑
C∈Ci

Pr(Ct = C)

)
=

(
1−

∑
C∈Ci

x̂C
‖x̂‖1

)T

≤
(

1− 1

‖x̂‖1

)T
(constraint in configuration LP for item i)

≤ exp

(
− T

‖x̂1‖

)
≤ 1

β
.

Definition 4.4 (Fractional Configuration LP). Let (Ĩ , D) ∈ round(I). Suppose round parti-

tioned Ĩ into classes K̃1, K̃2, . . . K̃q. Let S be the set of all structured fractional configurations

of Ĩ. The fractional structured configuration LP of S̃ ⊆ Ĩ, denoted as fsconfigLP(S̃), is

min
x∈R|S|

∑
C∈S

xC

where
∑
C∈S

span(C ∩ K̃j)xC ≥ span(S̃ ∩ K̃j) ∀j ∈ [q]

xC ≥ 0 ∀C ∈ S

43

The integer version of this program is denoted as fsconfigIP(S̃). The optimal objective values

of fsconfigLP(S̃) and fsconfigIP(S̃) are denoted as fsconfigLP∗(S̃) and fsconfigIP∗(S̃).

Lemma 4.9. fsopt(S̃) ≤ fsconfigIP∗(S̃) ≤ fsopt(S̃) + q.

Proof. Due to the downward closure property, changing inequality constraints to equality con-

straints doesn’t affect the optimum values of the above LP and IP. Therefore, fsconfigIP(S̃) is

equivalent to the fractional structured bin packing problem.

A problem with the above definition of fsconfigLP(Ĩ) is that the number of variables can be

infinite if certain classes allow slicing. We circumvent this problem by discretizing the configu-

rations: Let δ be the smallest dimension of any item, i.e. δ := min
(

min
dg
j=1 `j(i),mindvj=1 vj(i)

)
.

In any optimal integral solution to fsconfigLP(Ĩ) that uses m bins, we can slice out some

items from each class in each bin so that the span of each class in each bin is a multiple of

δdg/n. In each class, the total size of sliced out items across all bins is at most δdg . Therefore,

for each class, slices of that class can fit into a single item of that class. If each such single item

is packed in a separate bin, the total number of bins used is at most m+ q.

Therefore, we only need to consider configurations where either the span of each class is a

multiple of δdg/n or there is a single item in the configuration. We modify the set S accordingly.

This gives us a finite number of configurations and completes the proof.

Lemma 4.10. fsconfigLP∗(S̃) ≤ fsconfigIP∗(S̃) ≤ fsconfigLP∗(S̃) + q.

Proof. By rank lemma (Corollary 3.8), the number of non-zero variables in an extreme-point

solution to a linear program is at most the number of constraints (other than the variable

non-negativity constraints).

Thus, an optimal extreme-point solution to fsconfigLP(S̃) has at most q positive-valued

variables. Rounding up those variables to the nearest integer will give us an integral solution

and increase the objective value by at most q. Hence, fsconfigIP∗(S̃) ≤ fsconfigLP∗(S̃) + q.

Recall that simplePack is a 2b(dv + 1)-approximation algorithm for (dg, dv) BP (see Sec-

tion 4.2.2), where b := 3 for dg = 2, b := 9 for dg = 3, and b := 4dg + 2dg − 1 for dg > 3.

Lemma 4.11. For a set I of (dg, dv)-dimensional items, configLP∗(I) ∈ Θ(span(I)) +O(1).

Proof. Let A be the configuration matrix of I. Let x∗ be the optimal solution to configLP(I). In

configLP(I), the constraint for item i gives us
∑

C∈C A[i, C]x∗C ≥ 1. Multiplying each constraint

44

by span(i) and adding these constraints together, we get

span(I) ≤
∑
C∈C

∑
i∈I

span(i)A[i, C]x∗C =
∑
C∈C

span(C)x∗C

≤ (dv + 1)
∑
C∈C

x∗C = (dv + 1) configLP∗(I).

Therefore, configLP∗(I) ≥ span(I)/(dv + 1). We also have

configLP∗(I) ≤ opt(I) ≤ | simplePack(I)| ≤ 2b span(I) + b.

Therefore, configLP∗(I) ∈ Θ(span(I)) +O(1).

Lemma 4.12 (Independent Bounded Difference Inequality [58]). Let X := [X1, X2, . . . , Xn] be

random variables with Xj ∈ Aj. Let φ :
∏n

i=1 Aj 7→ R be a function such that |φ(x)− φ(y)| ≤ cj

whenever vectors x and y differ only in the jth coordinate. Then for any t ≥ 0,

Pr[φ(X)− E(φ(X)) ≥ t] ≤ exp

(
− 2t2∑n

j=1 c
2
j

)
.

Lemma 4.13. Let S̃ be as computed by rnaPack(I, β, ε). Let ε ∈ (0, 1) be a constant. When

span(I) is large compared to 1/ε2, we get that with high probability

fsconfigLP∗(S̃) ≤ fsconfigLP∗(Ĩ)

β
+ 2bµε opt(I) +O(1).

Proof. Let y ∈ CT be the configurations chosen during randomized rounding. When viewed as

a vector of length T , all coordinates of y are independent. Define uncovered(y) := I −
⋃T
t=1 yt.

Let K̃1, K̃2, . . . , K̃q be the classes of Ĩ. Let π be the bijection from I − D to Ĩ. For a set

X ⊆ I, define Ĩ[X] := {π(i) : i ∈ X −D}. For j ∈ [q], define φj ∈ CT 7→ R≥0 as

φj(y) := span
(
K̃j ∩ Ĩ[uncovered(y)]

)
.

For any set X ⊆ I, define gj(X) := span(K̃j ∩ Ĩ[X]). Then φj(y) = gj(uncovered(y)) and gj is

a non-negative additive function.

Let y(1), y(2) ∈ CT such that y(1) and y(2) differ only in coordinate t. Let y
(1)
t = C1 and

y
(2)
t = C2. Let S1 = uncovered(y(1)) and S2 = uncovered(y(2)).

45

It is easy to see (using Venn diagrams) that S1 − S2 ⊆ C2 − C1 and S2 − S1 ⊆ C1 − C2.

∣∣φj(y(1))− φj(y(2))
∣∣ = |gj(S1)− gj(S2)|

= |gj(S1 − S2)− gj(S2 − S1)| (additivity of gj)

≤ max(gj(S1 − S2), gj(S2 − S1))

≤ max(gj(C2), gj(C1))

≤ max
C∈C

span(K̃j ∩ Ĩ[C]) ≤ cmax. (by bounded expansion lemma)

E(φj(y)) = E(gj(S))

=
∑
i∈Ĩ

gj({i}) Pr(i ∈ S) (linearity of expectation and additivity of gj)

≤
∑
i∈Ĩ

gj({i})(1/β) (by Lemma 4.8)

=
gj(Ĩ)

β
=

span(K̃j)

β
.

∀j ∈ [q], define Qj as the smallest prefix of S̃ ∩ K̃j such that either Qj = S̃ ∩ K̃j or span(Qj) ≥
ε ‖x̂‖1 /q. Define Q :=

⋃q
j=1Qj. Therefore,

span(Q) ≤ ε ‖x̂‖1 + q ≤ εµ opt(I) +O(1).

fsconfigLP∗(S̃) ≤ fsconfigLP∗(S̃ −Q) + fsconfigLP∗(Q)

≤ fsconfigLP∗(S̃ −Q) + b(2 span(Q) + 1) (by Section 4.2.2)

≤ fsconfigLP∗(S̃ −Q) + 2bµε opt(I) +O(1).

Now we will try to prove that with high probability, fsconfigLP∗(S̃ −Q) ≤ fsconfigLP∗(Ĩ)/β.

If Qj = S̃ ∩ K̃j, then span(K̃j ∩ (S̃ −Q)) = 0. Otherwise,

Pr

[
span(K̃j ∩ (S̃ −Q)) ≥ span(K̃j)

β

]
= Pr

[
span(K̃j ∩ S̃)− span(K̃j)

β
≥ span(Qj)

]

≤ Pr

[
φj(y)− E(φj(y)) ≥ ε

q
‖x̂‖1

]
≤ exp

(
− 2

Tc2
max

(
ε

q
‖x̂‖1

)2
)

(Lemma 4.12)

46

≤ exp

(
− 2ε2

ln(β)c2
maxq

2
‖x̂‖1

)
.

Therefore, by union bound, we get

Pr

[
q∨
j=1

(
span(K̃j ∩ (S̃ −Q)) ≥ span(K̃j)

β

)]
≤ q exp

(
− 2ε2

ln(β)c2
maxq

2
‖x̂‖1

)
.

Since configLP∗(I) ≤ ‖x̂‖1 ≤ µ configLP∗(I) + O(1), and configLP∗(I) ∈ Θ(span(I)) + O(1)

(by Lemma 4.11), we get ‖x̂‖1 ∈ Θ(span(I)) + O(1). When span(I) is very large compared to

1/ε2, we get that with high probability, ∀j ∈ [q],

span(K̃j ∩ (S̃ −Q)) ≤ span(K̃j)

β
.

Let x∗ be the optimal solution to fsconfigLP(Ĩ). Then with high probability, x∗/β is a feasible

solution to fsconfigLP(S̃ −Q). Therefore,

fsconfigLP∗(S̃) ≤ fsconfigLP∗(S̃ −Q) + 2bµε opt(I) +O(1)

≤ fsconfigLP∗(Ĩ)/β + 2bµε opt(I) +O(1).

Lemma 4.6. Let S̃ be as computed by rnaPack(I, β, ε). Then

fsopt(S̃) ≤ fsopt(Ĩ)/β + 2bµε opt(I) +O(1/ε2) with high probability.

Proof. When span(I) is very large compared to 1/ε2, we get

fsopt(S̃) ≤ fsconfigIP∗(S̃) +O(1) (by Lemma 4.9)

≤ fsconfigLP∗(S̃) +O(1) (by Lemma 4.10)

≤ fsconfigLP∗(Ĩ)/β + 2bµε opt(I) +O(1) (by Lemma 4.13)

≤ fsopt(Ĩ)/β + 2bµε opt(I) +O(1). (by Lemma 4.9)

Otherwise, if span(I) ∈ O(1/ε2), we get

fsopt(S̃) ≤ ρ opt(I) +O(1) (by structural theorem)

≤ ρ| simplePack(I)|+O(1)

≤ Θ(span(I)) +O(1) (by Section 4.2.2)

≤ O(1/ε2).

47

4.4.1 Error in previous R&A framework

Here we describe a minor error in the R&A framework of [50], and how it can be fixed.

We define (Ĩ , D) as an output of round(I) and for the residual instance S, we define S̃ as

the corresponding rounded items of S − D. Our proof of Lemma 4.6 relies on the fact that

for any subset of rounded items, the span reduces by a factor of at least β if we restrict our

attention to the residual instance. Formally, this means that for any X̃ ⊆ Ĩ, we have

E(span(X̃ ∩ S̃)) =
∑
i∈X̃

span(i) Pr(i ∈ S̃) ≤ span(X̃)/β.

The equality follows from linearity of expectation and the fact that span(i) is deterministic,

i.e., it doesn’t depend on the randomness used in the randomized rounding of the configuration

LP. This is because round is not given any information about what S is. The inequality follows

from Lemma 4.8, which says that Pr(i ∈ S) ≤ 1/β.

The R&A framework of [50] used similar techniques in their analysis. In their algorithm,

however, they round items differently. Specifically, they define a subroutine round and define

Ĩ := round(I) and S̃ := round(S). They, too, claim that for any subset of rounded items,

the span reduces by a factor of at least β if we restrict our attention to the residual instance.

While their claim is correct for input-agnostic rounding (where items are rounded up to some

constant size collection values chosen independent of the problem instance), the claim is un-

substantiated for input-sensitive rounding (where the values are chosen based on the specific

problem instance). So the claim is unsubstantiated if round is not deterministic, as then an

item can be rounded differently depending on different residual instances.

In fact, they use their R&A framework with the algorithm of Jansen and Prädel [41], which

uses linear grouping (along with some other techniques) for rounding. Linear grouping rounds

items in an input-sensitive way, i.e., the rounding of each item depends on the sizes of items in

S, which is a random subset.

4.5 The fullh4 Algorithm

In this section, we describe the fullh4 algorithm and prove an important result about it.

Although a more detailed analysis is given in Section 6.2, the analysis here is simpler because

we only focus on the part relevant to (dg, dv) BP.

48

Define f4 : [0, 1] 7→ [0, 1] and type : [0, 1] 7→ [4] as

f4(x) =

1
q

x ∈
(

1
q+1

, 1
q

]
for q ∈ [3]

2x x ≤ 1
4

type(x) =

q x ∈
(

1
q+1

, 1
q

]
for q ∈ [3]

4 x ≤ 1
4

Let i be a dg-dimensional cuboid. Define f4(i) as the cuboid of length f4(`j(i)) in the jth

dimension. Note that x ≤ f4(x) ≤ 2x. Hence, vol(i) ≤ vol(f4(i)) ≤ 2dg vol(i). For a set I of

cuboids, f4(I) := {f4(i) : i ∈ I}. Define type(i) ∈ [4]dg as a vector where type(i)j := type(`j(i)).

Caprara [18] (implicitly) defines a recursive algorithm HDH-unit-pack
[t]
k (I) (see Section 6.1.3

for more details), that takes as input a sequence I of dD cuboidal items, such that all items

have the same type t and vol(f4(I − {last(I)})) < 1, and returns a packing of I into a dD bin.

Here last(I) is the last item in sequence I. HDH-unit-pack
[t]
k (I) runs in O(|I| log |I|) time.

We now describe the fullh4 algorithm. First, partition the items I by type. The number

of partitions is at most Q = 4dg . Let I [q] be the partition containing items of type q. Order

the items in I [q] arbitrarily. Then repeatedly pick the smallest prefix J of I [q] such that either

J = I [q] or vol(f4(J)) ≥ 1, and pack J into a bin using HDH-unit-pack
[q]
k (J).

Lemma 4.14. For a non-empty dgD GBP instance I, | fullh4(I)| < 4dg + 2dg vol(I).

Proof. Suppose fullh4(I [q]) produces m[q] bins. Let B
[q]
j be the jth of these bins. Given the

way we choose prefixes, vol(f4(B
[q]
j)) ≥ 1 for j ∈ [m[q]− 1], i.e., at most 1 bin is partially-filled.

Hence,

vol(f4(I [q])) =
m[q]∑
j=1

vol(f4(B
[q]
j)) > m[q] − 1.

So, the total number of bins used is

Q∑
q=1

m[q] <

Q∑
q=1

(1 + vol(f4(I [q]))) = Q+ vol(f4(I)) ≤ 4dg + 2dg vol(I).

Therefore, vol(I) ≤ 1 =⇒ | fullh4(I)| ≤ 4dg + 2dg − 1.

49

Chapter 5

Improved Algorithm for Generalized

Multidimensional Bin Packing

Here we will see an algorithm for (2, d) bin packing, called cbPack (named after ‘compartment-

based packing’). See Section 1.2.1 for an introduction to the (2, d) BP problem and a comparison

of the approximation guarantees of algorithms for this problem, including the cbPack algorithm.

The cbPack algorithm is inspired by Jansen and Prädel’s [41, 66] (1.5 + ε)-asymptotic-

approximation algorithm for 2D GBP. Like their algorithm, the design of cbPack follows the

two-step outline described in Section 4.3.3. In the first step, called structural step, we show that

for any input I, we can round I to get a new instance Ĩ such that fsopt(Ĩ) ≤ ρ opt(I) + O(1)

for some constant ρ, where fsopt(Ĩ) is the optimal fractional compartmental packing of Ĩ (we

will define compartmental later). In the second step, called the algorithmic step, we give an

algorithm for finding a packing of I that uses roughly fsopt(Ĩ) bins. We do this by first rounding

I to Ĩ, then finding the optimal fractional compartmental packing of Ĩ using brute-force and

linear programming, and then converting this packing to a non-fractional packing of I with

only a tiny increase in the number of bins.

Our notion of structured packing, which we call compartmental packing, imposes roughly

the following additional constraints over the container-based packing of [66]:

• An item i is called dense iff vmax(i)/a(i) is above a certain threshold. If a bin contains

dense items, then we reserve a sufficiently-large rectangular region exclusively for dense

items, and dense items can only be packed into this region.

• For a constant ε, for every j ∈ [d], if a set B of items is packed into a bin, then vj(B) ≤
1− ε.

50

We give a more precise definition of compartmental in Section 5.5.

cbPack can be easily broken into subroutines round, complexPack and unround, and we

show in Section 5.7 that it satisfies all the conditions of the R&A framework. To (approximately)

solve the configuration LP, we use the linear programming algorithm from [72] and the (2 + ε)-

approximation algorithm for (2, d) KS from [53].

5.1 Overview of the Algorithm and its Analysis

cbPack will be parametrized by a parameter ε, where ε−1 ∈ 2Z and ε ≤ 1/8. It takes a set I of

(2, d)-dimensional items as input. Recall that each item i ∈ I has width w(i), height h(i) and

d weights v1(i), v2(i), . . . , vd(i).

In Section 5.2, we remove a small subset of problematic items and classify the rest of the

items based on their geometric and vector dimensions. More precisely, we find two constants

ε2 � ε1 (which are functions of ε) and classify items as follows:

• Big item: w(i) > ε1 and h(i) > ε1.

• Wide item: w(i) > ε1 and h(i) ≤ ε2.

• Tall item: w(i) ≤ ε2 and h(i) > ε1.

• Small item: w(i) ≤ ε2 and h(i) ≤ ε2.

We prove that the remaining items can be packed into a small number of bins (because of the

way we chose ε2 and ε1). We call an item i dense if vmax(i)/a(i) > 1/ε2
1.

In Section 5.3 we define semi-structured packing. Given an optimal packing of the items

into m bins, we show how to round the items and obtain a fractional semi-structured packing

of those items into roughly ρm + O(1) bins, for some constant ρ. This section covers a large

part of the structural step of cbPack’s analysis.

The rounding of items in Section 5.3 is done with the knowledge of the optimal packing of

the items. Section 5.4 explains how to design a rounding algorithm that works without knowing

the optimal packing.

In Section 5.5, we define compartmental packing and show how to convert a semi-structured

packing to a compartmental packing with only a tiny increase in the number of bins.

In Section 5.6, we show how to compute an optimal fractional compartmental packing of

rounded items and how to convert that packing to a non-fractional packing with only a tiny

increase in the number of bins. We then show how to unround the packing without increasing

the number of bins.

In Section 5.7, we show how to apply the R&A framework to cbPack.

51

5.1.1 Overview of Key Ideas used in the Structural Theorem

Our definition of semi-structured is heavily influenced by the challenges posed by the presence

of vector dimensions.

Given an optimal packing of the items into m bins, we show in our structural step how to

round the items and obtain a fractional compartmental packing of those items into roughly

ρm+O(1) bins, for some constant ρ. Our high-level strategy for doing this, which is similar to

that of Jansen and Prädel [41, 66] for 2D GBP, is as follows:

1. In the first step, we round up one geometric dimension of each item and pack the items

into roughly ρm + O(1) bins. We call these bins quarter-structured (see Sections 5.3.1

and 5.3.2).

2. In the second step, we round the remaining dimensions of items and partition them into

classes such that they satisfy the homogeneity properties (see Section 4.3.4). We allow

slicing the items and repack them into almost the same number of bins. We call the

resulting bin packing semi-structured (see Sections 5.3.3 and 5.3.4).

3. In the third step, we transform the packing into a compartmental packing (see Section 5.5).

Compartmental packings have nice properties which make it easy to find optimal fractional

compartmental packings.

In steps 1, 2 and 3 above, [66] uses the NFDH algorithm (see Lemma 3.5) to pack items of

O(εm) area into O(εm) bins. This doesn’t work when vector dimensions are present, since an

item of low area can have large weights. In step 2, [66] uses linear grouping, i.e., each item is

moved in place of a geometrically larger item so that it can be rounded up. Vector dimensions

make such cross-bin movement difficult, since that can violate bins’ weight capacities.

Our first crucial observation is that most difficulties associated with vector dimensions

disappear if items’ density is upper-bounded by a constant. Here density of item i is defined

as vmax(i)/a(i). Specifically, if items of bounded density (we call them non-dense items) have

small area, then we can use simplePack to pack them into a small number of bins. To make

linear grouping work, we can partition items of bounded density into a constant number of

classes such that items in the same class have almost the same value of vmax(i)/a(i). Therefore,

our strategy is to segregate items as dense and non-dense. Furthermore, dense items in a bin

must have low total area, due to their high density. If we reserve enough space for them in

the bin, we can always pack them in their reserved region using NFDH (see Lemma 3.3). Such

a guarantee means that we can essentially ignore their geometric dimensions and simply treat

them as vectors.

52

In step 2, we want to round up vector dimensions with only a marginal increase in the

number of bins. To do this, we require each quarter-structured bin to be ε-slacked. ε-slackness

roughly means that for a set J of items in a bin, ∀j ∈ [d], vj(J) ≤ 1 − ε (see Section 5.3.2 for

a formal description). ε-slackness also helps us in designing the packing algorithm, because we

can then use techniques from resource-augmented vector bin packing. Also, during the rounding

step, we round down the weight of some dense items, and ε-slackness allows us to unround with

no increase in the number of bins.

The observations above guide our definition of quarter-structured. Roughly, a packing is

quarter-structured iff all of the following hold:

• Wide items have their width and x-coordinate rounded to a multiple of ε2
1/4.

• Each bin is ε-slacked.

• If a bin contains dense items, a rectangular region of width ε1/2 and height 1 is reserved

for them, and dense items can only be packed in this region.

In step 1, Jansen and Prädel [41, 66] use a standard cutting-strip argument: They create a

strip of width ε1 next to an edge of the bin (see Fig. 5.1 for an example). Items lying completely

inside the strip (called blue items), have small area and are packed separately using NFDH.

Items intersecting the boundary of the strip (called red items), are removed. This creates an

empty space of width ε1 in the bin. Using this empty space, items lying outside the strip (called

green items), can then have their width and x-coordinate rounded to a multiple of ε2
1/2. Their

key idea is how to pair up most bins so that red items from two bins can be rounded and packed

together into a new bin. This is roughly why they get an AAR of 1.5 + ε.

ε1

Figure 5.1: Example of classifying items as blue, red and green based on an ε1-strip.

We use the cutting-strip argument too, but with some differences. We cannot freely mix red

items from different bins if they have large weight, and we cannot simply pack blue items into

a small number of bins. We also need bins to be slacked. So, we get a larger AAR of d+ 4 + ε.

53

For d = 1, however, we allow mixing items using more sophisticated techniques, which improves

the AAR to 19/6 + ε. Also, we round green items to a multiple of ε2
1/4 instead of ε2

1/2, which

leaves an empty strip of width ε1/2 in the bin even after rounding, and we reserve this space

for dense items. This gives us a quarter-structured packing.

We have finished giving an overview of the algorithm. We now turn to the details of the

algorithm and its analysis.

5.2 Classifying Items

Definition 5.1. For constants ε2 < ε1, a bin packing instance I is called (ε2, ε1)-non-medium

iff ∀i ∈ I, (w(i) 6∈ (ε2, ε1]) ∧ (h(i) 6∈ (ε2, ε1]) ∧ (∀j ∈ [d], vj(i) 6∈ (ε2, ε1]).

An (ε2, ε1)-non-medium instance has useful properties. Therefore, we want to remove some

items from the input instance I so that it becomes (ε2, ε1)-non-medium and the removed items

can be packed into a small number of bins.

Definition 5.2. Let δ0, ε ∈ (0, 1] be constants and let f : (0, 1] 7→ (0, 1] be a function such that

∀x ∈ (0, 1], f(x) < x. Let T := d(d+ 2)/εe. For t ∈ [T], define δt := f(δt−1) and define

Jt :=

{
i ∈ I : w(i) ∈ (δt, δt−1] ∨ h(i) ∈ (δt, δt−1] ∨

(
d∨
j=1

vj(i) ∈ (δt, δt−1]

)}
.

Define removeMedium(I, ε, f, δ0) as the tuple (Jr, δr, δr−1), where r := argminTt=1 span(Jt).

Lemma 5.1. Let (Imed, ε2, ε1) := removeMedium(I, ε, f, δ0). Then span(Imed) ≤ ε span(I).

Proof. Each item belongs to at most d+ 2 sets Jt. Therefore,

span(Imed) =
T

min
t=1

span(Jt) ≤
1

T

T∑
t=1

span(Jt) ≤
d+ 2

T
span(I) ≤ ε span(I).

By Definition 5.2, I − Imed is (ε2, ε1)-non-medium. By Lemma 5.1 and Theorem 4.5,

span(Imed) can be packed into at most 6(d + 1)ε opt(I) + 3 bins using the simplePack al-

gorithm.

We will choose f to be independent of I, so ε1 and ε2 are constants. Also note that

ε2 := f(ε1) and ε1 ≤ δ0. We choose δ0 := min (1/(4d+ 1), 2ε/3), so δ−1
0 ∈ Z. We will choose f

later. For now, we will impose these conditions: f(x) ≤ εx2/2, and (x−1 ∈ Z =⇒ f(x)−1 ∈ Z).

The second condition implies that ε−1
1 , ε−1

2 ∈ Z.

54

Definition 5.3. We can classify a non-medium item i by its geometric dimensions as follows:

• Big item: w(i) > ε1 and h(i) > ε1.

• Wide item: w(i) > ε1 and h(i) ≤ ε2.

• Tall item: w(i) ≤ ε2 and h(i) > ε1.

• Small item: w(i) ≤ ε2 and h(i) ≤ ε2.

When rotating items is allowed, assume without loss of generality that there are no tall

items in I.

Definition 5.4 (Dense items). Item i is dense iff either a(i) = 0 or vmax(i)/a(i) > 1/ε2
1.

Note that big items cannot be dense.

Definition 5.5 (Heavy and light items). A dense item i is said to be heavy in vector dimension

j iff vj(i) ≥ ε1. Otherwise i is said to be light in dimension j. If i is heavy in some dimension,

then i is said to be heavy, otherwise i is light.

5.3 Getting a Semi-Structured Packing

Given a packing of items I−Imed into m bins, in this section, we will see how to round the items

and obtain a fractional semi-structured packing of the rounded items into roughly ρm + O(1)

bins, for some constant ρ. We will also define semi-structured packing in this section.

5.3.1 Rounding One Side

In this subsection, we will show how a packing of I into bins can be modified to get a more

structured packing where one of the geometric dimensions is rounded up.

Definition 5.6. In a bin, assume a coordinate system where (0, 0) is at the bottom left and

(1, 1) is on the top right. We define the following regions, called strips:

• S(T) := [0, 1]× [1− ε1, 1] and S(T ′) := [0, 1]× [1− ε1/2, 1]

• S(B) := [0, 1]× [0, ε1]

• S(L) := [0, ε1]× [0, 1]

• S(R) := [1− ε1, 1]× [0, 1] and S(R′) := [1− ε1/2, 1]× [0, 1]

We say that an item intersects a strip iff a non-zero volume of that item lies inside the strip.

Property 5.7. A bin is said to satisfy Property 5.7 iff both of these conditions hold:

55

(a) The x-coordinate and width of all non-dense wide and big items is a multiple of ε2
1/4.

(b) If the bin contains dense items, then dense items are packed inside S(R′) and no non-dense

item intersects S(R′).

Property 5.8. A bin is said to satisfy Property 5.8 iff both of these conditions hold:

(a) The y-coordinate and height of all non-dense tall and big items is a multiple of ε2
1/4.

(b) If the bin contains dense items, then dense items are packed inside S(T ′) and no non-dense

item intersects S(T ′).

Equivalently, we can say that a bin satisfies Property 5.8 iff its mirror image about the line

y = x satisfies Property 5.7.

The main result of this subsection is the following:

Lemma 5.2. Given a packing of items into a bin, we can round up the width of some wide and

big non-dense items to a multiple of ε2
1/4 or round up the height of some tall and big non-dense

items to a multiple of ε2
1/4 and get a packing into 2 bins and 2 boxes where:

• Each bin satisfies either Property 5.7 or Property 5.8.

• v1 of each box is at most 1/2.

• One of the boxes has only dense items. Its larger dimension is 1 and its smaller dimension

is δd := 2dε2
1 + ε2.

• One of the boxes has only non-dense items. Its larger dimension is 1 and its smaller

dimension is ε1 + ε2.

• One of the boxes is horizontal, i.e., has width 1 and only contains wide and small items.

The other box is vertical, i.e., has height 1 and only contains tall and small items.

Before proving Lemma 5.2, we first prove a few ancillary results.

For X ∈ {T,B}, the items lying completely inside S(X) are either small or wide. Let C(X) be

the set of small and wide items that intersect S(X). For X ∈ {L,R}, the items lying completely

inside S(X) are either small or tall. Let C(X) be the set of small and tall items that intersect

S(X). Since 2ε1 + ε2 ≤ 1, we get C(T) ∩ C(B) = C(L) ∩ C(R) = {}.
Without loss of generality, assume that v1(C(T)) ≤ 1/2 because v1(C(B) ∪ C(T)) ≤ 1 and

if v1(C(T)) > v1(C(B)), then we can mirror-invert the bin along a horizontal axis. Similarly

assume that v1(C(R)) ≤ 1/2.

56

Observation 5.3. If a bin only contains tall and small items, it trivially satisfies Prop-

erty 5.7(a). If a bin only contains wide and small items, it trivially satisfies Property 5.8(a).

Lemma 5.4. Suppose we’re given a packing of items into a bin such that no item intersects

S(R). Then we can increase the widths of all wide and big items to a multiple of ε2
1/4 and repack

the items so that they satisfy Property 5.7(a) and no item intersects S(R′).

Proof. Let yb(i) and yt(i) be the y-coordinates of the bottom and top edge respectively of item

i. If an item j intersects the strip [0, 1]× [yb(i), yt(i)] and lies to the right of i (i.e., the left edge

of j is to the right of the right edge of i), we say that i ≺imm j (see Fig. 5.2). Let � denote

the reflexive and transitive closure of the relation ≺imm. It is easy to see that � is a partial

ordering of I. Define i ≺ j as i � j ∧ i 6= j.

A

B

C

D

Figure 5.2: Items A, B, C and D in a bin. Here A ≺imm D but A 6≺imm C. Also, A ≺imm

B ≺imm C, so A � C.

Define pw(i) to be 1 if it is wide or big and to be 0 if it is neither wide nor big. Also, define

nw(i) := pw(i) + maxj≺i nw(j) (if there is no j ≺ i, define maxj≺i nw(i) := 0). Intuitively, nw(i)

denotes the length of the largest chain of wide items preceding i. The x-coordinate of the right

edge of item i is more than ε1nw(i). Therefore, nw(i) < 1/ε1 − 1.

Transformation 5.9. Move each item i to the right by (nw(i)− pw(i))ε2
1/2. Additionally, if i

is wide or big, move it further to the right so that the x-coordinate of its left edge is a multiple

of ε2
1/4, and increase its width so that it is a multiple of ε2

1/4.

On applying Transformation 5.9 to item i, the x-coordinate of its right edge increases by

less than nw(i)ε2
1/2. Since nw(i) < 1/ε1− 1, the increase is less than ε1/2. Therefore, i will not

intersect S(R′) after this transformation. Also, after applying this transformation to all items,

the bin satisfies Property 5.7(a).

We will now prove that after applying Transformation 5.9 to all items, no items overlap.

If i and j are not relatively ordered by �, they cannot overlap because we only moved items

rightwards. Now assume without loss of generality that i ≺ j. The x-coordinate of the right

57

edge of i increases by less than nw(i)ε2
1/2. The x-coordinate of the left edge of j increases

by at least (nw(j) − pw(j))ε2
1/2. Since nw(i) ≤ maxi′≺j nw(i′) = nw(j) − pw(j), i and j don’t

overlap.

Lemma 5.5. Let R be a set of wide and small items that are dense and have total weight at

most 1. They can be packed in polynomial time into a box of width 1 and height δd := 2dε2
1 +ε2.

Proof. a(R) ≤ ε2
1vmax(R) ≤ dε2

1.

So by Lemma 3.3, height used by NFDH is less than 2a(R) + ε2 ≤ 2dε2
1 + ε2.

We can get an analogous result for tall and small dense items.

Proof of Lemma 5.2. Suppose the bin contains items J . Then we can use Lemma 5.5 to move

dense wide items to box DW and move dense tall and small items to box DH . We will later

repack one of DW and DH into a bin.

v1(DW ∪ DH) ≤ 1. This gives us 2 cases: v1(DW) ≤ 1/2 or v1(DH) ≤ 1/2. The first case

is the same as the second one with the coordinate axes swapped, so assume without loss of

generality that v1(DW) ≤ 1/2.

Move C(R) to a box of height 1 and width ε1 + ε2 ≤ 1/2. C(R) only has tall and small

non-dense items. Also, v1(C(R)) ≤ 1/2.

Let I(R) be the set of big and wide items that intersect S(R). Move I(R) to a separate bin.

The items in I(R) are stacked on top of each other. Therefore, we can round their widths to a

multiple of ε2
1/4. I(R) doesn’t have dense items. Therefore, this new bin satisfies the desired

properties.

Since we removed C(R) and I(R) from the bin, S(R) is empty. By Lemma 5.4, we can round

the x-coordinate and width of big and wide items in the bin to a multiple of ε2
1/4 and then

repack the items in the bin so that the bin satisfies Property 5.7(a) and S(R′) is empty. Observe

that

δd = 2dε2
1 + ε2 ≤ 2dε2

1 +
εε2

1

2
≤ ε1

2
(4d+ 1)ε1 ≤

ε1

2
.

Since δd ≤ ε1/2, pack DH into S(R′). Now this bin also satisfies Property 5.7(b). In total, we

used 2 bins and 2 boxes (C(R) and DW). The dense box is horizontal and the non-dense box is

vertical. Refer to Fig. 5.3 for an example.

Lemma 5.6. When item rotation is allowed, given a packing of items into a bin, we can round

up the width of some wide and big items to a multiple of ε2
1/4 and round up the height of some

tall and big items to a multiple of ε2
1/4 and get a packing into 2 bins and 1 box where:

58

=

ε1 ε1 + ε2

Figure 5.3: A bin is split into 2 bins and 2 boxes. Then the widths and x-coordinates of big
and wide non-dense items are rounded up to a multiple of ε2

1/4. Dense items are shaded dark
and non-dense items are shaded light.

• Each bin satisfies Property 5.7.

• v1 of the box is at most 1/2.

• The box has height 1 and width ε1 + ε2.

• The box only contains tall and small non-dense items.

Proof sketch. Suppose the bin contains items J . Move dense items to a vertical box DH using

Lemma 5.5. Move C(R) to a box of height 1 and width ε1 + ε2. Move I(R) to a new bin and

round item widths to a multiple of ε2
1/4. Now S(R′) is empty, so pack DH into S(R′). The rest

of the proof is similar to that of Lemma 5.2.

59

5.3.2 Getting Slack in Weight of Bins

For a bin J , if ∀j ∈ [d], vj(J) ≤ 1− ε, then we can round up weights of items. Hence, we would

like to have bins with (roughly) this property.

Definition 5.10. A bin J is said to be ε-slacked iff at least one of these conditions holds:

• ∀j ∈ [d], vj(J) ≤ 1− ε.

• |J | = 1.

• |J | = 2 and J only contains dense items and ∀i ∈ J, vmax(i) ≤ 1/2.

A packing of items into multiple bins is said to be ε-slacked iff all bins in the packing are

ε-slacked.

We say that packing of items in a bin is quarter-structured iff the bin is ε-slacked and

satisfies either Property 5.7 or Property 5.8. We would like to round up the width or height of

each item in I and repack the items into bins such that each bin is quarter-structured.

Lemma 5.7. Let D ⊆ [d] and we have a parameter δ ≤ 1/4. Let I be a set of items where

∀j ∈ D, vj(I) ≤ Vj. Then we can partition I into at most |D| + 1 disjoint subsets such that

each subset I ′ satisfies one of these properties:

• |I ′| = 1.

• ∀j ∈ D, vj(I ′) ≤ (1− δ)Vj.

Proof. Let IL := {i ∈ I : ∃j ∈ D, vj(i) > (1− 2δ)Vj}. Move each item in IL to a new box. Let

D′ := {j ∈ D : vj(IL) > (1−2δ)Vj}. Then |D′| ≥ |IL| and ∀j ∈ D′, vj(I−IL) < 2δVj ≤ (1−δ)Vj.
Order the items in I − IL arbitrarily. For each j ∈ D −D′, find the smallest prefix Pj such

that vj(Pj) ≥ δVj. Let ij be the last item in Pj. Then vj(Pj − ij) < δVj. Since we removed

items from IL, vj(ij) ≤ (1− 2δ)Vj. Therefore, vj(Pj) ≤ (1− δ)Vj.
Now order these prefixes in non-decreasing order of cardinality. Let them be P ′1, P ′2, . . .,

P ′|D−D′|. The sets P ′1, P ′2−P ′1, P ′3−P ′2, . . . form a partition of P|D−D′|. Put each such set in a new

box, if the set is not empty. The items which remain in the original box are Q := I−IL−P ′|D−D′|.
∀j ∈ D−D′, Q ⊆ I − IL−Pj. Since vj(Pj) ≥ δVj, we get that ∀j ∈ D−D′, vj(Q) ≤ (1− δ)Vj.

Therefore, total number of boxes needed is at most 1+ |IL|+ |D−D′| ≤ 1+ |D′|+ |D−D′| ≤
|D|+ 1.

60

Lemma 5.8. Given a packing of items I into m bins, we can round up the width of some non-

dense wide and big items in I to a multiple of ε2
1/4 and round up the height of some non-dense

tall and big items in I to a multiple of ε2
1/4 and repack the items into (d + 4)m ε-slacked bins

such that each bin satisfies either Property 5.7 or Property 5.8.

Proof. Let B1, B2, . . . , Bm be a packing of items I into m bins. For each bin Bk, we can use

Lemma 5.2 to round up some items in Bk and split Bk into bins Jk and Kk and boxes Wk and

Hk. Without loss of generality, assume Wk is a horizontal box. Put each box in a new bin.

Then Wk satisfies Property 5.8 and Hk satisfies Property 5.7.

Let Dk := {j ∈ [d] : vj(Jk) > (1 − ε)}, Ek := {j ∈ [d] : vj(Kk) > (1 − ε)}, Fk := {j ∈ [d] :

vj(Wk) > (1 − ε)} and Gk := {j ∈ [d] : vj(Hk) > (1 − ε)}. Dk, Ek, Fk and Gk are pairwise

disjoint and they are subsets of [d]. Now use Lemma 5.7 with parameter δ = ε on bin Jk with

dimensions Dk. This splits Jk into |Dk| + 1 ε-slacked bins. Similarly, by splitting Kk, Wk and

Hk, we get |Ek|+ 1, |Fk|+ 1 and |Gk|+ 1 ε-slacked bins respectively.

The total number of bins from Bk is |Dk| + |Ek| + |Fk| + |Gk| + 4 ≤ d + 4. Therefore, we

get a total of (d+ 4)m bins.

Jk, Kk, Wk and Hk satisfy the desired properties except possibly ε-slackness. When we split

a bin into multiple bins, the position of items relative to the bin isn’t changed. Therefore, the

split bins continue to satisfy these properties.

Lemma 5.9. Given a packing of items I, if item rotations are allowed, we can round up the

width of some non-dense wide and big items in I to a multiple of ε2
1/4 and round up the height

of some non-dense tall and big items in I to a multiple of ε2
1/4 and repack I into (d + 3)m

ε-slacked bins such that each bin satisfies Property 5.7.

Proof sketch. Use Lemma 5.6 on each bin in the packing to get 3 bins. The rest of the proof is

similar to Lemma 5.8.

We will now try to improve upon Lemmas 5.8 and 5.9 for the special case d = 1.

Lemma 5.10. Let there be m boxes of width 1 and height at most ε. Let the weight of each

box be at most kε in each dimension, where k ∈ {1, 2}. Then we can pack these boxes into

1 +m · kε/(1− kε) bins such that the resulting bins are kε-slacked.

Proof. We can pack 1/kε − 1 boxes in 1 bin with the resulting bin being kε-slacked. This is

because the sum of weights is at most 1 − kε in each dimension and the total height of the

boxes is at most 1/k−ε ≤ 1. The total number of bins used is at most dm/((1/kε)− 1)e which

in turn is at most 1 +m · kε/(1− kε).

61

The above lemma can also be used for vertical boxes, i.e., height 1 and width at most ε.

Lemma 5.11. Let d = 1. Let there be m boxes of width 1 and height at most ε containing only

non-big non-dense items. Let the weight of each box be at most 1/2. Then we can pack these

boxes into 2 +m (1/2 + ε/(1− ε)) bins such that the resulting bins are ε-slacked.

Proof. Let i be an item in the box. Boxes only have non-big items, so a(i) ≤ ε2. Boxes only

have non-dense items, so v1(i) ≤ a(i)/ε2
1 ≤ ε/2.

From each box, choose the smallest prefix S for which v1(S) ≥ ε/2. Then v1(S) ≤ ε.

Remove S and put it in a new box of the same dimensions.

This gives us m boxes of weight at most (1 − ε)/2. We can pair them up and pack them

into dm/2e ≤ m/2 + 1 bins. Those bins will be ε-slacked.

We also get m new boxes of weight at most ε. We can pack 1/ε− 1 such boxes into a bin.

This gives us at most 1 +m · ε/(1− ε) bins. These bins are ε-slacked.

Total number of bins used is
(
m
2

+ 1
)

+ (1 +m · ε/(1− ε)) = 2 +m (1/2 + ε/(1− ε)).

Lemma 5.12. Let d = 1. Let there be m boxes of width 1 and height δd. Suppose the boxes only

have dense items, and each box has total weight at least ε and at most 1/2. Then we can pack

the items of these boxes into at most 3 + 2m/3 bins such that the resulting bins are ε-slacked.

Proof. Let there be t boxes that have an item of weight at least 1/2− 2ε. No item has weight

more than half. Therefore, we can pair up these high-weight items into at most t/2+1 ε-slacked

bins. In each of these t boxes, the remaining items have weight at most 2ε. Since ε ≥ δd, by

Lemma 5.10, we can pack them into 1 + 2εt/(1− 2ε) number of ε-slacked bins.

m− t boxes have all items of weight less than 1/2−2ε. Each of these boxes has total weight

between ε and 1/2. Each box can be split into 2 boxes as follows: Order the items in a box

and find the smallest prefix of weight at least ε. Since there are no items of weight more than

1/2− 2ε, such a prefix has weight between ε and 1/2− ε.
Arrange the m− t boxes into groups of at most 3 boxes each. Let C1, C2, C3 be these boxes

in one such group. Split C1 and C2 into 2 boxes each by the above method. Let the resulting

boxes be C ′1, C
′′
1 , C

′
2, C

′′
2 respectively. Assume without loss of generality that v1(C ′j) ≤ v1(C ′′j)

for j ∈ [2]. Pack C ′1, C
′
2, C

′′
1 into 1 bin. It has weight at most 1− ε, so it is ε-slacked. Pack C ′′2

and C3 into 1 bin. It has weight at most 1− ε, so it is ε-slacked. Therefore, we can convert a

group of 3 boxes into 2 ε-slacked bins.

Total bins used is at most (1 + 2εt/(1− 2ε)) + 2 d(m− t)/3e ≤ 3 + 2m/3 − t
(

2
3
− 2ε

1−2ε

)
which is at most 3 + 2m/3, assuming ε ≤ 1/5.

The above lemma can also be used for vertical boxes, i.e., height 1 and width at most δd.

62

Lemma 5.13. Given a packing of items I into m bins, when d = 1, we can round up the width

of some non-dense wide and big items in I to a multiple of ε2
1/4 and round up the height of some

non-dense tall and big items in I to a multiple of ε2
1/4 and repack I into

(
3 + 1

6
+ ε

1−ε

)
m+ 12

ε-slacked bins such that each bin satisfies either Property 5.7 or Property 5.8.

Proof. Let B1, B2, . . . , Bm be a packing of items I into m bins. For each bin Bk, we can use

Lemma 5.2 to round up some items in Bk and split Bk into bins Jk and Kk and boxes Wk and

Hk, where Wk is a horizontal box and Hk is a vertical box, i.e., the width of Wk is 1 and the

height of Hk is 1.

Classifying bins:

We will now classify the bins B1, B2, . . . , Bm.

Type 1: v1(Wk) ≤ ε and v1(Hk) ≤ ε:

Among Jk and Kk, at most 1 bin will have weight more than 1− ε. Use Lemma 5.7 to split

it into 2 bins. So for each original bin of type 1, we get at most 3 ε-slacked bins and 2 boxes,

one horizontal and one vertical, each of total weight at most ε.

Both Jk and Kk satisfy either Property 5.7 or Property 5.8. When we split a bin into multiple

bins, the position of items relative to the bin isn’t changed. Therefore, the bins continue to

satisfy these properties.

Type 2: v1(Wk) > ε and v1(Hk) ≤ ε:

v1(Wk) > ε implies that v1(Jk) ≤ 1 − ε and v1(Kk) ≤ 1 − ε, so Jk and Kk are already

ε-slacked. Pack Wk in a bin. Since v1(Wk) ≤ 1/2 ≤ 1 − ε, Wk is ε-slacked. Wk satisfies

Property 5.8. So for each original bin of type 2, we get at most 3 ε-slacked bins and 1 vertical

box of weight at most ε.

Type 3: v1(Wk) ≤ ε and v1(Hk) > ε:

The analysis is similar to type 2. For each original bin of type 3, we get at most 3 ε-slacked

bins and 1 horizontal box of weight at most ε.

Type 4: v1(Wk) > ε and v1(Hk) > ε:

v1(Wk) > ε implies that v1(Jk) ≤ 1 − ε and v1(Kk) ≤ 1 − ε, so Jk and Kk are already

ε-slacked. So we have at most 2 ε-slacked bins and 2 boxes of weight at most 1/2.

Repacking boxes:

We will now try to pack the boxes into bins. Each of these bins packs some dense boxes and

some non-dense boxes. If multiple dense boxes were packed in a bin, we can use Lemma 5.5

to repack them into a single dense box and move that box to an edge of the bin. Bins that

only pack horizontal boxes satisfy Property 5.8. Bins that only pack vertical boxes satisfy

Property 5.7.

63

Among B1, B2, . . . , Bm, let there be mk bins of type k.

The number of ε-slacked bins is at most 3m1 + 3m2 + 3m3 + 2m4 ≤ 3m−m4. We also have

m1 + m3 horizontal boxes and m1 + m2 vertical boxes of weight at most ε each. Since δd ≤
ε1/2 ≤ ε and ε1 +ε2 ≤ 2ε/3+2ε3/9 ≤ ε, each box has the smaller geometric dimension at most

ε. By Lemma 5.10, the number of bins we need to pack them is at most 2+ ε
1−ε(2m1 +m2 +m3).

We have m4 horizontal boxes and m4 vertical boxes that each have weight between ε and

1/2. m4 of these are dense boxes and m4 are non-dense boxes.

The non-dense boxes don’t have big items. Since ε ≥ ε1 + ε2, by Lemma 5.11, the number

of bins needed to pack them is at most 4 +
(

1
2

+ ε
1−ε

)
m4.

By Lemma 5.12, we can pack the dense boxes into 6+2m4/3 bins, where each bin is ε-slacked.

The total number of bins used is at most

(3m−m4) +

(
2 +

ε

1− ε
(2m1 +m2 +m3)

)
+

(
4 +

(
1

2
+

ε

1− ε

)
m4

)
+

(
6 +

2

3
m4

)
= 12 +

(
3 +

1

6
+

ε

1− ε

)
m+

ε

1− ε
m1 +

m4 −m
6

≤ 12 +

(
3 +

1

6
+

ε

1− ε

)
m−

(
1

6
− ε

1− ε

)
m1 (m4 ≤ m−m1)

≤ 12 +

(
3 +

1

6
+

ε

1− ε

)
m. (ε ≤ 1/8)

Lemma 5.14. Given a packing of items I into m bins, when d = 1 and item rotations are

allowed, we can round up the width of some non-dense wide and big items in I to a multiple of

ε2
1/4 and round up the height of some non-dense tall and big items in I to a multiple of ε2

1/4

and repack I into
(
3 + ε

1−ε

)
m+ 1 ε-slacked bins such that each bin satisfies Property 5.7.

Proof sketch. Using techniques from the proof of Lemma 5.13, we get at most 3m ε-slacked bins

and at most m vertical boxes, where each box has total weight at most ε. Using Lemma 5.10,

we get the desired results.

We can summarize Lemmas 5.8, 5.9, 5.13 and 5.14 as follows:

Theorem 5.15. Given a packing of I into m bins, we can round up the width of some non-

dense wide and big items in I to a multiple of ε2
1/4 and round up the height of some non-dense

tall and big items in I to a multiple of ε2
1/4 and repack I into at most am+b ε-slacked bins such

that each bin satisfies either Property 5.7 or Property 5.8. Here the values of a and b depend

on the value of d and whether item rotations are allowed. See Table 5.1.

64

Table 5.1: Values of a and b for Theorem 5.15.

a b Lemma

rotations forbidden d+ 4 0 Lemma 5.8

rotations allowed d+ 3 0 Lemma 5.9

d = 1 and rotations forbidden 3 +
1

6
+

ε

1− ε
12 Lemma 5.13

d = 1 and rotations allowed 3 +
ε

1− ε
1 Lemma 5.14

5.3.3 Rounding Weights

Definition 5.11 (Weight classes). Two items i1 and i2 are said to belong to the same weight

class iff one of these conditions hold:

• i1 and i2 are big and ∀j ∈ [d], vj(i1) = vj(i2)

• i1 and i2 are non-dense and wide and ∀j ∈ [d], vj(i1)/h(i1) = vj(i2)/h(i2).

• i1 and i2 are non-dense and tall and ∀j ∈ [d], vj(i1)/w(i1) = vj(i2)/w(i2).

• i1 and i2 are non-dense and small and ∀j ∈ [d], vj(i1)/a(i1) = vj(i2)/a(i2).

• i1 and i2 are dense and light and ∀j ∈ [d], vj(i1)/vmax(i1) = vj(i2)/vmax(i2).

• i1 and i2 are dense and heavy and ∀j ∈ [d], vj(i1) = vj(i2).

Big items that have the same geometric dimensions and the same weight class are identical.

We will round the geometric dimensions of dense items to 0, so heavy items of the same weight

class would be identical.

Definition 5.12 (Slicing and fractional packing). Let I be a set of items. Î is called a slicing

of I iff Î can be obtained from I by one or more of the following operations:

• Horizontally slicing a non-dense wide item (i.e., if a wide item i is sliced into items i1

and i2, then w(i) = w(i1) = w(i2) and h(i) = h(i1) + h(i2)).

• Vertically slicing a non-dense tall item (i.e., if a tall item i is sliced into items i1 and i2,

then h(i) = h(i1) = h(i2) and w(i) = w(i1) + w(i2)).

• Slicing a non-dense small item in one or both dimensions.

• Slicing a light dense item of zero area.

A packing of Î into bins is called a fractional packing of I.

65

Wide non-dense items of the same width and of the same weight class can be used inter-

changeably while trying to get a fractional packing. Similarly, tall non-dense items of the same

height and of the same weight class are interchangeable, small non-dense items of the same

weight class are interchangeable and light dense items of zero area and the same weight class

are interchangeable.

We will now see how to round the weights of items so that they belong to a constant number

of weight classes.

5.3.3.1 Rounding Weights of Non-Dense Items

Transformation 5.13. Given an item i, ∀j ∈ [d],

• If i is big, round up vj(i) to a positive multiple of ε2
1ε/8.

• If i is wide and non-dense, round up vj(i) to a positive multiple of h(i)ε1ε/8.

• If i is tall and non-dense, round up vj(i) to a positive multiple of w(i)ε1ε/8.

• If i is small and non-dense, round up vj(i) to a positive multiple of a(i)ε/8.

Lemma 5.16. Transformation 5.13 is valid, i.e., for any item i, ∀j ∈ [d], vj(i) ≤ 1 after the

transformation.

Proof. Since ε−1
1 , ε−1 ∈ Z, the transformed weight of a big item can be at most 1.

Since ε2 ≤ (1−ε)ε2
1, the weight of a non-dense wide/tall/small item is at most ε2/ε

2
1 ≤ 1−ε

and rounding it up can only increase it by at most ε/8.

Lemma 5.17. Let a bin J be µ-slacked, for ε/8 ≤ µ ≤ ε. Then after applying Transforma-

tion 5.13, the bin will be (µ− ε/8)-slacked.

Proof. If the bin contains a single item, it will remain µ-slacked after the transformation.

Suppose the bin contains multiple items, then ∀j ∈ [d], vj(J) ≤ 1 − µ. Let there be p big

items. Let the total height of wide non-dense items be H. Let the total width of tall non-dense

items be W . Let the total area of small non-dense items be A.

The total area of big items is at least pε2
1, of wide items is at least ε1H and of tall items is

at least ε1W . Since the total area of items in J is at most 1,

ε2
1p+ ε1H + ε1W + A ≤ 1.

The total increase in vj(J) is at most

ε

8
(ε2

1p+ ε1H + ε1W + A) ≤ ε

8
.

66

Therefore, the resulting bin is (µ− ε/8)-slacked.

Observation 5.18. Since we round up weights of non-dense items in Transformation 5.13,

some items may not continue to satisfy the non-denseness property, i.e., vj(i)/a(i) may exceed

1/ε2
1 for some items i and some j ∈ [d].

However, this will not affect us much. Formally:

(a) Big items will remain non-dense, since a(i) > ε2
1 and vmax(i) ≤ 1.

(b) Small items will remain non-dense, since vmax(i)/a(i) will be rounded up to a multiple of

ε/8, and ε/8 divides 1/ε2
1.

(c) For wide items, vmax(i)/a(i) may rise to at most 1/ε2
1 + ε/8. Furthermore, vmax(i)/h(i)

will be rounded to a multiple of ε1ε/8, and ε1ε/8 divides 1/ε2
1, so vmax(i)/h(i) will continue

to be at most 1/ε2
1.

(d) For tall items, vmax(i)/a(i) may rise to at most 1/ε2
1 +ε/8. Furthermore, vmax(i)/w(i) will

be rounded to a multiple of ε1ε/8, and ε1ε/8 divides 1/ε2
1, so vmax(i)/w(i) will continue

to be at most 1/ε2
1.

Even if vmax(i)/a(i) of some non-dense items exceeds 1/ε2
1 after Transformation 5.13, we

will continue to consider them non-dense items.

Lemma 5.19. Define nbwc := (8/(ε2
1ε))

d
, nwwc := (8/(ε3

1ε))
d
, nswc := (8/(ε2

1ε))
d
. After Trans-

formation 5.13, the number of weight classes of big items is at most nbwc, of wide non-dense

items is at most nwwc, of tall non-dense items is at most nwwc and of small non-dense items is

at most nswc.

5.3.3.2 Rounding Weights of Dense Items

Transformation 5.14. For item i, if i is non-dense, do nothing. If i is dense, set w(i) and

h(i) to 0 and for each j ∈ [d], if vj(i) ≤ (ε/8d)vmax(i), then set vj(i) to 0.

Since Transformation 5.14 rounds down weights, we need to prove that we can easily undo

this transformation.

Lemma 5.20. Let J be a set of items. Let J ′ be the items obtained by applying Transforma-

tion 5.14 to J . Suppose we’re given a packing of J ′ into a bin that satisfies Property 5.7(b) and

is µ-slacked, for some µ ≥ ε/8.

67

Then there is a polynomial-time algorithm to convert the packing of J ′ into a packing of J

that satisfies Property 5.7(b), is (µ − ε/8)-slacked, and the position of non-dense items in the

packing of J is the same as the position of non-dense items in the packing of J ′.

(Analogous lemma holds for Property 5.8(b))

Proof. By Lemma 5.5, we can always pack dense items in J in polynomial time into a box of

height 1 and width δd. Since δd ≤ ε1/2, this box fits in S(R′). Therefore, Property 5.7(b) is

satisfied.

Now we will prove that the packing of J is (µ− ε/8)-slacked. There are 3 cases to consider:

Case 1: ∀j ∈ [d], vj(J
′) ≤ 1− µ:

For each j ∈ [d] and each dense item i, reverting the transformation increases vj(i) by at most

(ε/8d)vmax(i). So by Lemma 4.2, we get

vj(J) ≤ vj(J
′) +

ε

8d
vmax(J ′) ≤ vj(J

′) +
ε

8
≤ 1−

(
µ− ε

8

)
.

Therefore, J is (µ− ε/8)-slacked.

Case 2: |J ′| = 1:

Then |J | = 1, so J is µ-slacked.

Case 3: |J ′| = 2 and J ′ only has dense items and ∀i ∈ J ′, 1/2− µ ≤ vmax(i) ≤ 1/2:

The 0-value dimensions of i increase to (ε/8d)vmax(i) ≤ vmax(i), so vmax(i) remains the same

across this transformation. So J is µ-slacked.

As the first step in rounding dense items, we apply Transformation 5.14 to I.

Since ε1 ≤ 1/4d, we get ε2 ≤ (ε/8d)ε1. Hence, Transformation 5.14 forces heavy items to

be heavy in all non-zero dimensions.

Now we will use different transformations on heavy and light items.

Transformation 5.15. For a dense item i, if vj(i) > ε1, round up vj(i) to a multiple of ε1ε/8.

Lemma 5.21. Let J be a packing of items into a bin that is µ-slacked, for some µ ≥ ε/8. Let

J ′ be the packing obtained by applying Transformation 5.15 to dense items in J . Then J ′ is a

(µ− ε/8)-slacked packing.

Proof. Case 1: ∀j ∈ [d], vj(J
′) ≤ 1− µ:

For each j ∈ [d], there are less than ε−1
1 items i in J such that vj(i) > ε1. For each such

item, vj(i) increases by less than ε1ε/8. Therefore, vj(J
′) < vj(J) + ε/8. Therefore, J is

(µ− ε/8)-slacked.

68

Case 2: |J | = 1:

|J ′| = 1, so J ′ is µ-slacked.

Case 3: |J | = 2 and J only has dense items and ∀i ∈ J, 1/2− µ ≤ vmax(i) ≤ 1/2:

ε−1
1 ε−1 ∈ Z, so 1/2 is a multiple of ε1ε/8. Therefore, for each item i, vmax(i) increases to at

most 1/2. So J is µ-slacked.

Lemma 5.22. The number of distinct heavy items after Transformation 5.15 is at most

nhwc :=

(
8

ε

(
1

ε1

− 1

))d
.

Proof. This is because large vector dimensions are rounded to at most 8/ε1ε − 8/ε distinct

values.

Transformation 5.16. For a dense item i, if vmax(i) ≤ ε2, then for each j ∈ [d], round up

vj(i)/vmax(i) to a power of 1/(1 + ε/8) if vj(i) > 0.

Lemma 5.23. Let J be a packing of items into a bin that is µ-slacked, for some ε/8 ≤ µ ≤ ε.

Let J ′ be the packing obtained by applying Transformation 5.16 to dense items in J . Then J ′

is a (µ− ε/8)-slacked packing.

Proof. Case 1: ∀j ∈ [d], vj(J
′) ≤ 1− µ:

For each j ∈ [d], vj(i) increases by a factor of at most 1 + ε/8. So,

vj(J
′) ≤ vj(J)

(
1 +

ε

8

)
≤ vj(J) +

ε

8
.

Therefore, J ′ is (µ− ε/8)-slacked.

Case 2: |J | = 1:

vmax(i) ≤ 1 after the transformation, so the packing is valid and |J ′| = 1. Therefore, J ′ is

µ-slacked.

Case 3: |J | = 2 and J only has dense items and ∀i ∈ J, 1/2− µ ≤ vmax(i) ≤ 1/2:

Since ε2 ≤ 1/2− ε ≤ 1/2−µ and the transformation only applies when vmax(i) ≤ ε2, J remains

the same after the transformation.

Lemma 5.24. After Transformation 5.16, the number of distinct values of the weight vector

of light items is at most⌈
ln(8d/ε)

ln(1 + ε/8)

⌉d−1

≤
⌈

8 + ε

ε
ln

(
8d

ε

)⌉d−1

:= nlwc.

69

Proof. This is because vj(i)/vmax(i) is lower-bounded by ε/8d because of Transformation 5.14.

Transformation 5.17 (Weight-rounding). For a set I of items, weight-rounding is the process

of applying Transformations 5.13, 5.14, 5.15 and 5.16 to all items. A set I of items is said to

be weight-rounded iff I is invariant under Transformations 5.13, 5.14, 5.15 and 5.16.

5.3.4 Rounding the Other Side

So far, for each item, we have seen how to round their weights and how to round one geometric

dimension. In this subsection, we will see how to use linear grouping to round the other

geometric dimension. We will show that after this operation, the items will belong to a constant

number of homogeneous classes (see Condition C1.3 in Section 4.3.4).

5.3.4.1 Rounding Geometric Dimensions of Non-Dense Items

Transformation 5.18 (Linear grouping). Suppose we are given a packing of items I into m

bins, where I is invariant under Transformation 5.13 and each bin satisfies Property 5.7(a).

Partition the big items in I by their width and weight class. Partition the tall non-dense

items in I by their weight class. The number of partitions is constant by Property 5.7(a) and

Lemma 5.19. Let δlg := εε1/(d+ 1) (so δ−1
lg ∈ Z).

For each partition S of big items, do the following:

1. Order the items in S in non-increasing order of height.

2. Let k := bδlg|S|c + 1. Let S1 be the first k items, S2 be the next k items, and so on, till

ST , where T = d|S|/ke ≤ 1/δlg. For t ∈ [T], St is called the tth linear group of S. The

first item in St is called the leader of St, denoted as leader(St).

3. Increase the height of each item in S1 to h(leader(S1)). Unpack the items S1−{leader(S1)}.

4. For each t ∈ [T]−{1} and each j ∈ [|St|]−{1}, let i be the jth item in St and let i′ be the

jth item in St−1. Note that h(i′) ≥ h(leader(St)) ≥ h(i). Increase h(i) to h(leader(St))

and pack i where i′ was packed. Since i has the same width and weights as i′, the geometric

constraints are not violated and the total weights of the bin do not increase. The number

of distinct heights in S now becomes at most T ≤ 1/δlg.

For each partition S of tall items, do the following (see Fig. 5.4):

70

1. Order the items in S in non-increasing order of height and arrange them side-by-side on

the real line, starting from the origin.

2. Let the total width of S be W . Let St be the items in the interval [(t − 1)δlgW, tδlgW].

Slice the items if they lie on the boundaries of the interval. St is called the tth linear group

of S. The first item in St is called the leader of St, denoted as leader(St).

3. Increase the height of each item in S1 to h(leader(S1)). Then unpack S1.

4. For each t ∈ [1/δlg]−{1}, move the items in St to the space occupied by St−1 (items in St

may need to be sliced for this) and increase the height of each item i ∈ St to h(leader(St)).

This doesn’t violate geometric constraints since St and St−1 have the same total width

and this doesn’t increase the total weights of the bin because all items in S have the same

weight class. The number of distinct heights in S now becomes at most 1/δlg.

" " " "δlgW

Figure 5.4: Linear grouping tall items. Here δlg = 5.

We can extend the definition of this transformation to bins satisfying Property 5.8(a) by

swapping vertical and horizontal directions. (Partition big items by height and weight class and

71

partition wide items by weight class. Then round up the width of items in each partition using

the above techniques.)

Lemma 5.25. Let J be a set of big and tall items and let µ ∈ [0, 1) be a constant. Define

span′(i) := max
(
w(i),min

(
vmax(i)

1−µ , 1
))

. Then
∑

i∈J span′(i) ≤ 1 implies J can be packed into

a µ-slacked bin where all items touch the bottom of the bin.

Proof.
∑

i∈J w(i) ≤
∑

i∈J span′(i) ≤ 1.

∀i ∈ J, span′(i) > 0. So if span′(i) = 1 for some i ∈ J , then |J | = 1. So J can be packed

into a bin, and the bin is µ-slacked since |J | = 1.

Now let span′(i) < 1 for all i ∈ J . So vmax(i) < 1− µ and ∀j ∈ [d],

vj(J) =
∑
i∈J

vj(i) ≤ (1− µ)
∑
i∈J

vmax(i)

1− µ
≤ (1− µ)

∑
i∈J

span′(i) ≤ 1− µ.

Therefore, J can be packed into a µ-slacked bin.

Lemma 5.26. Suppose we are given a packing of items I into m bins, where I is invariant

under Transformation 5.13 and each bin satisfies Property 5.7(a). Let U be the items unpacked

by linear grouping (Transformation 5.18). Then U can be repacked into 2ε
1−εm + 1 number of

ε-slacked bins that satisfy Property 5.7.

Proof. Define span′(i) := max
(
w(i),min

(
vmax(i)

1−ε , 1
))

. Let K be the set of big and tall non-

dense items in I. For any J ⊆ K, define span′(J) :=
∑

i∈J span′(i).

Interpret each item i ∈ U as a 1D item of size span′(i). Order the items such that big items

in U appear before tall non-dense items in U . Pack them on the bottom of new bins using the

Next-Fit algorithm. By Lemma 5.25, they will require at most 2 span′(U) + 1 ε-slacked bins.

These bins satisfy Property 5.7(a) since the width of all big items in U is a multiple of ε2
1/4,

and they satisfy Property 5.7(b) since U only contains non-dense items.

In Transformation 5.18, we partitioned all big items in I by width and weight class. Let

S ⊆ I be one such partition. Given the way we created the groups S1, S2, . . ., we get |S ∩U | ≤
bδlg|S|c. Since all items in S have the same width and weights, span′(i) is the same for each

i ∈ S. Therefore,

span′(S ∩ U) = span′(i)|S ∩ U | ≤ span′(i) bδlg|S|c ≤ δlg span′(S).

In Transformation 5.18, we partitioned all tall non-dense items in I by weight class. Let

S ⊆ I be one such partition. Given the way we created the groups S1, S2, . . ., we get w(S ∩

72

U) = δlgw(S). All items in S have the same weights-to-width ratio, which is at most 1/ε2
1 by

Observation 5.18(d). Since ε2 ≤ ε2
1(1− ε), we get vj(i) ≤ 1− ε for all i ∈ S, so span′(i)/w(i) is

the same for each i ∈ S. Let that common ratio be α. Then,

span′(S ∩ U) = αw(S ∩ U) ≤ αδlgw(S) = δlg span′(S).

Summing over all partitions S, we get

span′(U) =
∑
S

span′(U ∩ S) ≤
∑
S

δlg span′(S) ≤ δlg span′(K). (5.1)

For i ∈ K, we get

span′(i)

span(i)
≤

max
(
w(i), vmax(i)

1−µ

)
max (w(i)h(i), vmax(i))

≤
1

1−µ max (w(i), vmax(i))

max (w(i)ε1, vmax(i))
≤ 1

(1− µ)ε1

.

The last inequality follows because for big and tall items, h(i) ≥ ε1.

The number of bins used to pack U is

2 span′(U) + 1 ≤ 2δlg span′(K) + 1 ≤ 2δlg

ε1(1− ε)
span(K) + 1

≤ 2(d+ 1)δlg

ε1(1− ε)
m+ 1 =

2ε

1− ε
m+ 1.

The first inequality follows from (5.1) and the third inequality follows from Lemma 4.1.

Lemma 5.27. Suppose we are given a packing of items I into m bins, where I is weight-

rounded, each bin is µ-slacked for some µ ≤ ε, and each bin satisfies either Property 5.7 or

Property 5.8. Then after applying linear grouping (Transformation 5.18) to this packing of I,

we get a packing of items Î into m′ bins, where all of the following hold:

• Î is a rounding-up of I and contains a constant number of homogeneous classes (see

Condition C1.3 in Section 4.3.4).

• Each bin in the packing of Î is µ-slacked and satisfies either Property 5.7 or Property 5.8.

• m′ ≤
(

1 +
2ε

1− ε

)
m+ 2.

Proof sketch. Follows from the definition of linear grouping and Lemma 5.26. Note that we

apply linear grouping separately to bins satisfying Property 5.7 and bins satisfying Property 5.8.

73

5.3.4.2 Coarse and Fine Partitioning

Our approach so far has been to start from an optimal packing of items and show how to modify

it to obtain an approximately-optimal structured packing of a rounded instance. However,

the rounding algorithm must round items without knowing the optimal packing. To design

such an algorithm, we first need to introduce additional concepts: coarse partitioning and fine

partitioning.

At a high level, our rounding algorithm first partitions the items by weight classes to get a

coarse partitioning. It then further partitions the coarse partitions to get a fine partitioning. It

then rounds up the geometric dimensions of items in each fine partition to make that partition

homogeneous.

We will first formally define coarse and fine partitioning. We will then restate Theorem 5.15

and Lemma 5.27 using the language of fine partitioning. Then in Section 5.4, we will see an

algorithm for computing a fine partitioning of I.

• Let B(I) be the set of big items in I.

• Let W (I) be the set of wide non-dense items in I.

• Let H(I) be the set of tall non-dense items in I.

• Let S(I) be the set of small non-dense items in I.

• Let Dl,1(I) be the set of light dense items in I that are either tall or small.

• Let Dl,2(I) be the set of light dense wide items in I.

• Let Dh,1(I) be the set of heavy dense items in I that are either tall or small.

• Let Dh,2(I) be the set of heavy dense wide items in I.

When the set of items I is clear from context, we will use B, W , H, S, Dl,1, Dl,2, Dh,1, Dh,2 to

refer to these sets.

Definition 5.19 (Coarse partitioning). Let I be a weight-rounded instance. Partition items

I by their weight classes. Then for each partition containing dense items, split that partition

into 2 partitions: one containing only tall and small items and the other containing only wide

items. The resulting partitioning is called a coarse partitioning of I.

We number the coarse partitions in B arbitrarily from 1 onwards. There will be at most

nbwc such partitions by Lemma 5.19. Denote the pth coarse partition by Bp.

Similarly, denote the pth coarse partition

• in W by Wp, where p ∈ [nwwc].

• in H by Hp, where p ∈ [nwwc].

74

• in S by Sp, where p ∈ [nswc].

• in Dl,1 by Dl,1
p , where p ∈ [nlwc].

• in Dl,2 by Dl,2
p , where p ∈ [nlwc].

• in Dh,1 by Dh,1
p , where p ∈ [nhwc].

• in Dh,2 by Dh,2
p , where p ∈ [nhwc].

Observation 5.28. There is a unique coarse partitioning of I. Furthermore, the unique coarse

partitioning can be found in O(|I|) time.

In Theorem 5.15 and Lemma 5.27, widths of wide and big items are rounded. The rounding

is different for Theorem 5.15 and Lemma 5.27: In Theorem 5.15, we round the widths of some

items to multiples of ε2
1/4 so that the bin satisfies Property 5.7(a), and in Lemma 5.27, we round

the widths of items in bins satisfying Property 5.8(a) using linear grouping. To get a rounding

algorithm, we have to guess whether the bin of a wide or big item will satisfy Property 5.7 or

Property 5.8. We will capture these guesses in the fine partitioning.

Definition 5.20 (Fine partitioning). Let Q := Z ∩
[

4
ε1

+ 1, 4
ε21

]
, R :=

{
1, 2, . . . , 1

δlg

}
, Qq :={

x ∈ R : (q − 1)
ε21
4
< x ≤ q

ε21
4

}
.

Given a coarse partitioning of a set I of items, let (Bw
p , B

h
p) be a partitioning of Bp,

(Ww
p ,W

h
p) be a partitioning of Wp and (Hw

p , H
h
q) be a partitioning of Hp.

• Bw
p is partitioned into sets {Bw

p,q,r : q ∈ Q, r ∈ R} where i ∈ Bw
p,q,r =⇒ w(i) ∈ Qq.

• Bh
p is partitioned into sets {Bh

p,q,r : q ∈ Q, r ∈ R} where i ∈ Bh
p,q,r =⇒ h(i) ∈ Qq.

• Ww
p is partitioned into sets {Ww

p,q : q ∈ Q} where i ∈ Ww
p,q =⇒ w(i) ≤ qε2

1/4.

• W h
p is partitioned into sets {W h

p,r : r ∈ R}.

• Hw
p is partitioned into sets {Hw

p,r : r ∈ R}.

• Hh
p is partitioned into sets {Hh

p,q : q ∈ Q} where i ∈ Hh
p,q =⇒ h(i) ≤ qε2

1/4.

A fine partitioning of I is any partitioning of I into sets of the form Bw
p,q,r, B

h
p,q,r, W

w
p,q,

W h
p,r, H

w
p,r, H

h
p,q, Sp, D

l,1
p , Dl,2

p , Dh,1
p , Dh,2

p .

Note that for a given set I of items, there can be multiple fine partitionings.

Given a fine partitioning, we use the ‘∗’ character in superscript or subscript to denote

the union of some partitions. For example, Bw
p,∗,r :=

⋃
q B

w
p,q,r and Ww

∗,∗ :=
⋃
p,qW

w
p,q, and

D∗,1p := Dl,1
p ∪Dh,1

p .

75

When item rotations are allowed, the fine partitioning includes information on which items

to rotate, and we can assume without loss of generality that H(I) = D∗,2 = Bh
∗,∗,∗ = W h

∗,∗ =

Hh
∗,∗ = {}.

Transformation 5.21. Given a fine partitioning of I, execute the following operations:

• ∀i ∈ Bw
∗,q,∗ ∪Ww

∗,q, increase w(i) to qε2
1/4.

• ∀i ∈ Bh
∗,q,∗ ∪Hh

∗,q, increase h(i) to qε2
1/4.

• ∀i ∈ Bw
p,q,r, increase h(i) to maxi∈Bw

p,q,r
h(i).

• ∀i ∈ Bh
p,q,r, increase w(i) to maxi∈Bh

p,q,r
w(i).

• ∀i ∈ W h
p,r, increase w(i) to maxi∈Wh

p,r
w(i).

• ∀i ∈ Hw
p,r, increase h(i) to maxi∈Hw

p,r
h(i).

The number of fine partitions is constant and after applying Transformation 5.21, each

partition is homogeneous.

Definition 5.22 (Semi-structured packing of fine partitioning). Suppose we are given a fine

partitioning of items I. A packing of items J ⊆ I into a bin is said to be ‘division-1 semi-

structured’ with respect to the fine partitioning iff J doesn’t contain items from Bh
∗,∗,∗, W

h
∗,∗,

Hh
∗,∗ and D∗,2 and J satisfies Property 5.7.

A packing of items J ⊆ I into a bin is said to be ‘division-2 semi-structured’ with respect to

the fine partitioning iff J doesn’t contain items from Bw
∗,∗,∗, W

w
∗,∗, H

w
∗,∗ and D∗,1 and J satisfies

Property 5.8.

Packing of items into bins is called semi-structured iff each bin is either division-1 semi-

structured or division-2 semi-structured.

Definition 5.23 (Balanced fine partitioning). A fine partitioning is said to be balanced iff it

satisfies all of the following conditions:

• ∀p,∀r, h(W h
p,r) = δlgh(W h

p,∗)

• ∀p,∀r, w(Hw
p,r) = δlgw(Hw

p,∗)

• ∀p,∀q, the sets {Bw
p,q,r : ∀r} can be obtained from Bw

p,q,∗ by ordering the items in Bw
p,q,∗ in

non-increasing order of height (breaking ties arbitrarily) and putting the first k items in

Bw
p,q,1, the next k items in Bw

p,q,2, and so on, where k :=
⌊
δlg|Bw

p,q,∗|
⌋

+ 1.

76

• ∀p, ∀q, the sets {Bh
p,q,r : ∀r} can be obtained from Bh

p,q,∗ by ordering the items in Bh
p,q,∗ in

non-increasing order of width (breaking ties arbitrarily) and putting the first k items in

Bh
p,q,1, the next k items in Bh

p,q,2, and so on, where k :=
⌊
δlg|Bh

p,q,∗|
⌋

+ 1.

We now restate Theorem 5.15 and Lemma 5.27 in terms of fine partitioning.

Lemma 5.29. Let I be a set of items and Î be the items obtained by weight-rounding I. Then

there exists a balanced fine partitioning of a slicing of Î such that after applying Transforma-

tion 5.21 to Î, there is a semi-structured (5ε/8)-slacked fractional packing of Î into(
1 +

2ε

1− ε

)
(a opt(I) + b) + 2

bins. Here a and b are as defined in Table 5.1 in Theorem 5.15.

Proof. By Theorem 5.15, we can round up the width of some big and wide non-dense items in

I to the nearest multiple of ε2
1/4 and round up the height of some big and tall non-dense items

in I to the nearest multiple of ε2
1/4 and then pack I into a opt(I) + b ε-slacked bins such that

each bin satisfies either Property 5.7 or Property 5.8. Let B be such a bin packing of I. By

Lemmas 5.17, 5.21 and 5.23, B gives us a (5ε/8)-slacked packing of Î.

Call the bins in B that satisfy Property 5.7 division-1 bins. Call the rest of the bins division-

2 bins. The items whose width needs to be rounded up to a multiple of ε2
1/4 are the big and

wide items in division-1 bins and the items whose height needs to be rounded up to a multiple

of ε2
1/4 are the big and tall items in division-2 bins. No other items need to have their width

or height rounded up in the packing B produced by Theorem 5.15.

Let Îw and Îh be the items of Î in division-1 bins and division-2 bins respectively.

We can compute the coarse partitioning of Î. Define

Bw
p := Bp ∩ Îw Ww

p := Wp ∩ Îw Hw
p := Hp ∩ Îw

Bh
p := Bp ∩ Îh W h

p := Wp ∩ Îh Hh
p := Hp ∩ Îh

Define

• Bw
p,q := {i ∈ Bw

p : (q − 1)ε2
1/4 < w(i) ≤ qε2

1/4}.
• Bh

p,q := {i ∈ Bh
p : (q − 1)ε2

1/4 < h(i) ≤ qε2
1/4}.

• Ww
p,q := {i ∈ Ww

p : (q − 1)ε2
1/4 < w(i) ≤ qε2

1/4}.
• Hh

p,q := {i ∈ Hh
p : (q − 1)ε2

1/4 < h(i) ≤ qε2
1/4}.

Define

77

• Bw
p,q,r as the rth linear group of Bw

p,q (see Transformation 5.18).

• Bh
p,q,r as the rth linear group of Bh

p,q.

• W h
p,r as the rth linear group of W h

p .

• Hw
p,r as the rth linear group of Hw

p .

This is how we get a fine partitioning of a slicing of Î.

As per Lemma 5.27, on applying Transformation 5.21 to Î, the resulting instance can be

sliced and packed into
(
1 + 2ε

1−ε

)
(a opt(I) + b) + 2 number of (5ε/8)-slacked bins.

5.4 Rounding Algorithm

Let I be a set of weight-rounded items. To use Lemma 5.29 to get an approximately-optimal

packing of items I, we would like to iterate over all balanced fine partitionings of slicings of

I. However, even if we don’t consider slicings, doing that will take exponential time, since for

each big, wide and tall item, we need to decide whether to designate it as a division-1 item or

a division-2 item.

We can get around this problem by iterating over a polynomial-sized set SΠ of fine partition-

ings such that each balanced fine partitioning P of a slicing of I is ‘close to’ a fine partitioning

P̂ in SΠ. We will now define what we mean by ‘close to’.

Definition 5.24 (Predecessor of a set of items). Let I1 and I2 be sets of items. Interpret each

item i ∈ I1 as a bin whose geometric dimensions are the same as that of i and whose weight

capacities are the same as the weights of i. I2 is said to be a predecessor of I1 (denoted as

I2 � I1) iff I2 can be sliced and packed into I1.

We will design a polynomial-time algorithm iterFineParts that takes as input a weight-

rounded set I of items and outputs a set SΠ of pairs such that for each balanced fine partitioning

P of a slicing of I, there exists a pair (D, P̂) ∈ SΠ such that all of these conditions hold:

• P̂ is a fine partitioning of I −D.

• After applying Transformation 5.21 to P and P̂ , each partition in P̂ is a predecessor of

the corresponding partition in P .

• D is a set of non-dense items (called discarded items) such that span(D) is small compared

to span(I).

78

5.4.1 Big Items

We will describe an algorithm, called partBig, that takes a coarse partition Bp of big items as

input, and outputs multiple fine partitionings of Bp. We can use partBig as a subroutine in

iterFineParts.

To design partBig, we will guess the cardinality of sets Bw
p,q,r and Bh

p,q,r for each q and r.

We will then guess the maximum height in Bw
p,q,r and the maximum width in Bh

p,q,r. Then for

each guess, we will solve a max-flow problem to check if items in Bp can be assigned to these

sets. The details can be inferred from Section 3.3.1 of Prädel’s thesis [66], but for the sake of

completeness, we give the full details in Sections 5.4.1.1, 5.4.1.2 and 5.4.1.3.

Formally partBig(Bp) outputs a set of pairs of the form ({}, P̂), where P̂ is supposed to

be a fine partitioning of Bp. In Section 5.4.1.2, we prove the following important results about

partBig.

Claim 5.30. partBig(Bp) generates O(n2|Q|(1+1/δlg)) ≤ O(n8(d+1)/εε31) values, where n := |Bp|,
and the running time per value is O(n2/εε1).

Lemma 5.31. Let P := {Bw
p,q,r : ∀q,∀r}∪{Bh

p,q,r : ∀q,∀r} be a balanced fine partitioning of Bp.

Then there is an output ({}, P̂) of partBig(Bp) where P̂ := {B̂w
p,q,r : ∀q,∀r} ∪ {B̂h

p,q,r : ∀q,∀r}
such that P̂ is a fine partitioning of Bp and after applying Transformation 5.21,

∀q,∀r, B̂w
p,q,r � Bw

p,q,r and B̂h
p,q,r � Bh

p,q,r.

partBig for the rotational case is similar to the non-rotational case: When rotations are

allowed, assume without loss of generality that Bh
∗,∗,∗ = {}. We will guess the cardinality and

maximum height in sets Bw
p,q,r. Then for each guess, we will solve a max-flow problem to check

if items in Bp can be assigned to these sets, possibly after rotating some items.

5.4.1.1 A Constrained Partitioning Problem

We will now describe a constrained partitioning problem and its solution using a max-flow

algorithm. We will later show how to use an algorithm for this constrained partitioning problem

to implement partBig.

In this problem, we are given as input a set I of items and a set J of targets. For simplicity

and without loss of generality, assume I = [n] and J = [m]. For the jth target, we are given a

‘desired cardinality’ bj, such that
∑m

j=1 bj = n. We are also given a set E ⊆ I × J . An item i

is said to be feasible for a target j iff (i, j) ∈ E.

79

We have to either assign each item to exactly one feasible target such that the number of

items received by the jth target is bj, or we have to declare that such an assignment is not

possible. An instance of the constrained partitioning problem is given by the tuple (I, J, b, E).

Here b is a vector of length m.

We will create a flow network G′ = (V ′, E ′) for this problem. Create a source vertex s and

a sink vertex t. Create a vertex ui for each item i. Create a vertex vj for the jth target. Add

an edge of capacity 1 from s to each ui. Add an edge of capacity bj from each vj to t. For each

(i, j) ∈ E, add an edge of capacity 1 from ui to vj. Therefore, we get

E ′ = {(s, ui, 1) : ∀i ∈ I} ∪ {(ui, vj, 1) : ∀(i, j) ∈ E} ∪ {(vj, t, bj) : ∀j ∈ J}.

See Fig. 5.5 for an example.

s t

u1

u2

u3

u4

u5

v1 2

v2
2

v3

1

Figure 5.5: Maximum flow for a network with n = 5, m = 3 and b = [2, 2, 1]. Edges are labeled
with their capacities and unlabeled edges have capacity 1. Dashed edges have flow 0. Solid
edges have flow equal to capacity.

Lemma 5.32. If we know an integral flow f of value n for the network G′, we can use f to

get a feasible solution to the constrained partitioning problem.

Proof. In such a flow, f(s, ui) = 1 for all i and f(vj, t) = bj for all j. By the conservation

constraint at ui, there will be exactly one j for each i such that f(ui, vj) = 1. Assign item i to

this j. This gives us a feasible assignment of items to targets.

Lemma 5.33. The flow network G′ has maximum flow equal to n iff there exists a feasible

assignment of items to targets.

Proof. The cut ({s}, V ′ − {s}) has value n. By the max-flow-min-cut theorem [25, Theorem

26.6], the max-flow is at most n.

80

If there is a feasible assignment π : I 7→ J , then we can set the flow f : E ′ 7→ R≥0 as

f(s, ui) = 1, f(ui, vπ(i)) = 1, f(vj, t) = bj and flow 0 for the remaining edges. This is a feasible

flow of value n, so it must be a max-flow.

Suppose there is a max-flow of value n. Since all capacities are integers, by the max-flow

integrality theorem [25, Theorem 26.10], there is an integral max-flow f of value n. Then by

Lemma 5.32, there exists a feasible assignment.

Lemmas 5.32 and 5.33 give us an algorithm for the constrained partitioning problem, which

we call constrPartSolve (see Algorithm 2).

Algorithm 2 constrPartSolve(I, J, b, E)

1: V ′ = {s, t} ∪ {ui : i ∈ I} ∪ {vj : j ∈ J}.
2: E ′ = {(s, ui, 1) : ∀i ∈ I} ∪ {(ui, vj, 1) : ∀(i, j) ∈ E} ∪ {(vj, t, bj) : ∀j ∈ J}
3: Get an integral max-flow f for G′ = (V ′, E ′) using the Ford-Fulkerson algorithm [25].
4: if f has flow-value |I| then
5: Let π(i) be the unique value of j such that f(ui, vj) = 1.
6: return π
7: else
8: return null

9: end if

Lemma 5.34. constrPartSolve([n], [m], b, E) runs in time O(n(n+m+ |E|)).

Proof. The flow network has n + m + 2 vertices and n + m + |E| edges. The Ford-Fulkerson

algorithm takes time O(n(n+m+ |E|)).

5.4.1.2 partBig Without Item Rotations

We will now describe partBig for the case where item rotations are forbidden. Let Bp be a

coarse partition of big items in I. We will guess the cardinality of sets Bw
p,q,r and Bh

p,q,r for each

q and r. We will then guess the maximum height in Bw
p,q,r and the maximum width in Bh

p,q,r for

each q and r. Then for each guess, we will check if items in Bp can be assigned to these sets.

Let

Q := Z ∩
[

4

ε1

+ 1,
4

ε2
1

]
Qq :=

{
x ∈ R : (q − 1)

ε2
1

4
< x ≤ q

ε2
1

4

}
There are |Q| sets Bw

p,q,∗ and there are |Q| sets Bh
p,q,∗. We will guess the cardinality of all

of them. The number of guesses is at most 1 + n2|Q|. Since the fine partitioning is balanced,

81

we can find |Bw
p,q,r| from |Bw

p,q,∗| and we can find |Bh
p,q,r| from |Bh

p,q,∗|. Let bwp,q,r and bhp,q,r be the

cardinalities of Bw
p,q,r and Bh

p,q,r, respectively. Let b be the vector containing all b∗p,∗,∗ values.

Next we will guess the maximum height in Bw
p,q,r and the maximum width in Bh

p,q,r. There

are a total of 2|Q|/δlg = 8(d+ 1)(1− ε1)/εε3
1 sets, and there are n items in Bp. Therefore, the

number of guesses would be at most n8(d+1)/εε31 . Let hwp,q,r be the guess of the maximum height

in Bw
p,q,r and whp,q,r be the guess of the maximum width in Bh

p,q,r.

After these guesses, we say that item i is feasible for Bw
p,q,r iff w(i) ∈ Qq and h(i) ≤ hwp,q,r,

and item i is feasible for Bh
p,q,r iff h(i) ∈ Qq and w(i) ≤ whp,q,r. Let E be the pairs of feasible

assignments of items to these sets. An item can be feasible for at most 1/δlg sets of the form

Bw
p,q,r and at most 1/δlg sets of the form Bh

p,q,r (because q is determined by width or height).

Therefore, |E| ≤ 2n/δlg.

We can find a feasible assignment of the items Bp to these sets (if one exists) using algorithm

constrPartSolve

(
Bp,

[
8(d+ 1)(1− ε1)

εε3
1

]
, b, E

)
.

The time taken to run constrPartSolve is O(n2/εε1). We summarize partBig in Algorithm 3.

Algorithm 3 partBig(Bp):

1: outputs = {}
2: for each guess b (the cardinalities of the sets) do
3: for each guess hwp,q,r and whp,q,r for each q ∈ Q and r ∈ [1/δlg] do
4: Compute E, the set of pairs of feasible assignments.

5: π = constrPartSolve

(
Bp,

[
8(d+ 1)(1− ε1)

εε3
1

]
, b, E

)
6: if π 6= null then
7: Let P̂ be the fine partitioning deduced from π.
8: outputs. add(({}, P̂))
9: end if

10: end for
11: end for
12: return outputs

Claim 5.30. partBig(Bp) generates O(n2|Q|(1+1/δlg)) ≤ O(n8(d+1)/εε31) values, where n := |Bp|,
and the running time per value is O(n2/εε1).

Lemma 5.31. Let P := {Bw
p,q,r : ∀q,∀r}∪{Bh

p,q,r : ∀q,∀r} be a balanced fine partitioning of Bp.

Then there is an output ({}, P̂) of partBig(Bp) where P̂ := {B̂w
p,q,r : ∀q,∀r} ∪ {B̂h

p,q,r : ∀q,∀r}

82

such that P̂ is a fine partitioning of Bp and after applying Transformation 5.21,

∀q,∀r, B̂w
p,q,r � Bw

p,q,r and B̂h
p,q,r � Bh

p,q,r.

Proof. In each iteration, constrPartSolve ensures that each item is assigned to exactly one

set, so P̂ is a fine partitioning of Bp. In some iteration, the guesses b, hwp,q,r and whp,q,r will

be correct. In that iteration, a feasible assignment of items to the sets exists. Therefore, the

output π of constrPartSolve will not be null.

All items in Bp have the same weights. After applying Transformation 5.21, all items in

Bw
p,q,r have width qε2

1/4 and height hwp,q,r and all items in B̂w
p,q,r have width qε2

1/4 and height at

most hwp,q,r. Therefore, B̂w
p,q,r � Bw

p,q,r. Similarly, B̂h
p,q,r � Bh

p,q,r.

5.4.1.3 partBig With Item Rotations

We will now describe partBig for the case where item rotations are allowed. Let Bp be a coarse

partition of big items in I. When rotations are allowed, assume without loss of generality that

Bh
∗,∗,∗ = {}. We will guess the cardinality and maximum height in sets Bw

p,q,r. Then for each

guess, we will check if items in Bp can be assigned to these sets, possibly after rotating some

items.

The number of guesses of |Bw
p,q,∗| is at most 1 + n|Q| Since the fine partitioning is balanced,

we can find |Bw
p,q,r| from |Bw

p,q,∗|. Let bwp,q,r be the guess of |Bw
p,q,r|. Let hwp,q,r be the guess of

the maximum height in Bw
p,q,r. There are at most (2n)|Q|/δlg = (2n)4(d+1)/εε31 possible guesses for

maximum heights.

After these guesses, we say that item i is feasible for Bw
p,q,r without rotation iff w(i) ∈

Qq and h(i) ≤ hwp,q,r and i is feasible for Bw
p,q,r after rotation iff h(i) ∈ Qq and w(i) ≤ hwp,q,r. Let

E1 be the pairs of feasible assignments of items to these sets without rotation and E2 be the

pairs of feasible assignments of items to these sets after rotation. An item can be feasible for

at most 1/δlg sets without rotation and feasible for at most 1/δlg sets after rotation. Therefore,

|E1 ∪ E2| ≤ |E1|+ |E2| ≤ 2n/δlg.

We can find a feasible assignment of the items Bp to these sets (if one exists) using algorithm

constrPartSolve

(
Bp,

[
4(d+ 1)(1− ε1)

εε3
1

]
, b, E1 ∪ E2

)
.

The time taken to run constrPartSolve is O(n2/εε1). We summarize partBig in Algorithm 4.

Claim 5.35. partBig(Bp) generates O(n|Q|(1+1/δlg)) = O(n4(d+1)/εε31) values, where n := |Bp|,
and the running time per value is O(n2/εε1).

83

Algorithm 4 partBig(Bp) (with rotations):

1: outputs = {}
2: for each guess b (the cardinalities of the sets) do
3: for each guess hwp,q,r for each q ∈ Q and r ∈ [1/δlg] do
4: Compute E1, the set of pairs of feasible assignments without rotations.
5: Compute E2, the set of pairs of feasible assignments after rotations.

6: π = constrPartSolve

(
Bp,

[
4(d+ 1)(1− ε1)

εε3
1

]
, b, E1 ∪ E2

)
7: if π 6= null then
8: Let P̂ be the fine partitioning deduced from π.
9: ∀i ∈ Bp, rotate item i in P̂ iff (i, π(i)) 6∈ E1.

10: outputs. add(({}, P̂))
11: end if
12: end for
13: end for
14: return outputs

Lemma 5.36. Let P := {Bw
p,q,r : ∀q,∀r} be a balanced fine partitioning of Bp. Then there is an

output ({}, P̂) of partBig(Bp) where P̂ := {B̂w
p,q,r : ∀q,∀r} such that P̂ is a fine partitioning of

Bp and after applying Transformation 5.21,

∀q,∀r, B̂w
p,q,r � Bw

p,q,r.

Proof. In each iteration, constrPartSolve ensures that each item is assigned to exactly one

set. Therefore, P̂ is a fine partitioning of Bp.

In some iteration, the guesses b and hwp,q,r will be correct. In that iteration, a feasible

assignment of items to the sets exists. Therefore, the output P̂ of constrPartSolve will not

be null.

All items in Bp have the same weights. After applying Transformation 5.21, all items in

Bw
p,q,r have width qε2

1/4 and height hwp,q,r and all items in B̂w
p,q,r have width qε2

1/4 and height at

most hwp,q,r. Therefore, B̂w
p,q,r � Bw

p,q,r.

5.4.2 Wide and Tall Items

We will describe an algorithm, called partWide, that takes a coarse partition Wp of wide items

as input, and outputs multiple fine partitionings of Wp. We can use partWide as a subroutine

in iterFineParts.

Let P := {Ww
p,q : ∀q} ∪ {W h

p,r : ∀r} be a balanced fine partitioning of a slicing of Wp. We

84

want partWide to find a fine partitioning P̂ := {Ŵw
p,q : ∀q} ∪ {Ŵ h

p,r : ∀r} of a large subset of

Wp such that after applying Transformation 5.21 to P and P̂ , every fine partition in P̂ is a

predecessor of the corresponding fine partition in P .

For any J ⊆ Wp, define h(J) :=
∑

i∈J h(i) and w(J) := maxi∈J w(i). We will create a

rectangular box for each fine partition and then try to pack a large subset of Wp into these

boxes. Let Q := Z ∩
[

4
ε1

+ 1, 4
ε21

]
. For each q ∈ Q, let swq be a box of width qε2

1/4 and height

h(Ww
p,q). For each r ∈ [1/δlg], let shr be a box of width w(W h

p,r) and height h(W h
p,r). Since we

don’t know W h
p,r and Ww

p,q, we will guess the value of w(W h
p,r) and we will guess very close lower

bounds on h(Ww
p,q) and h(W h

p,r). We will then try to pack most of the items from Wp into these

boxes.

Let Ŵw
p,q be the items packed into swq and let Ŵ h

p,r be the items packed into shr . Then

P̂ := {Ŵw
p,q : ∀q} ∪ {Ŵ h

p,r : ∀r} is a fine partitioning of a large subset of Wp. After applying

Transformation 5.21 to P and P̂ , each item in Ww
p,q and Ŵw

p,q has width qε2
1/4. Since h(Ŵw

p,q) ≤
h(swq) ≤ h(Ww

p,q), we get Ŵw
p,q � Ww

p,q after Transformation 5.21. We can similarly prove that

Ŵ h
p,r � W h

p,r. Therefore, P̂ is a suitable fine partitioning.

The details on how to approximately guess the size of boxes and how to pack a large subset

of items into boxes can be deduced from Section 3.3.1 of Prädel’s thesis [66]. However, for the

sake of completeness, we give the details in Sections 5.4.2.1 and 5.4.2.2.

Formally, partWide(Wp) outputs a set of pairs of the form (D, P̂), where items in D are

called discarded items and P̂ is supposed to be a fine partitioning of Wp−D. In Section 5.4.2.2,

we prove the following important results about partWide.

Lemma 5.37. For every output (D, P̂) of partWide(Wp),

h(D) ≤ (3ε2)

(
d+ 1

εε1

+
4

ε2
1

− 4

ε1

)
.

Lemma 5.38. Let P := {Ww
p,q : ∀q} ∪ {W h

p,r : ∀r} be a balanced fine partitioning of a slicing of

Wp. Then for some output (D, P̂) of partWide(Wp), P̂ is a fine partitioning of Wp − D and

after applying Transformation 5.21 to P and P̂, we get (∀q, Ŵw
p,q � Ww

p,q) and (∀r, Ŵ h
p,r � W h

p,r).

Claim 5.39. Let there be n items in Wp. Let nq := 4/ε2
1 − 4/ε1. Then partWide(Wp) outputs

at most δlgn
nq+1+1/δlg distinct values. The running time per value is O(n log n).

partWide can analogously be used for sub-partitioning coarse partitions of tall items.

When item rotations are allowed, partWide(Wp) gives us Hw
p,r instead of W h

p,r.

85

5.4.2.1 Rectangle Stacking Problem

We will describe a problem, called the rectangle stacking problem, and look at an efficient

algorithm for this problem, called greedyStack. We will later see how to use greedyStack to

implement partWide.

In the rectangle stacking problem, we are given a set S of rectangular boxes and a set

I of rectangles. For any rectangle or box i, let w(i) and h(i) be the width and height of i,

respectively. For any set T of rectangles, w(T) is defined as maxi∈T w(i), and h(T) is defined

as
∑

i∈T h(i).

Our aim is to pack a large subset of rectangles from I into the boxes S. In each box s, the

rectangles should be stacked, i.e., placed one-over-the-other. This means that if T is the set of

rectangles assigned to box s, then h(T) ≤ h(s) and w(T) ≤ w(s).

We will analyze a simple algorithm for this problem, called greedyStack. greedyStack

first sorts the rectangles and boxes in decreasing order of height. Starting from the first box, it

repeatedly packs rectangles into the box till the box overflows, i.e., the rectangles packed inside

the box have height more than the height of the box. It then discards the overflowing rectangle

and resumes from the next box. If greedyStack ever comes across a rectangle whose width is

more than the width of the current box, it returns fail. If greedyStack uses up all boxes but

some rectangles haven’t yet been packed or discarded, it returns fail. Otherwise it returns

the tuple (D,T1, T2, . . . , T|S|), where D is the set of discarded rectangles and Tj is the set of

rectangles packed into box j. See Algorithm 5 for a more precise description of greedyStack.

See Fig. 5.6 for an example output of greedyStack.

Figure 5.6: Example output of greedyStack for 9 rectangles and 3 boxes. The dark rectangles
are discarded.

Lemma 5.40. When greedyStack doesn’t return fail, it stacks all rectangles in I −D into

boxes S and |D| ≤ |S|.

86

Algorithm 5 greedyStack(I, S): Horizontally stack a large subset of rectangles from I
into rectangular boxes S. Returns a set D ⊆ I of discarded rectangles and a partitioning
T1, T2, . . . , T|S| of I −D such that the rectangles in Tj can be stacked into the jth box.

1: Sort the rectangles I in non-increasing order of width.
2: Sort the boxes S in non-increasing order of width. Let sk be the kth box.
3: j = 1
4: D = {} // set of discarded rectangles
5: Tk = {} for k ∈ [|S|]. // set of rectangles in sk
6: for i ∈ I do
7: if j > |S| then
8: return fail

9: else if w(i) > w(sj) then
10: return fail

11: else if h(i) > h(sj)− h(Tj) then
12: Add rectangle i to set D.
13: j += 1
14: else
15: Add rectangle i to Tj. // Stack rectangle i into box sj.
16: end if
17: end for
18: return (D,T1, T2, . . . , T|S|).

Proof. We discard a rectangle only when it overflows a box, and when a box overflows, we

switch to a new box. Hence, there can be at most |S| discarded rectangles. (In Algorithm 5,

we add a rectangle to D whenever we increment j, and we only do that at most |S| times.

Therefore, |D| ≤ |S|.)
If greedyStack didn’t fail, then each rectangle either got packed or discarded. Therefore, all

rectangles in I −D are packed into boxes. (The conditional statements in Algorithm 5 ensure

that when greedyStack tries to stack a rectangle in line 15 of Algorithm 5, it can actually do

so. Since greedyStack doesn’t return fail, every rectangle is either stacked into a box or is

added to D.)

Lemma 5.41. If a set I of rectangles can be horizontally sliced and stacked into boxes S, then

greedyStack(I, S) does not return fail.

Proof. We will prove this by contradiction. Let T :=
⋃
k Tk. Let dk be the kth discarded

rectangle (i.e., dk is the rectangle that was added to D when the value of j was equal to k in

Algorithm 5). Then h(dk) + h(Tk) > h(sk).

Suppose greedyStack(I, S) fails because some rectangles were left in the end (i.e., at line

87

8 in Algorithm 5). Then

h(T) + h(D) =

|S|∑
k=1

(h(Tk) + h(dk)) >

|S|∑
k=1

h(sk) ≥ h(I),

which is a contradiction.

Suppose greedyStack(I, S) fails because some rectangle i was wider than box j, (i.e., at

line 10 in Algorithm 5 because w(i) > w(sj)). Then there cannot be any rectangle in the jth

box, because rectangles are sorted in non-increasing order of width and if a rectangle can fit in

the jth box, all subsequent rectangles can fit too.

Let X := {i′ ∈ I : w(i′) > w(i)} ∪ {i}. In a fractional stacking of I into S, the rectangles

in X are placed in the first j − 1 bins. This is because i′ ∈ X =⇒ w(i′) ≥ w(i) > w(sj).

Therefore, h(X) ≤
∑j−1

k=1 h(sk). On the other hand,

h(X − {i}) = h(T) + h(D) =

j−1∑
k=1

(h(Tk) + h(dk)) >

j−1∑
k=1

h(sk).

This is a contradiction. Therefore, greedyStack(I, S) cannot fail.

Claim 5.42. The running time of greedyStack(I, S) is O(|I| log |I|+ |S| log |S|).

5.4.2.2 Partitioning Wide Items

Let Wp be a coarse partition of wide items in I. Let P := {Ww
p,q : ∀q} ∪ {W h

p,r : ∀r} be a

balanced fine partitioning of a slicing of Wp. Our aim is to find a fine partitioning P̂ := {Ŵw
p,q :

∀q} ∪ {Ŵ h
p,r : ∀r} of a large subset of Wp such that after applying Transformation 5.21 to P

and P̂ , every fine partition in P̂ is a predecessor of the corresponding fine partition in P .

For any J ⊆ Wp, define h(J) :=
∑

i∈J h(i) and w(J) := maxi∈J w(i). We will create a

rectangular box for each fine partition and then try to pack a large subset of Wp into these

boxes. Let Q := Z ∩
[

4
ε1

+ 1, 4
ε21

]
. For each q ∈ Q, let swq be a box of width qε2

1/4 and height

h(Ww
p,q). For each r ∈ [1/δlg], let shr be a box of width w(W h

p,r) and height h(W h
p,r). Since Wp

can be sliced and packed into these boxes, we can use greedyStack to pack |Wp| −O(1) items

into these boxes (see Lemmas 5.40 and 5.41). Let Ŵw
p,q be the items packed into swq and let

Ŵ h
p,r be the items packed into shr . Then P̂ := {Ŵw

p,q : ∀q} ∪ {Ŵ h
p,r : ∀r} is a fine partitioning of

a large subset of Wp.

After applying Transformation 5.21 to P and P̂ , each item in Ww
p,q and Ŵw

p,q has width

qε2
1/4. Since h(Ŵw

p,q) ≤ h(swq) = h(Ww
p,q), we get Ŵw

p,q � Ww
p,q after Transformation 5.21. We

88

can similarly prove that Ŵ h
p,r � W h

p,r. Therefore, P̂ is a suitable fine partitioning.

Unfortunately, the above algorithm cannot be used, because we don’t know the values of

h(Ww
p,q), h(W h

p,r) and w(W h
p,r), so the boxes cannot be created. We can work around this

issue by guessing these values. We will guess w(W h
p,r) exactly and guess h(Ww

p,q) and h(W h
p,q)

approximately. Guessing a value x approximately means guessing the smallest multiple of ε2

that is greater than or equal to x. Since our guess h(swq) could be up to ε2 more than h(Ww
p,q) and

our guess h(shr) could be up to ε2 more than h(W h
p,r), we will also discard items that intersect

the top ε2-sized section of each box. For each guess, we will get a fine partitioning P̂ . One of our

guesses will be correct, i.e., for some value of P̂ , we will get (∀q, Ŵw
p,q � Ww

p,q) and (∀r, Ŵ h
p,r �

W h
p,r). We call this algorithm partWide, which is described more precisely as Algorithm 6.

Lemma 5.37. For every output (D, P̂) of partWide(Wp),

h(D) ≤ (3ε2)

(
d+ 1

εε1

+
4

ε2
1

− 4

ε1

)
.

Proof. Let D = D1 ∪D2, where D1 and D2 are as defined in Algorithm 6.

|Sw ∪ Sh| ≤ k + (qmax − qmin + 1) =
d+ 1

εε1

+
4

ε2
1

− 4

ε1

.

h(D1) ≤ ε2|D1| ≤ ε2|Sw ∪ Sh|. (by Lemma 5.40)

h(D2) ≤ (2ε2)|Sw ∪ Sh|.

Therefore, h(D1 ∪D2) ≤ (3ε2)|Sw ∪ Sh|.

Lemma 5.38. Let P := {Ww
p,q : ∀q} ∪ {W h

p,r : ∀r} be a balanced fine partitioning of a slicing of

Wp. Then for some output (D, P̂) of partWide(Wp), P̂ is a fine partitioning of Wp − D and

after applying Transformation 5.21 to P and P̂, we get (∀q, Ŵw
p,q � Ww

p,q) and (∀r, Ŵ h
p,r � W h

p,r).

Proof. All items, except the ones in D, are placed into some fine partition. Therefore, P̂ is a

fine partitioning of Wp −D.

The first loop guesses w(W h
p,r) for each r. Some iteration of the loop will guess correctly.

The second loop guesses an integer i0 such that h(W h
p,∗) ∈ [kε2(i0 − 1), kε2i0] and for each

q ∈ [qmin, qmax] guesses iq such that h(Ww
p,q) ∈ [(iq − 1)ε2, iqε2]. Some iteration of the loop will

guess correctly.

Since P is balanced, h(W h
p,r) = δlgh(W h

p,∗). Therefore, for the correct guess of i0, h(W h
p,r) ∈

[ε2(i0 − 1), ε2i0].

89

Algorithm 6 partWide(Wp): Returns a set of pairs of the form (D, P̂), where P̂ is a fine-
partitioning of Wp −D.

1: outputs = {}
2: qmin = 4/ε1 + 1, qmax = 4/ε2

1.
3: k = 1/δlg

4: for [w1, w2, . . . , wk] ∈ {w(i) : i ∈ Wp}k do

5: for [i0, iqmin
, iqmin+1, . . . , iqmax] ∈

[⌈
h(Wp)

kε2

⌉]
×
[⌈
h(Wp)

ε2

⌉]qmax−qmin+1

do

6: // Create boxes and pack items in them.
7: For q ∈ [qmin, qmax], let swq be a box of width qε2

1/4 and height ε2iq.
8: Let Sw = {swq : q ∈ [qmin, qmax]}.
9: For r ∈ [k], let shr be a box of width wr and height ε2i0.

10: Let Sh = {shr : r ∈ [k]}.
11: (D1, T

w
qmin

, . . . , Twqmax
, T h1 , . . . , T

h
k) = greedyStack(Wp, S

w ∪ Sh)
12: if greedyStack failed then
13: continue

14: end if
15: // Clear a strip of height ε2 in each box.
16: D2 = {}
17: for q ∈ [qmin, qmax] do
18: while h(Twq) > h(swq)− ε2 and |Twq | > 0 do
19: Move an item from Twq to D2.
20: end while
21: end for
22: for r ∈ [k] do
23: while h(T hr) > h(shr)− ε2 and |T hr | > 0 do
24: Move an item from T hr to D2.
25: end while
26: end for
27: For all q ∈ [qmin, qmax], use Twq as the fine partition Ŵw

p,q.

28: For all r ∈ [k], use T hr as the fine partition Ŵ h
p,r (or Ĥw

p,r if rotations are allowed).

29: outputs. add(D1 ∪D2, {Ŵw
p,q : ∀q} ∪ {Ŵ h

p,r : ∀r}))
30: end for
31: end for
32: return outputs

All items in Ww
p,q can fit in swq because

h(swq) = iqε2 ≥ h(Ww
p,q) and w(swq) = q

ε2
1

4
≥ max

i∈Ww
p,q

w(i).

90

All items in W h
p,r can fit in shr because

h(shr) = i0ε2 ≥ h(W h
p,q) and w(shr) = wr = max

i∈Wh
p,r

w(i).

Therefore, a slicing of Wp can fit in the boxes Sw ∪Sh. So, for the correct guesses, Lemma 5.41

implies that greedyStack(Wp, S
w ∪ Sh) doesn’t fail,

Since we cleared a strip of height ε2 from each box, ∀q, h(Twq) ≤ (iq − 1)ε2 ≤ h(Ww
p,q).

Wide items can be sliced horizontally, all items in Wp have the same weight class and all items

in Twq and Ww
p,q will have width qε2

1/4 after Transformation 5.21. Therefore, after the above

transformations, Ŵw
p,q � Ww

p,q.

Since we cleared a strip of height ε2 from each box, ∀r, h(T hr) ≤ (i0 − 1)ε2 ≤ h(W h
p,r). All

items in T hr and W h
p,r will have width wr after Transformation 5.21. Therefore, after the above

transformations, Ŵ h
p,r � W h

p,r.

Claim 5.39. Let there be n items in Wp. Let nq := 4/ε2
1 − 4/ε1. Then partWide(Wp) outputs

at most δlgn
nq+1+1/δlg distinct values. The running time per value is O(n log n).

5.4.3 Rounding Algorithm

We define an algorithm, called iterFineParts, that takes as input a set I of weight-rounded

items and returns a set of pairs of the form (D, P̂), where D ⊆ I is the set of items to discard

and P̂ is a fine partitioning of I −D.

iterFineParts works by first computing a coarse partitioning of the items. Then for each

coarse partition Bp of big items, it calls partBig(Bp), for each coarse partition Wp of wide items,

it calls partWide(Wp), and for each coarse partition Hp of tall items, it calls partWide(Hp). It

then iterates over all combinations of the outputs of partBig and partWide and outputs a pair

(D, P̂) for each combination. See Algorithm 7 for a more precise description.

We next use iterFineParts to design the algorithm round. round takes a set I of items. It

removes medium items from I using removeMedium. It computes a weight-rounding (Transfor-

mation 5.17) of I−Imed to get Î. Then for each output (D, P̂) of iterFineParts(Î), it computes

Ĩ by applying Transformation 5.21 to Î −D with respect to P̂ and outputs (Ĩ , D ∪ Imed). See

Algorithm 8 for a more precise description of round.

Assume that in an output (Ĩ , D) of round(I, ε), the knowledge of the associated fine parti-

tioning is implicitly present in Ĩ.

91

Algorithm 7 iterFineParts(I): I is a set of weight-rounded items. Returns a set of pairs of

the form (D, P̂), where D is a subset of items to discard and P̂ is a fine partitioning of I −D.

1: outputs = {}
2: {Bp : ∀p} ∪ {Wp : ∀p} ∪ {Hp : ∀p} ∪ (small and dense partitions) = coarse-partition(I)

3: iters =

nbwc∏
p=1

partBig(Bp)×
nwwc∏
p=1

partWide(Wp)×
nwwc∏
p=1

partWide(Hp)

4: for L ∈ iters do // L is a list of pairs
5: P̂ = (small and dense partitions)
6: D = {}
7: for (Dj, P̂j) ∈ L do
8: D = D ∪Dj

9: Include partitions of P̂j into P̂ .
10: end for
11: outputs. add((D, P̂))
12: end for
13: return outputs

Lemma 5.43 (Polynomial-time). The total number of outputs of round(I) is O(nγ), where

there are n items in I and

γ := nbwc
8(d+ 1)

εε3
1

+ 2nwwc

(
4

ε2
1

+
d+ 1

εε1

)
.

The time for each output is at most O(n2/εε1).

Proof. Follows from Claims 5.30 and 5.39.

Lemma 5.44 (Low discard). Let (Ĩ , D′) be an output of round(I, ε). Then

span(D′) ≤ ε span(I) +
6ε2nwwc

ε2
1

(
d+ 1

εε1

+
4

ε2
1

− 4

ε1

)
≤ ε span(I) + 6(d+ 5)

ε2nwwc

ε4
1

.

Proof. Let D′ = D ∪ Imed. By Lemma 5.1, span(Imed) ≤ ε span(I). Let D1 be the wide items

in D and D2 be the tall items in D. Since all items in D come from partWide, D only contains

non-dense items and D = D1 ∪D2. Let

λ := nwwc(3ε2)

(
d+ 1

εε1

+
4

ε2
1

− 4

ε1

)
.

92

Algorithm 8 round(I, ε): Returns a set of pairs of the form (Ĩ , D′), where D′ is a subset of

items to discard and Ĩ is a rounding of I −D′.
1: outputs = {}

2: δ0 := min

(
1

4d+ 1
,
2ε

3

)
3: (Imed, ε2, ε1) = removeMedium(I, ε, f, δ0) // f will be described later
4: // Assume ε and ε1 are passed as parameters to all subroutines and transformations.
5: Let Î be the weight-rounding (Transformation 5.17) of I − Imed.

6: for (D, P̂) ∈ iterFineParts(Î) do

7: Let Ĩ be the instance obtained by applying Transformation 5.21 to Î −D based on the
fine partitioning P̂ .

8: outputs. add((Ĩ , D ∪ Imed)).
9: end for

10: return outputs

By Lemma 5.37, h(D1) ≤ λ and w(D2) ≤ λ.

span(D1) =
∑
i∈D1

max(a(i), vmax(i)) ≤
∑
i∈D1

max

(
h(i),

h(i)

ε2
1

)
≤
∑
i∈D1

h(i)

ε2
1

≤ λ

ε2
1

.

Similarly, span(D2) ≤ λ/ε2
1.

Lemma 5.45 (Homogeneity). Let (Ĩ , D) be an output of round(I, ε). Then the number of types

of items in Ĩ is at most a constant:

8(d+ 1)nbwc

εε3
1

+ 2nwwc

(
d+ 1

εε1

+
4

ε2
1

)
+ nswc + 2(nlwc + nhwc).

Proof. After applying Transformation 5.21 to Î −D, all non-dense items in each fine partition

have:

• the same weight class.

• the same width, if the fine partition contains only wide or big items.

• the same height, if the fine partition contains only tall or big items.

From the definition of fine partitioning, the number of different partitions of non-dense items

is at most

8nbwc

ε2
1δlg

+ 2nwwc

(
1

δlg

+
4

ε2
1

)
+ nswc.

93

In each division, there are nhwc distinct heavy dense items and nlwc weight classes in light dense

items by Lemmas 5.22 and 5.24.

Table 5.2: Upper bound on the number of different types of items

no. of types
Division-1 big items (Bw

∗,∗,∗) 4(d+ 1)nbwc/εε
3
1

Division-2 big items (Bh
∗,∗,∗) 4(d+ 1)nbwc/εε

3
1

Division-1 wide non-dense items (Ww
∗,∗) 4nwwc/ε

2
1

Division-2 wide non-dense items (W h
∗,∗) (d+ 1)nwwc/εε1

Division-1 tall non-dense items (Hw
∗,∗) (d+ 1)nwwc/εε1

Division-2 tall non-dense items (Hh
∗,∗) 4nwwc/ε

2
1

Small non-dense items (S∗) nswc

Division-1 heavy dense items (Dh,1) nhwc

Division-2 heavy dense items (Dh,2) nhwc

Division-1 light dense items (Dl,1) nlwc

Division-2 light dense items (Dl,2) nlwc

Lemma 5.46. Let P be a balanced fine partitioning of a slicing of I. Then there is some output

(D, P̂) of iterFineParts(I) (Algorithm 7) such that P̂ is a fine partitioning of I−D and after

Transformation 5.21, each partition in P̂ is a predecessor of the corresponding partition in P.

Proof. Follows from Lemmas 5.31 and 5.38

Theorem 5.47. There is an output (Ĩ , D ∪ Imed) of round(I, ε) such that Ĩ can be fractionally

packed into at most
(
1 + 2ε

1−ε

)
(a opt(I)+b)+2 semi-structured (5ε/8)-slacked bins. Here values

of a and b are as per Table 5.1.

Proof. Let m :=
(
1 + 2ε

1−ε

)
(a opt(I)+b)+2. Lemma 5.29 guarantees the existence of a balanced

fine partitioning P of a slicing of Î such that after applying Transformation 5.21, there is a

(5ε/8)-slacked fractional packing of Î into m bins that is semi-structured relative to P .

By Lemma 5.46, we get that there is a fine partitioning P̂ of Î −D such that after applying

Transformation 5.21, each partition of P̂ is a predecessor of the corresponding partition of

P . Therefore, we can pack each item in Ĩ into the place of some items in the packing of

Î −D. Therefore, there is a (5ε/8)-slacked fractional packing of Ĩ into at most m bins that is

semi-structured relative to P̂ .

94

5.5 Existence of Compartmental Packing

Definition 5.25 (Compartmental packing). Consider a semi-structured packing of items I into

m bins, of which m1 bins are division-1 bins and m−m1 are division-2 bins.

A compartment is defined to be a rectangular region in a bin such that every item either

lies completely inside the region or completely outside the region. Furthermore, a compartment

doesn’t contain big items, and a compartment doesn’t contain both wide and tall items.

In a division-1 bin, a compartment is called a dense compartment iff it is the region S(R′)

and it contains a dense item (recall that S(R′) := [1 − ε1/2, 1] × [0, 1]). In a division-1 bin, a

compartment is called a sparse compartment iff it satisfies all of these properties:

• The compartment doesn’t contain dense items.

• The compartment contains at least 1 wide item or 1 tall item. If it contains wide items, it

is called a wide compartment, and if it contains tall items, it is called a tall compartment.

• The x-coordinate of the left edge of the compartment is a multiple of ε2
1/4.

• The compartment’s width is a multiple of ε2
1/4, and if the compartment is tall, its width

is exactly ε2
1/4.

• The compartment’s height is rounded, i.e., if the compartment is wide, its height is a

multiple of a constant εcont := εε5
1/12 (note that ε−1

cont ∈ Z), and if the compartment

is tall, its height is a sum of the heights of at most 1/ε1 − 1 of the items inside the

compartment.

A division-1 bin is said to be compartmental iff we can create non-overlapping dense and

sparse compartments in the bin such that all wide items, tall items and dense items are packed

into compartments.

We can analogously define compartmental packing for division-2 bins by swapping the coor-

dinate axes. A semi-structured bin packing of items is called compartmental if each bin in the

packing is compartmental.

Lemma 5.48. Let there be a rectangular bin B := [0, 1]2. Let there be a set I of rectangles

packed inside the bin. Then there is a polynomial-time algorithm which can decompose the

empty space in the bin (B − I) into at most 3|I|+ 1 rectangles by making horizontal cuts only.

Proof. Extend the top and bottom edges of each rectangle leftwards and rightwards till they

hit another rectangle or the bin boundary. This partitions the empty space into rectangles R.

See Fig. 5.7 for an example.

For each rectangle i ∈ I, the top edge of i is the bottom edge of a rectangle in R, the bottom

edge of i is the bottom edge of two rectangles in R. Apart from possibly the rectangle in R

95

1

2 3

4
5

6
7

8

9

Figure 5.7: Using horizontal cuts to partition the empty space around the 3 rectangles into 9
rectangular regions.

whose bottom edge is at the bottom of the bin, the bottom edge of every rectangle in R is

either the bottom or top edge of a rectangle in I. Therefore, |R| ≤ 3|I|+ 1.

Lemma 5.49. If there exists a semi-structured µ-slacked packing of items I into m bins, then

there exists a compartmental µ-slacked fractional packing of I into (1 + 2ε/(1− µ))m+ 2 bins.

Proof. Consider a division-1 bin. By Property 5.7(b), we get that all dense items (if any) lie in

dense compartments. Next, using the method of Section 3.2.3 in [66] (Rounding the Other Side

> Containers for the wide and long rectangles), we can slice items and create non-overlapping

compartments in the bin without moving any item such that all tall and wide items are packed

into compartments. Their method works by first constructing tall compartments and then using

the algorithm of Lemma 5.48 to partition the space outside tall compartments and big items

into wide compartments. The resulting packing is compartmental, except that compartments’

heights are not rounded. We will now show how to round the heights of compartments.

Let there be nt tall compartments in the bin and nbig big items in the bin. Define

ntcont :=
4

ε2
1

(
1

ε1

− 1

)
≤ 4

ε3
1

nwcont :=
12

ε2
1

(
1

ε1

− 1

)
+ 1 ≤ 12

ε3
1

In the bin, there are 4/ε2
1 slots of width ε2

1/4 and height 1. Consider one such slot. Let there

be k big items that intersect that slot (k can be 0). The height of each big item and each

sparse tall compartment is more than ε1. Therefore, the number of tall sparse compartments

in that slot is at most 1/ε1 − 1 − k. Each big item spans at least 4/ε1 + 1 slots, and reduces

by 1 the number of tall compartments in the slots it spans. Hence, the number of tall sparse

96

compartments is at most

nt ≤
4

ε2
1

(
1

ε1

− 1

)
− nbig

(
4

ε1

+ 1

)
≤ 4

ε2
1

(
1

ε1

− 1

)
− nbig = ntcont − nbig.

By Lemma 5.48, the number of wide compartments is at most 3(nt + nbig) + 1 ≤ nwcont.

Since small items can be sliced in both dimensions, we can treat them like a liquid. For each

tall sparse compartment C in the bin, let the tall items in C sink down in this liquid. Then

shift down the top edge of C to the top edge of the topmost tall item in C (so some small items

will no longer be inside C). Then the height of C will be the sum of the heights of at most

1/ε1 − 1 tall items inside C (since tall items have height > ε1 and C has height at most 1).

For each wide compartment C in the bin, unpack a horizontal slice of height h(C) mod εcont

from C (this may require slicing items) and move down the top edge of C by h(C) mod εcont.

This rounds down h(C) to a multiple of εcont.

Apply the above transformation to all division-1 bins and an analogous transformation to

all division-2 bins. This gives us a µ-slacked compartmental packing into m bins. However, we

unpacked some items from wide containers in division-1 bins and tall containers in division-2

bins. We need to repack these items.

Let there be m1 division-1 bins. We removed a slice of height less than εcont from each wide

compartment in division-1 bins. Let S be the set of all such slices from division-1 bins. There

are at most nwcont wide compartments, so h(S) ≤ εcontnwcontm1. For each slice i ∈ S, define

span′(i) := max

(
h(i),min

(
vmax(i)

1− µ
, 1

))
.

For each slice i ∈ S,

span′(i) ≤ max

(
h(i),

vmax(i)

1− µ

)
≤ max

(
h(i),

h(i)

ε2
1(1− µ)

)
≤ h(i)

ε2
1(1− µ)

.

Therefore,

∑
i∈S

span′(i) ≤ h(S)

ε2
1(1− µ)

≤ εcontnwcont

ε2
1(1− µ)

m1.

Interpret each slice i ∈ S as a 1D item of size span′(i) and pack the slices one-over-the-other

touching the left edge of bins using Next-Fit. By Lemma 5.25, we can pack them all into

1 + 2
∑

i∈S span′(i) bins that are µ-slacked. Since εcont = εε5
1/12 ≤ εε2

1/nwcont, the number of

97

bins used to pack S is at most

2εcontnwcont

(1− µ)ε2
1

m1 + 1 ≤ 2ε

1− µ
m1 + 1.

These bins are division-1 compartmental; they have just one wide compartment of width 1 and

height 1.

Similarly, we can pack unpacked items from division-2 bins into at most 2ε
1−µ(m −m1) + 1

division-2 compartmental µ-slacked bins.

Theorem 5.50. There is an output (Ĩ , D) of round(I, ε) such that Ĩ has a compartmental

(5ε/8)-slacked fractional packing into at most (1 + 2ε/(1− ε))2 (a opt(I) + b) + 4/(1− ε) bins.

Here a and b are as per Table 5.1.

Proof. By Theorem 5.47, there is an output (Ĩ , D) of round(I, ε) such that Ĩ can be packed

into m := (1 + 2ε/(1− ε)) (a opt(I) + b) + 2 semi-structured (5ε/8)-slacked bins.

By Lemma 5.49, the number of compartmental (5ε/8)-slacked bins needed to fractionally

pack Ĩ is at most (1 + 2ε/(1− ε))m+ 2 ≤ (1 + 2ε/(1− ε))2 (a opt(I) + b) + 4/(1− ε).

Table 5.3: Upper bound on the number of distinct widths and heights for compartments of
different types

Compartment type no. of widths no. of heights

Division-1 wide
4

ε2
1

12

εε5
1

Division-1 tall 1

(
(d+ 1)nwwc

εε1

+ 1

)1/ε1−1

Division-2 wide

(
(d+ 1)nwwc

εε1

+ 1

)1/ε1−1

1

Division-2 tall
12

εε5
1

4

ε2
1

Since division-1 tall items have (d + 1)nwwc/εε1 possible heights, the number of possible

heights of division-1 tall sparse compartments is ((d+ 1)nwwc/εε1 + 1)1/ε1−1. This is a huge

number of possible heights, and it is possible to reduce it by partitioning tall compartments

into weight classes and using linear grouping. We will not perform this improvement here.

98

5.6 Packing Algorithm

Let I be a subset of the rounded items. Formally, let (Ĩ ′, D) ∈ round(I ′, ε) and I ⊆ Ĩ ′.

We will first present a polynomial-time algorithm fpack(I,m) that takes as input I and an

integer m and either outputs a fractional packing of I into m compartmental µ-slacked bins

(where µ ≤ ε) or claims that fractionally packing I into m compartmental µ-slacked bins is

impossible.

We can use fpack(I,m) to find the optimal compartmental µ-slacked fractional packing of I

by using binary search on m. With slight abuse of notation, let fpack(I) denote this algorithm.

Then, we will present an algorithm that finds a µ-slacked (non-fractional) packing of I by

using fpack(I) as a subroutine. Note that we’re interested in getting a non-fractional µ-slacked

packing of I, but that packing need not be compartmental.

5.6.1 Guessing Bin Configurations

A µ-slacked bin J can have one of 4 possible slack types:

1. Normal: ∀k ∈ [d], vk(J) ≤ 1− µ.

2. Big single: |J | = 1 and J contains a big item and ∀k ∈ [d], vk(J) ∈ (1− µ, 1].

3. Dense single: |J | = 1 and J contains a dense item and ∀k ∈ [d], vk(J) ∈ (1− µ, 1].

4. Dense double: |J | = 2 and J contains two dense items and ∀k ∈ [d], vk(J) ∈ (1 − µ, 1]

and ∀i ∈ J, vmax(i) ≤ 1/2.

Note that these slack types are disjoint, i.e., a bin cannot have more than one slack types.

A configuration of a bin is defined to be all of this information: (i) The division type, (ii)

The slack type, (iii) Whether the bin has a dense compartment, (iv) A packing of big items,

heavy items and compartments into the bin.

We will now enumerate all possible configurations that a bin can have.

For a division-1 bin, there are 4(d + 1)nbwc/εε
3
1 different types of big items, nhwc different

types of heavy items, 48/εε7
1 different types of wide compartments and ((d+1)nwwc/εε1+1)1/ε1−1

different types of tall compartments. A bin can pack less than 1/ε2
1 big items, less than 1/ε1

heavy items at most nwcont wide compartments and at most ntcont tall compartments. Therefore,

by iterating over

n′nconfs :=

(
4(d+ 1)nbwc

εε3
1

+ 1

)1/ε21−1(
48

εε7
1

+ 1

)nwcont
((

(d+ 1)nwwc

εε1

+ 1

)1/ε1−1

+ 1

)ntcont

99

values (a large constant), we can guess the set of big items, heavy items and compartments in

a division-1 bin of normal slack type that does not have a dense compartment. For a bin that

has a dense compartment, the number configurations to consider is n′nconfs(nhwc + 1)1/ε1−1.

For a bin of big-single slack type, there are at most 4(d + 1)nbwc/εε
3
1 configurations. For a

bin of dense-single slack type, there are at most nhwc configurations. For a bin of dense-double

slack type, there are at most n2
hwc configurations. Double the number of configurations to also

account for division-2 items. Therefore, the total number of configurations is at most

nnconfs := 2

(
n′nconfs

(
1 + (nhwc + 1)1/ε1−1

)
+

4(d+ 1)nbwc

εε3
1

+ nhwc + n2
hwc

)
.

There can be at most nwcont + ntcont items and compartments in a bin (see the proof of

Lemma 5.49). Since the x-coordinate of these items and compartments is a multiple of ε2
1/4,

we can use brute-force to check if they can be packed into a bin. For each item, guess its

x-coordinate and its ‘layer’ number. This will take time O
(

(4(nwcont + ntcont)/ε
2
1)
nwcont+ntcont

)
.

For m bins, we can have at most
(
m+nnconfs−1
nnconfs−1

)
∈ O(mnnconfs−1) possible combinations of

configurations. Now for each combination, we will check if the remaining items can fit into the

bins.

5.6.2 Fractionally Packing Wide, Tall, Small and Light items

We will use a linear program to fractionally pack wide, tall, small and light items. Note that

bins of non-normal slack type can only have big and heavy items, which have already been

packed, so we won’t consider them any further.

Definition 5.26 (Length and Breadth). For an item i, let the length `(i) be the longer geometric

dimension and the breadth b(i) be the shorter geometric dimension (so for a wide item i, `(i) :=

w(i) and b(i) := h(i), and for a tall item i, `(i) := h(i) and b(i) := w(i)). Similarly define `

and b for wide and tall compartments.

In any packing of items in a wide compartment, move a line horizontally upwards, as if

scanning the compartment. The line, at each point, will intersect some wide items. The

set of such wide items is called a 1D configuration. See Fig. 5.8 for an example. Similarly

define 1D configuration for items in tall compartments. Any fractional packing of items inside

a compartment can be described by mentioning the breadths of all 1D configurations in the

compartment. The number of types of items is a constant and there can be at most 1/ε1 − 1

items in a 1D configuration. Therefore, the number of 1D configurations is a constant.

100

1
2
2

3

3
4 4 4

1
2
2

3

3
4 4 4

{1, 2}

{1, 3}
{3}
{3, 4, 4, 4}
{3}
{}

Figure 5.8: A compartment with wide items from 4 different fine partitions. This compartment
has 5 distinct 1D configurations.

• Let M1 and M2 be the set of division-1 bins and division-2 bins respectively of normal

slack type. Let M := M1 ∪ M2. Let MD ⊆ M be the set of bins that have a dense

compartment.

• Let the set of wide and tall non-dense item types be L. For t ∈ L, let b(t) be the sum of

breadths of items of type t and each item has length `(t).

• Let Ji be the set of compartments in bin i.

• For compartment j, let Cj be the set of feasible 1D configurations and let b(j) be the

breadth of the compartment.

• Let `C be the sum of lengths of items in 1D configuration C.

• Let nt,C be the number of items of type t in 1D configuration C.

• Let αk,C be the weight-to-breadth ratio of 1D configuration C in the kth vector dimension.

• Let βk,p be the weight-to-area ratio of weight class p for small non-dense items.

• Let γk,p := vk(i)/vmax(i) for a light dense item i in weight class p.

• Let Bi be the set of big items in bin i.

• Let Hi be the set of heavy items in bin i.

• Let Di be 1 for bin i if it contains a dense compartment and 0 otherwise.

We will fractionally pack items using a linear program that only has constraints and has no

objective function. We call it the fractional packing feasibility program FP. It has variables x,

y and z, where

• xj,C is the breadth of 1D configuration C in compartment j.

• yi,p is the area of small non-dense items of weight class p in bin i.

• zi,p is the vmax of light dense items of weight class p in bin i. When i 6∈ MD, zi,p is the

constant 0 instead of being a variable.

Feasibility program FP:

101

∑
C∈Cj

xj,C = b(j) ∀i ∈M, ∀j ∈ Ji

(compartment breadth constraint)

∑
j∈Ji

∑
C∈Cj

`Cxj,C +
nswc∑
p=1

yi,p ≤ 1− ε1

2
Di − a(Bi)

∀i ∈M
(bin area constraint)

∑
j∈Ji

∑
C∈Cj

αk,Cxj,C +
nwwc∑
p=1

βk,pyi,p +

nlwc∑
p=1

γk,pzi,p ≤ 1− µ− vk(Bi)− vk(Hi)

∀i ∈M, ∀k ∈ [d]

(bin weight constraint)

∑
i∈M

∑
j∈Ji

∑
C∈Cj
C3t

nt,Cxj,C = b(t) ∀t ∈ L

(conservation of wide and tall items)

∑
i∈M

yi,p = a(Sp) ∀p ∈ [nswc]

(conservation of small items)

∑
i∈M1

zi,p = vmax(Dl,w
p) ∀p ∈ [nlwc]

(conservation of division-1 light items)

∑
i∈M2

zi,p = vmax(Dl,h
p) ∀p ∈ [nlwc]

(conservation of division-2 light items)

xj,C ≥ 0 ∀i ∈M, ∀j ∈ Ji,∀C ∈ Cj
yi,p ≥ 0 ∀i ∈M, ∀p ∈ [nswc]

zi,p ≥ 0 ∀i ∈MD,∀p ∈ [nlwc]

(non-negativity constraints)

102

The number of constraints in FP (other than the non-negativity constraints) is at most

nc := m(nwcont + ntcont + d+ 1) + 2nwwc

(
4

ε2
1

+
d+ 1

εε1

)
+ nswc + 2nlwc

≤
(

16

ε3
1

+ d

)
m+ 2nwwc

(
4

ε2
1

+
d+ 1

εε1

+ 1

)
(2nlwc ≤ nwwc and nswc ≤ nwwc)

≤
(

16

ε3
1

+ d

)
m+ 2(d+ 6)

nwwc

ε2
1

.

The number of variables and constraints in FP are linear in m. Therefore, FP can be

solved in time polynomial in m. Furthermore, if FP is feasible, we can obtain an extreme-point

solution to FP.

Therefore, fpack(I,m) guesses all combinations of configurations of m bins and for each

such combination of configurations solves the feasibility program to check if the remaining items

can be packed into the bins according to the bin configurations. Furthermore, fpack(I,m) runs

in time polynomial in m. fpack(I) makes at most O(log n) calls to fpack(I,m) with m ≤ n.

Therefore, fpack(I) runs time polynomial in n.

5.6.3 Getting Containers from a Fractional Packing Solution

Suppose fpack(I) outputs a fractional packing that uses m bins. In each compartment j, we

create a slot of breadth xj,C for each 1D configuration C. Since we’re given an extreme-point

solution to FP, the number of slots is at most the number of constraints nc by rank lemma.

In each slot, we create nt,C containers of type t ∈ L having length `(t) and breadth xj,C . See

Fig. 5.9 for an example.

Figure 5.9: A compartment with 6 slots and 12 containers.

Now we (non-fractionally) pack a large subset of wide and tall items into containers and we

pack a large subset of small non-dense and light dense items outside containers. In each wide

container, items will be stacked one-over-the-other. In each tall container, items will be stacked

103

side-by-side. We pack the remaining unpacked items into a small number of new bins. This

will give us a non-fractional packing that uses close to m bins.

5.6.4 Packing Light Dense Items

For light dense items, for each bin i and each weight class p ∈ [nlwc], keep adding items of

the same division as the bin and from weight class p to the bin till the total vmax of the items

exceeds zi,p. Then discard the last item that was added.

As per the conservation constraints for light dense items, all items will either be packed or

discarded. The vmax of items from weight class p that are packed into bin i is at most zi,p.

The number of discarded items is at most the number of z-variables in FP, which is at most

mnlwc. Let D be the set of discarded items. Then span(D) = vmax(D) ≤ (ε2nlwc)m. We choose

ε2 ≤ ε/nlwc. Since ε2 ≤ ε2
1(1 − ε), each item’s weight is at most 1 − ε. Therefore, we can use

Next-Fit to pack D into 2 span(D)/(1 − µ) + 2 ≤ 2εm/(1 − µ) + 2 number of µ-slacked bins

(by scaling up each item’s weight by 1/(1 − µ) before packing and scaling it back down after

packing), where tall and small dense items are packed separately from wide dense items.

The time taken to pack these items is O(|Dl,∗
∗ |).

5.6.5 Packing Wide and Tall Non-Dense Items

For each item type t, iteratively pack items of type t into a container of type t till the total

breadth of items in the container exceeds xj,C . Then discard the last item and move to a new

container and repeat. As per the conservation constraints for wide and tall items, all items will

either be packed or discarded.

Treat the items discarded from each slot C as a single (composite) item of breadth ε2, length

`C and weight ε2/ε
2
1 in each dimension. We will pack these composite items into bins, where

wide and tall items are packed separately.

Let D be the set of all such discarded items. Then |D| ≤ nc. For a composite item i, let

span′(i) := max

(
b(i),min

(
vmax(i)

1− µ
, 1

))
.

Treat each composite item as a 1D item of size span′(i). Then by Lemma 5.25, we can use

Next-Fit to pack these items into 2 span′(D) + 2 µ-slacked bins, where wide and tall items are

104

packed separately.

span′(i) ≤ max

(
b(i),

vmax(i)

1− µ

)
≤ max

(
ε2,

ε2

ε2
1(1− µ)

)
≤ ε2

ε2
1(1− µ)

.

Therefore, the number of bins needed is

2 span′(D) + 2 ≤ 2
ε2

ε2
1(1− µ)

nc + 2 ≤ 2ε2(16 + dε3
1)

ε5
1(1− µ)

m+
4(d+ 6)

1− µ
ε2nwwc

ε4
1

+ 2.

Therefore, we choose ε2 ≤ εε5
1/(16 + dε3

1) so that the number of new bins needed is at most

2ε

1− µ
m+ 2 +

4(d+ 6)

1− µ
ε2nwwc

ε4
1

.

The time taken to pack these items is O(|L|).

5.6.6 Packing Small Non-Dense Items

In each bin, there are at most nwcont + ntcont compartments and big items (see the proof of

Lemma 5.49). By Lemma 5.48, the free space outside compartments can be partitioned into

3(nwcont + ntcont) + 1 ≤ 3

(
16

ε2
1

(
1

ε1

− 1

)
+ 1

)
+ 1 ≤ 48

ε3
1

rectangular regions. Suppose there are pi slots in bin i for which xj,C > 0. The sum of pi over

all bins is equal to nc, the number of constraints in FP. Each slot may give us a free rectangular

region in the compartment. Therefore, the free space in bin i can be partitioned into pi + 48/ε3
1

rectangular regions. Let Ri denote the set of these free rectangular regions.

Let M be the set of bins of normal slack type. Let m := |M |. Then

∑
i∈M

|Ri| ≤ nc +
48

ε3
1

m ≤
(

64

ε3
1

+ d

)
m.

This observation forms the basis of our algorithm packSmall (Algorithm 9) for packing small

non-dense items.

Lemma 5.51. Algorithm packSmall(I,M) doesn’t fail at line 21.

Proof. Since all items have area at most ε2
2,

a(T) < a(r)− 2ε2 + ε2
2 ≤ a(r)− (w(r) + h(r))ε2 + ε2

2 = (w(r)− ε2)(h(r)− ε2).

105

Algorithm 9 packSmall(I,M, y): Here I is a set of items and M is the fractional packing
output by fpack(I). (x, y, z) is a feasible solution to FP output by fpack(I).

1: Let Sp be the pth coarse partition of small non-dense items in I.
2: D1 = D2 = {} // sets of items to discard
3: for each bin i ∈M of normal slack type do
4: Let Ri be the set of free rectangular regions in bin i.
5: // Select a set of items to pack
6: Ŝ = {}
7: for p ∈ [nswc] do
8: Si,p = {}
9: while a(Si,p) < yi,p and |Sp| > 0 do

10: Move an item from Sp to Si,p.
11: end while
12: if a(Si,p) > yi,p then
13: Move the last item in Si,p to D1.
14: end if
15: Ŝ = Ŝ ∪ Si,p
16: end for
17: // Pack those items into Ri

18: while |Ri| > 0 and |Ŝ| > 0 do
19: Remove a rectangle r from Ri.
20: Let T be the smallest prefix of Ŝ such that a(T) ≥ a(r)− 2ε2 or T = Ŝ
21: Pack T into r using NFDH. // We will prove that this is possible
22: Ŝ -= T
23: end while
24: D2 = D2 ∪ Ŝ
25: end for
26: return D1 ∪D2 // discarded items

Therefore, by Lemma 3.4, we get that T can be packed into r.

Lemma 5.52. In packSmall(I,M), every small non-dense item is either packed or discarded.

Proof by contradiction. Assume ∃p ∈ [nswc] such that there are items in Sp that are neither

packed nor discarded. Therefore, for each bin i, at Algorithm 9, a(Si,p) ≥ yi,p. Therefore, the

total area of all items from Sp that are either packed or discarded is at least∑
i∈M

yi,p = a(Sp), (by conservation constraint in FP)

which means that all items have been packed or discarded, which is a contradiction.

Lemma 5.53. Let D1 ∪D2 = packSmall(I,M). Then a(D1 ∪D2) ≤ ε2

(
nswc + 128

ε31
+ 2d

)
m.

106

Proof. During packSmall(I,M), for each bin, a(D1) increases by at most ε2nswc. Therefore,

a(D1) ≤ ε2nswcm.

We know that a(Ŝ) ≤
∑nswc

p=1 yi,p ≤ a(Ri). The first inequality follows from the way we chose

Ŝ. The second inequality follows from the area constraint in FP.

Case 1: We used up all items in Ŝ during bin i:

We didn’t discard any items during bin i.

Case 2: We used up all rectangles in Ri during bin i:

Then the used area is at least a(Ri)− 2ε2|Ri|. Therefore, the items discarded during bin i have

area at most a(Ŝ)− a(Ri) + 2ε2|Ri| ≤ 2ε2|Ri|. Therefore,

a(D2) ≤ 2ε2

∑
i∈M

|Ri| ≤ 2ε2

(
64

ε3
1

+ d

)
m.

Lemma 5.54. Let D := packSmall(I,M). Then we can pack D into 2εm/(1− µ) + 1 number

of µ-slacked bins, where µ ≤ ε.

Proof. Since ε2
2 ≤ (1 − ε)ε2

1, we get that ∀i ∈ D, vmax(i) ≤ 1 − ε ≤ 1 − µ. Let span′(i) =

a(i)/ε2
1(1−µ). Then by interpreting each i ∈ D as a 1D item of size span′(i), we can pack them

into 2 span′(D) + 1 bins using Next-Fit. In each bin J , vmax(J) ≤ a(J)/ε2
1 = (1−µ) span′(J) ≤

1 − µ. Also, a(J) ≤ ε2
1(1 − µ) span′(J) ≤ (1 − ε2)2. Therefore, the bin is µ-slacked and by

Lemma 3.4, we can pack items J in the bin using NFDH.

We choose ε2 ≤ εε2
1/ (nswc + 128/ε3

1 + 2d). Therefore, the number of bins needed is at most

2 span′(D) + 1 ≤ 2a(D)

ε2
1(1− µ)

+ 1 ≤ 2ε

1− µ
m+ 1.

The time taken to pack small items is O(nS log nS), where nS is the number of small items,

because we need to sort items by height for NFDH.

5.6.7 The Algorithm and its Approximation Factor

We give an algorithm ipackµ (Algorithm 10) for packing a subset I of rounded items.

Theorem 5.55. Let (Ĩ ′, D) ∈ round(I ′, ε) and I ⊆ Ĩ ′. Let there be m bins in the optimal µ-

slacked compartmental fractional packing of I, where µ ≤ ε. Then ipackµ(I) runs in polynomial

time and outputs a µ-slacked packing of I into(
1 +

6ε

1− µ

)
m+ 5 +

4(d+ 6)

1− µ
ε2nwwc

ε4
1

107

Algorithm 10 ipackµ(I): Computes a non-fractional µ-slacked packing of I. Here µ ≤ ε and

I ⊆ Ĩ ′ and (D, Ĩ ′) ∈ round(I ′) for some set I ′ of items.

1: Let (J, x, y, z) := fpackµ(I). Here J is a fractional packing of I into m bins and (x, y, z) is
a feasible solution to the feasibility program FP.

2: Create containers inside compartments in J using x as per Section 5.6.3.
3: Pack light dense items into dense compartments using z as per Section 5.6.4.
4: Pack wide and tall non-dense items into containers as per Section 5.6.5.
5: packSmall(I, J, y) // Pack small non-dense items outside containers.

bins, where each bin satisfies either Property 5.7(b) or Property 5.8(b).

Proof. fpack(I) finds the optimal µ-slacked compartmental fractional packing of I in polyno-

mial time. Given the output of fpack(I), ipack can, in O(n log n) time, compute a packing of

I into (1 + 6ε/(1− µ))m+ 5 + 4(d+ 6)ε2nwwc/ε
4
1(1− µ) number of µ-slacked bins.

Each bin satisfies either Property 5.7(b) or Property 5.8(b). This is because the m bins

output by the fractional packing are compartmental, and the extra bins either contain only

dense tall and small items or only dense wide items or only non-dense items.

We choose ε2 := dmax (nlwc/ε, (16 + d3)/εε5
1, (128 + ε3

1(nswc + 2d))/εε5
1)e−1

. Therefore, ε−1
2 ∈

O(ε−5
1 + ε−dε

−(2d+2)
1). So, the parameter f in removeMedium(I, ε, f, δ0) is

f(x) =

⌈
max

(
nlwc

ε
,
16 + d3

εx5
,
128 + x3((8/x2ε)

d
+ 2d)

εx5

)⌉−1

.

Theorem 5.56. Let I be a (2, d) bin packing instance. For some (Ĩ , D) ∈ round(I, ε), if we

pack D using simplePack and pack Ĩ using ipack, we get a packing of I into at most

((1 + 17ε)a+ 6ε(d+ 1)) opt(I) +O(1) +
4(10d+ 51)

1− ε
ε2nwwc

ε4
1

bins. Here a is the constant defined in Table 5.1 in Section 5.3.2.

Proof. By Theorem 5.50, ∃(Ĩ , D) ∈ round(I, ε) such that Ĩ has a compartmental (5ε/8)-slacked

fractional packing into at most m := (1 + 2ε/(1− ε))2 a opt(I) +O(1) bins.

By Theorem 4.5 and Lemmas 4.1 and 5.44, we get

| simplePack(D)| ≤ 6 span(D) + 3 ≤ 6

(
ε span(I) + 6(d+ 5)

ε2nwwc

ε4
1

)
+ 3

≤ 6ε(d+ 1) opt(I) +

(
3 + 36(d+ 5)

ε2nwwc

ε4
1

)
.

108

Let J := ipackµ(Ĩ), where µ := 5ε/8. Then the bins in J are (5ε/8)-slacked. The number

of bins in J is at most(
1 +

6ε

1− µ

)
m+ 5 +

4(d+ 6)

1− µ
ε2nwwc

ε4
1

≤
(

1 +
2ε

1− ε

)2(
1 +

6ε

1− ε

)
a opt(I) +O(1) +

4(d+ 6)

1− ε
ε2nwwc

ε4
1

≤ (1 + 17ε)a opt(I) +O(1) +
4(d+ 6)

1− ε
ε2nwwc

ε4
1

. (ε ≤ 1/8)

To get a packing of I −D from a packing of Ĩ, we need to revert the transformations done

by round. The only transformation in round where we rounded down instead of rounding up is

Transformation 5.14. As per Lemma 5.20, it is possible to undo Transformation 5.14 because

the bins are (5ε/8)-slacked and each bin satisfies either Property 5.7(b) or Property 5.8(b).

By Theorem 5.56, we get that for every ε′ > 0, there is a (a + ε′)-asymptotic-approx

algorithm for (2, d) bin packing. We can get a better approximation factor by using the

Round-and-Approx Framework, and we call the resulting algorithm cbPack.

5.7 Using the Round-and-Approx Framework

To use the Round-and-Approx (R&A) framework, we must show how to implement round,

complexPack, unround and solveConfigLP, and we must prove the structural theorem.

1. solveConfigLP(I): Using the algorithm of [53] for (2, d) KS and the LP algorithm of

[72], we get a 2(1 + ε)-approximate solution to configLP(I). Therefore, µ = 2(1 + ε).

2. round: We can use Algorithm 8 as round. By Lemma 5.43, round runs in polynomial

time. By Lemma 5.44, round has low discard. By Lemma 5.45, round partitions items

into a constant number of classes.

3. Structural theorem: Theorem 5.50. We call a packing structured iff it is compartmental

and (5ε/8)-slacked. Here ρ = a(1 + 2ε/(1− ε))2.

4. complexPack(S̃): Use ipackµ as complexPack, where µ = 5ε/8. By Theorem 5.55,

α = 1 + 6ε/(1− ε).

109

5. unround(J̃): Since the output of ipack is (5ε/8)-slacked and each bin satisfies either

Property 5.7(b) or Property 5.8(b), we can use Lemma 5.20 to undo Transformation 5.14.

The other transformations round up, so they are trivial to undo. Therefore, γ = 1.

The only remaining requirement of R&A is proving the bounded expansion lemma.

Lemma 5.57 (Bounded expansion). Let (Ĩ , D) ∈ round(I, ε). Let K̃ ⊆ Ĩ be a fine partition of

Ĩ. Let C ⊆ I be a set of items that fit into a bin and let C̃ be the corresponding rounded items.

Then span(K̃ ∩ C̃) is upper-bounded by 1/ε1 + 1/4.

Proof. To prove this, it is sufficient to prove that ∀i ∈ I −D, if item i gets rounded to item ı̃,

then span(̃ı)/ span(i) is upper-bounded by 1/ε1 + 1/4.

1. Big items: We will consider division-1 big items. The analysis for division-2 big items

is analogous.

w(̃ı) ≤ w(i) + ε2
1/4 ∧ h(̃ı) ≤ 1 (by Transformation 5.21)

=⇒ w(̃ı)

w(i)
≤ 1 +

ε1

4
∧ h(̃ı)

h(i)
≤ 1

ε1

=⇒ a(̃ı)

span(i)
≤ a(̃ı)

a(i)
≤ w(̃ı)

w(i)

h(̃ı)

h(i)
≤ 1

ε1

+
1

4

vmax(̃ı)

span(i)
≤ vmax(i) + ε2

1ε/8

max(a(i), vmax(i))
(by Transformation 5.13)

≤ min

(
vmax(i)

ε2
1

+
ε

8
, 1 +

ε2
1ε

8vmax(i)

)
≤ 1 + min

(
vmax(i)

ε2
1

,
ε

8

ε2
1

vmax(i)

)
≤ 1 +

√
ε

8
≤ 3

2
≤ 1

ε1

+
1

4
(ε1 ≤ 2/3)

2. Non-dense wide items:

a(̃ı)

span(i)
≤ a(̃ı)

a(i)
=
w(̃ı)

w(i)
≤ 1

ε1

110

vmax(̃ı)

span(i)
≤ vmax(i) + h(i)(ε1ε/8)

max(h(i)ε1, vmax(i))
(by Transformation 5.13)

≤ min

(
vmax(i)

ε1h(i)
+
ε

8
, 1 +

ε

8

ε1h(i)

vmax(i)

)
≤ 1 + min

(
vmax(i)

ε1h(i)
,
ε

8

ε1h(i)

vmax(i)

)
≤ 1 +

√
ε

8
≤ 3

2
≤ 1

ε1

(ε1 ≤ 2/3)

3. Non-dense tall items: Similar to the non-dense wide items case.

4. Non-dense small items: a(̃ı) = a(i).

vmax(̃ı)

span(i)
≤ vmax(i) + a(i)(ε/8)

max(a(i), vmax(i))
(by Transformation 5.13)

≤ min

(
vmax(i)

a(i)
+
ε

8
, 1 +

ε

8

a(i)

vmax(i)

)
≤ 1 + min

(
vmax(̃ı)

a(i)
,
ε

8

a(i)

vmax(i)

)
≤ 1 +

√
ε

8
≤ 3

2
≤ 1

ε1

(ε1 ≤ 2/3)

5. Heavy dense items: (See Transformation 5.15)

span(̃ı)

span(i)
≤ vmax(̃ı)

vmax(i)
≤ 1 +

ε1ε

8vmax(i)
≤ 1 +

ε

8
≤ 1

ε1

6. Light dense items: (See Transformation 5.16)

span(̃ı)

span(i)
≤ vmax(̃ı)

vmax(i)
≤ 1 +

ε

8
≤ 1

ε1

The asymptotic approximation factor given by the Round-and-Approx framework is

µ

(
1 +

αργ

µ

)
+ Θ(1)ε = 2

(
1 + ln

(a
2

))
+ Θ(1)ε

Using Table 5.1, for d = 1, we get 2.919065+ε′ when item rotations are forbidden and 2.810930+

ε′ when item rotations are allowed.

111

Chapter 6

Harmonic Algorithms for dD

Geometric Bin Packing

In this chapter, we focus on the d-dimensional multiple-choice geometric bin packing problem

(dMCBP). This problem generalizes both the non-rotational and rotational versions of dD GBP.

See Section 1.2.2 for a detailed introduction to this problem and its significance.

In dMCBP, we are given a set I = {I1, I2, . . . , In} as input, where for each j, Ij is a set of

items, henceforth called an itemset. We have to pick exactly one item from each itemset and

pack those items into the minimum number of bins.

Preliminaries

For convenience, in this chapter only, we will denote non-rotational dD GBP by dBP and non-

rotational dD strip packing by dSP. In dBP and dMCBP, we assume without loss of generality

that bins are dD cubes of side length 1.

We now give an equivalent definition of dMCBP for notational convenience. Let I be a set

of itemsets. Let K be a set of items that contains exactly one item from each itemset in I.

Formally, for each itemset I ∈ I, |K ∩ I| = 1. Then K is called an assortment of I. Let Ψ(I)

denote the set of all assortments of I. In dMCBP, given an input instance I, we have to select

an assortment K ∈ Ψ(I) and output a bin packing of K, such that the number of bins used is

minimized. Therefore, optdMCBP(I) = minK∈Ψ(I) optdBP(K).

Define flat(I) as the union of all itemsets in I. Then n := |I| is the number of itemsets in

I and N := | flat(I)| is the total number of items across all itemsets of I.

112

Overview of the Chapter

• In Section 6.1, we describe ideas from HDHk [18] that help us devise harmonic-based

algorithms for dMCBP. For two of these ideas, HDH-unit-packk and weighting functions,

we give more details in Sections 6.5 and 6.8, respectively.

• In Section 6.2, we show a simple O(N+n log n)-time algorithm for dMCBP, called fullhk,

having an AAR of T dk , where n is the number of itemsets and N is total number of items

across all the n itemsets.

• We present an algorithm for dMCBP, called HGaPk, having an AAR of T d−1
k (1 + ε) and

having a running time of NO(1/ε2)n(1/ε)O(1/ε)
. We give an overview of HGaPk in Section 6.3

and give its details in Section 6.4.

• In Section 6.6, we define the dD multiple-choice strip packing problem (dMCSP) and

extend Caprara’s HDHk algorithm [18] to dMCSP. The algorithm has an AAR of T d−1
k and

runs in time O(N + n log n).

• In Section 6.7, we define the dD multiple-choice geometric knapsack problem (dMCKS),

and for any 0 < ε < 1, we show an O(N logN +Nn/ε)-time algorithm that is 3d(1 + ε)-

approximate.

• Caprara [18] showed that no shelf-based algorithm for 2BP or 2SP can get an AAR better

than T∞ ≈ 1.69103, and his HDHk algorithm achieves an AAR of T d−1
k for dBP and dSP.

In Section 6.9, we extend that result to show that no shelf-based algorithm for dBP or

dSP can get an AAR better than T d−1
∞ .

6.1 Important Ideas from the HDHk Algorithm

In this section, we will describe some important ideas behind the HDHk algorithm for dBP by

Caprara [18]. These ideas are the building blocks for our algorithms for dMCBP.

6.1.1 Weighting Functions

Fekete and Schepers [32] present a useful approach for obtaining lower bounds on the optimal

solution to bin packing problems. Their approach is based on weighting functions.

113

Definition 6.1. g : [0, 1] 7→ [0, 1] is a weighting function iff for all m ∈ Z>0 and x ∈ [0, 1]m,

m∑
i=1

xi ≤ 1 =⇒
m∑
i=1

g(xi) ≤ 1

(Weighting functions are also called dual feasible functions (DFFs)).

Theorem 6.1. Let I be a set of dD items that can be packed into a bin. Let g1, g2, . . . , gd

be weighting functions. For i ∈ I, define g(i) as the item whose length is gj(`j(i)) in the jth

dimension. Then {g(i) : i ∈ I} can be packed into a dD bin (without rotating the items).

Theorem 6.1 is proved in Section 6.8.

6.1.2 The Harmonic Function

To obtain a lower-bound on optdBP(I) using Theorem 6.1, Caprara [18] defined a function fk.

For an integer constant k ≥ 3, fk : [0, 1] 7→ [0, 1] is defined as

fk(x) :=

1
q

x ∈
(

1
q+1

, 1
q

]
for q ∈ [k − 1]

k
k−2

x x ≤ 1
k

.

fk was originally defined and studied by Lee and Lee [56] for their online algorithm for 1BP,

except that they used k/(k − 1) instead of k/(k − 2). Define typek : [0, 1] 7→ [k] as

typek(x) :=

q x ∈
(

1
q+1

, 1
q

]
for q ∈ [k − 1]

k x ≤ 1
k

.

Define Tk to be the smallest positive constant such that Hk(x) := fk(x)/Tk is a weighting

function. We call Hk the harmonic weighting function. We can efficiently compute Tk as a

function of k using ideas from [56, 71]. Table 6.1 lists the values of Tk for the first few k. It

can also be proven that Tk is a decreasing function of k and T∞ := limk→∞ Tk ≈ 1.6910302.

Table 6.1: Values of Tk.

k 3 4 5 6 7 ∞
Tk 3 2 11/6 = 1.83 7/4 = 1.75 26/15 = 1.73 ≈ 1.6910302

For a dD cuboid i, define fk(i) to be the cuboid whose length is fk(`j(i)) in the jth dimension.

For a set I of dD cuboids, let fk(I) := {fk(i) : i ∈ I}. Similarly define Hk(i) and Hk(I). Define

114

type(i) to be a d-dimensional vector whose jth component is typek(`j(i)). Note that there can

be at most kd different values of type(i). Sometimes, for the sake of convenience, we may

express type(i) as an integer in [kd].

Theorem 6.2. For a set of I of dD items, vol(fk(I)) ≤ T dk optdBP(I).

Proof. Let m := optdBP(I). Let Jj be the items in the jth bin in the optimal bin packing of I.

By Theorem 6.1 and because Hk is a weighting function, Hk(Jj) fits in a bin. Therefore,

vol(fk(I)) =
m∑
j=1

T dk vol(Hk(Jj)) ≤
m∑
j=1

T dk = T dk optdBP(I).

6.1.3 The HDH-unit-packk Subroutine

From the HDHk algorithm by Caprara [18], we extracted out a useful subroutine, which we call

HDH-unit-packk, that satisfies the following useful property:

Property 6.2. The algorithm HDH-unit-pack
[t]
k (I) takes a sequence I of dD items such that

all items have type t and vol(fk(I − {last(I)})) < 1 (here last(I) is the last item in sequence

I). It returns a packing of I into a single dD bin in O(n log n) time, where n := |I|.

The design of HDH-unit-packk and its correctness can be inferred from Lemma 4.1 in [18].

We use HDH-unit-packk as a black-box subroutine in our algorithms, i.e., we only rely on

Property 6.2; we don’t need to know anything else about HDH-unit-packk. Nevertheless, for

the sake of completeness, in Section 6.5, we give a complete description of HDH-unit-packk and

prove its correctness.

6.2 Fast and Simple Algorithm for dMCBP (fullhk)

We will now describe an algorithm for dBP called the full-harmonic algorithm (fullhk). We

will then extend it to dMCBP.

fullhk works by first partitioning the items based on their type vector (type vector is

defined in Section 6.1.2). Then for each partition, it repeatedly picks the smallest prefix J such

that vol(fk(J)) ≥ 1 and packs J into a dD bin using HDH-unit-packk. See Algorithm 11 for a

more precise description of fullhk. Note that fullhk(I) has a running time of O(|I| log |I|).

Theorem 6.3. The number of bins used by fullhk(I) is less than Q + vol(fk(I)), where Q is

the number of distinct types of items (so Q ≤ kd).

115

Algorithm 11 fullhk(I): Returns a bin packing of dD items I.

1: Let P be an empty list.
2: for each type t do
3: I [t] = {i ∈ I : type(i) = t}.
4: while |I [t]| > 0 do
5: Find J , the smallest prefix of I [t] such that J = I [t] or vol(fk(J))) ≥ 1.

6: B = HDH-unit-pack
[t]
k (J). // B is a packing of J into a dD bin.

7: Append B to the list P .
8: Remove J from I [t].
9: end while

10: end for
11: return the list P of bins.

Proof. Let I [t] be the items in I of type t. Suppose fullhk(I) uses m[t] bins to pack I [t]. For

each type t, the first m[t] − 1 bins have vol ·fk at least 1, so vol(fk(I
[t])) > m[t] − 1. Therefore,

total number of bins used is
∑Q

t=1 m
[t] <

∑Q
t=1(1 + vol(fk(I

[t]))) = Q+ vol(fk(I)).

Lemma 6.4 (Corollary to Theorems 6.2 and 6.3). fullhk(I) uses less than Q + T dk optdBP(I)

bins, where Q is the number of distinct item types.

Theorem 6.5. Let I be a dMCBP instance. Let K̂ := {argmini∈I vol(fk(i)) : I ∈ I}, i.e., K̂

is the assortment obtained by picking from each itemset the item i having the minimum value

of vol(fk(i)). Then the number of bins used by fullhk(K̂) is less than Q + T dk optdMCBP(I),

where Q is the number of distinct types of items in flat(I) (so Q ≤ kd).

Proof. For any assortment K, vol(fk(K̂)) ≤ vol(fk(K)). Let K∗ be the assortment in an

optimal packing of I. By Theorems 6.2 and 6.3, the number of bins used by fullhk(K̂) is less

than

Q+ vol(fk(K̂)) ≤ Q+ vol(fk(K
∗)) ≤ Q+ T dk optdBP(K∗) = Q+ T dk optdMCBP(I).

Let N := | flat(I)| and n := |I|. We can find K̂ in O(N) time and compute fullhk(K̂) in

O(n log n) time. This gives us an O(N + n log n)-time algorithm for dMCBP having AAR T dk .

6.3 Better Algorithm for dMCBP (HGaPk)

Here we will describe a T d−1
k (1+ε)-asymptotic-approximate algorithm for dMCBP that is based

on HDHk and Lueker and de la Vega’s APTAS for 1BP [26]. We call our algorithm Harmonic

Guess-and-Pack (HGaPk). This improves upon fullhk that has AAR T dk .

116

Definition 6.3. For a dD item i, let h(i) := `d(i), w(i) :=
∏d−1

j=1 fk(`j(i)) and a(i) := w(i)h(i).

Let round(i) be a rectangle of height h(i) and width w(i). For a set X of dD items, define

w(X) :=
∑

i∈X w(i) and round(X) := {round(i) : i ∈ X}.

For any ε > 0, the algorithm HGaPk(I, ε) returns a bin packing of I, where I is a set of dD

itemsets. HGaPk first converts I to a set Î of 2D itemsets. It then computes Pbest, which is a

structured bin packing of Î (we formally define structured later). Finally, it uses the algorithm

inflate to convert Pbest into a bin packing of the dD itemsets I, where | inflate(Pbest)| is very

close to |Pbest|. See Algorithm 12 for a more precise description. This approach of converting

items to 2D, packing them, and then converting back to dD is very useful, because most of our

analysis is about how to compute a structured 2D packing, and a packing of 2D items is easier

to visualize and reason about than a packing of dD items.

Algorithm 12 HGaPk(I, ε): Returns a bin packing of dD itemsets I, where ε ∈ (0, 1).

1: Let δ := ε/(2 + ε).

2: Î = {round(I) : I ∈ I}
3: Initialize Pbest to null.
4: for P ∈ guessShelves(Î, δ) do

5: P = chooseAndPack(Î, P, δ)
6: if P is not null and (Pbest is null or |P | ≤ |Pbest|) then
7: Pbest = P
8: end if
9: end for

10: return inflate(Pbest)

A bin packing is said to be shelf-based if items are packed into shelves and the shelves

are packed into bins, where a shelf is a rectangle of width 1. See Fig. 6.1 for an example.

A structured bin packing is a shelf-based bin packing where the heights of the shelves satisfy

some additional properties (we describe these properties later). The algorithm guessShelves

repeatedly guesses the number and heights of shelves and computes a structured packing P of

those shelves into bins. Then for each packing P , the algorithm chooseAndPack(Î, P, δ) tries to

pack an assortment of Î into the shelves in P plus maybe one additional shelf. If chooseAndPack

succeeds, call the resulting bin packing P . Otherwise, chooseAndPack returns null. Pbest is

the value of P with the minimum number of bins across all guesses by guessShelves.

We prove that HGaPk is T d−1
k (1 + ε)-asymptotic-approximate by showing that for some

P ∗ ∈ guessShelves(Î, δ), we have |P ∗| / T d−1
k opt(I)(1 + ε) and chooseAndPack(Î, P ∗, δ) is

not null.

We will now precisely define structured bin packing and state the main theorems on HGaPk.

117

Figure 6.1: An example of shelf-based packing with 3 shelves.

6.3.1 Structured Packing

Definition 6.4 (Slicing). Slicing a 1D item i is the operation of replacing it by items i1 and i2

such that size(i1) + size(i2) = size(i).

Slicing a rectangle i using a vertical cut is the operation of replacing i by two rectangles

i1 and i2 where h(i) = h(i1) = h(i2) and w(i) = w(i1) + w(i2). Slicing i using a horizontal

cut is the operation of replacing i by two rectangles i1 and i2 where w(i) = w(i1) = w(i2) and

h(i) = h(i1) + h(i2).

Definition 6.5 (Shelf-based δ-fractional packing). Let δ ∈ (0, 1) be a constant. Let K be a

set of rectangular items. Items in KL := {i ∈ K : h(i) > δ} are said to be ‘δ-large’ and items

in KS := K −KL are said to be ‘δ-small’. A δ-fractional bin packing of K is defined to be a

packing of K into bins where items in KL can be sliced (recursively) using vertical cuts only,

and items in KS can be sliced (recursively) using both horizontal and vertical cuts.

A shelf is a rectangle of width 1 into which we can pack items such that the bottom edge of

each item in the shelf touches the bottom edge of the shelf. A shelf can itself be packed into a

bin. A δ-fractional bin packing of K is said to be shelf-based iff (all slices of) all items in KL

are packed into shelves, the shelves are packed into the bins, and items in KS are packed outside

the shelves (and inside the bins). Packing of items into a shelf S is said to be tight iff the top

edge of some item (or slice) in S touches the top edge of S.

Definition 6.6 (Structured packing). Let K be a set of rectangles and let P be a packing of

empty shelves into bins. Let H be the set of heights of shelves in P (note that H is not a

multiset, i.e., we only consider distinct heights of shelves). Then P is said to be structured for

(K, δ) iff |H| ≤ d1/δ2e and each element in H is the height of some δ-large item in K.

A shelf-based δ-fractional packing of K is said to be structured iff the shelves in the packing

are structured for (K, δ). Define soptδ(K) to be the number of bins in the optimal structured

δ-fractional packing of K.

118

HGaPk relies on the following key structural theorem. We formally prove it in Section 6.4.2

and give an outline of the proof here.

Theorem 6.6 (Structural theorem). Let I be a set of dD items. Let δ ∈ (0, 1) be a constant.

Then soptδ(round(I)) < T d−1
k (1 + δ) optdBP(I) + d1/δ2e+ 1 + δ.

Proof outline. Let Î := round(I). Let ÎL and ÎS be the δ-large and δ-small items in Î, respec-

tively.

We give a simple greedy algorithm to pack ÎL into shelves. Let J be the shelves output by

this algorithm. We can treat J as a 1BP instance, and ÎS as a sliceable 1D item of size a(ÎS).

We prove that an optimal 1D bin packing of J ∪ ÎS gives us an optimal shelf-based δ-fractional

packing of Î.

We use linear grouping by Lueker and Vega [26]. We partition J into linear groups of

size bδ size(J)c + 1 each. Let hj be the height of the first 1D item in the jth group. Let

J (hi) be the 1BP instance obtained by rounding up the height of each item in the jth group

to hj for all j. Then J (hi) contains at most d1/δ2e distinct sizes, so the optimal packing of

J (hi) ∪ ÎS gives us a structured δ-fractional packing of Î. Therefore, soptδ(Î) ≤ opt(J (hi) ∪ ÎS).

Let J (lo) be the 1BP instance obtained by rounding down the height of each item in the jth

group to hj+1 for all j. We prove that J (lo) contains at most d1/δ2e − 1 distinct sizes and that

opt(J (hi) ∪ ÎS) < opt(J (lo) ∪ ÎS) + δa(ÎL) + (1 + δ).

We model packing J (lo) ∪ ÎS as a linear program, denoted by LP(Î), that has at most

d1/δ2e1/δ variables and d1/δ2e non-trivial constraints. The optimum extreme point solution to

LP(Î), therefore, has at most d1/δ2e positive entries, so opt(J (lo) ∪ ÎS) ≤ opt(LP(Î)) + d1/δ2e.
We use techniques from Caprara [18] to obtain a monotonic weighting function η from the

optimal solution to the dual of LP(Î). For each item i ∈ I, we define p(i) := w(i)η(h(i))

and prove that p(I) ≥ opt(LP(Î)). By Theorem 6.1, we get that p(I) ≤ T d−1
k optdBP(I) and

a(ÎL) ≤ T d−1
k optdBP(I). Combining the above facts gives us an upper-bound on soptδ(Î) in

terms of optdBP(I).

6.3.2 Subroutines

6.3.2.1 guessShelves

The algorithm guessShelves(Î, δ) takes a set Î of 2D itemsets and a constant δ ∈ (0, 1) as

input. We will design guessShelves so that it satisfies the following theorem.

Theorem 6.7. guessShelves(Î, δ) returns all possible packings of empty shelves into at most

|Î| bins such that each packing is structured for (flat(Î), δ). guessShelves(Î, δ) returns at most

119

T := (N d1/δ
2e+ 1)(n+ 1)R packings, where N := | flat(Î)|, n := |Î|, and R :=

(d1/δ2e+d1/δe−1
d1/δe−1

)
≤

(1 + d1/δ2e)1/δ. Its running time is O(T).

guessShelves works by first guessing at most d1/δ2e distinct heights of shelves. It then

enumerates all configurations, i.e., different ways in which shelves can be packed into a bin. It

then guesses the configurations in a bin packing of the shelves. guessShelves can be easily

implemented using standard techniques. For the sake of completeness, we give a more precise

description of guessShelves and prove Theorem 6.7 in Section 6.4.3.

6.3.2.2 chooseAndPack

chooseAndPack(Î, P, δ) takes as input a set Î of 2D itemsets, a constant δ ∈ (0, 1), and a bin

packing P of empty shelves that is structured for (flat(Î), δ). It tries to pack an assortment of

Î into the shelves in P .

chooseAndPack works by rounding up the width of all δ-large items in Î to a multiple of

1/n. This would increase the number of shelves required by 1, so it adds another empty shelf.

It then uses dynamic programming to pack an assortment into the shelves, such that the area

of the chosen δ-small items is minimum. This is done by maintaining a dynamic programming

table that keeps track of the number of itemsets considered so far and the remaining space in

shelves of each type. If it is not possible to pack the items into the shelves, then chooseAndPack

outputs null. In Section 6.4.4, we give the details of this algorithm and formally prove the

following theorems:

Theorem 6.8. If there exists an assortment K̂ of Î having a structured δ-fractional bin packing

P , then chooseAndPack(Î, P, δ) does not output null.

Theorem 6.9. If the output of chooseAndPack(Î, P, δ) is not null, then the output P is a

shelf-based δ-fractional packing of some assortment of Î such that |P | ≤ |P |+1 and the distinct

shelf heights in P are the same as that in P .

Theorem 6.10. chooseAndPack(Î, P, δ) runs in O(Nn2d1/δ2e) time. Here N := | flat(Î)|,
n := |Î|.

6.3.2.3 inflate

For a set I of dD items, inflate is an algorithm that converts a shelf-based packing of round(I)

into a packing of I having roughly the same number of bins.

120

For a dD item i, btype(i) (called base type) is defined to be a (d − 1)-dimensional vector

whose jth component is typek(`j(i)). Roughly, inflate(P) works as follows: It first slightly

modifies the packing P so that items of different base types are in different shelves and δ-small

items are no longer sliced using horizontal cuts. Then it converts each 2D shelf to a dD shelf of

the same height using HDH-unit-packk (a dD shelf is a cuboid where the first d− 1 dimensions

are equal to 1).

In Section 6.4.5, we formally describe inflate and prove the following theorem about it.

Theorem 6.11. Let I be a set of dD items having Q distinct base types. Let P be a shelf-

based δ-fractional packing of round(I) where shelves have t distinct heights. Then inflate(P)

returns a packing of I into less than |P |/(1− δ) + t(Q− 1) + 1 + δQ/(1− δ) bins in O(n log n)

time, where n := |I|.

Now that we have mentioned the guarantees of all the subroutines used by HGaPk, we can

prove the correctness and running time of HGaPk.

6.3.3 Correctness and Running Time of HGaPk

Theorem 6.12. The number of bins used by HGaPk(I, ε) to pack I is less than

T d−1
k (1 + ε) optdMCBP(I) +

⌈(
2

ε
+ 1

)2
⌉(

Q+
ε

2

)
+ 3 + (Q+ 3)

ε

2
.

Here Q is the number of distinct base types in flat(I).

Proof. Let K∗ be the assortment in an optimal bin packing of I. Let K̂∗ = round(K∗). Let P ∗

be the optimal structured δ-fractional bin packing of K̂∗. Then |P ∗| = soptδ(K̂
∗) by the defini-

tion of sopt. By Theorem 6.7, P ∗ ∈ guessShelves(Î, δ). Let P
∗

= chooseAndPack(Î, P ∗, δ).
By Theorem 6.8, P

∗
is not null. By Theorem 6.9, Pbest is structured for (flat(Î), δ) and

|Pbest| ≤ |P
∗| ≤ soptδ(K̂

∗) + 1.

By Theorem 6.11, we get that

| inflate(Pbest)| <
soptδ(K̂

∗)

1− δ
+

⌈
1

δ2

⌉
(Q− 1) + 1 +

δQ+ 1

1− δ
.

By Theorem 6.6 (structural theorem) and using optdBP(K∗) = optdMCBP(I), we get

soptδ(K̂
∗) < T d−1

k (1 + δ) optdMCBP(I) + d1/δ2e+ 1 + δ.

121

Therefore, | inflate(Pbest)| is less than

T d−1
k

1 + δ

1− δ
optdMCBP(I) +

⌈
1

δ2

⌉(
Q+

δ

1− δ

)
+ 3 +

δ(3 +Q)

1− δ

= T d−1
k (1 + ε) optdMCBP(I) +

⌈(
2

ε
+ 1

)2
⌉(

Q+
ε

2

)
+ 3 + (Q+ 3)

ε

2
.

Theorem 6.13. HGaPk(I, ε) runs in time O(N1+d1/δ2enR+2d1/δ2e), where N := | flat(Î)|, n :=

|Î|, δ := ε/(2 + ε) and R :=
(d1/δ2e+d1/δe−1

d1/δe−1

)
≤ (1 + d1/δ2e)1/δ.

Proof. Follows from Theorems 6.7, 6.10 and 6.11.

Section 6.4.6 gives hints on improving the running time of HGaPk.

6.4 Details of the HGaPk Algorithm

This section gives details of the subroutines used by HGaPk. It also proves the theorems claimed

in Section 6.3.

6.4.1 Preliminaries

Definition 6.7. Let I1 and I2 be sets of 1D items. Then I1 is defined to be a predecessor of I2

(denoted as I1 � I2) iff there exists a one-to-one mapping π : I1 7→ I2 such that ∀i ∈ I1, i ≤ π(i).

Observation 6.14. Let I1 � I2 where π is the corresponding mapping. Then we can obtain

a packing of I1 from a packing of I2, by packing each item i ∈ I1 in the place of π(i). Hence,

opt(I1) ≤ opt(I2).

Definition 6.8 (Canonical shelving). Let I be a set of rectangles. Order the items in I in

non-increasing order of height (break ties arbitrarily but deterministically) and greedily pack

them into tight shelves, slicing items using vertical cuts if necessary. The set of shelves thus

obtained is called the canonical shelving of I, and is denoted by can-shelv(I). (The canonical

shelving is unique because ties are broken deterministically.)

See Fig. 6.2 for an example of canonical shelving.

Suppose a set I of rectangular items is packed into a set J of shelves. Then we can interpret

J as a 1BP instance where the height of each shelf is the size of the corresponding 1D item.

122

1

0.3

2

0.4

3

0.4

4

0.5

5

0.9

6

0.25

1 2 3

0.3

3 4 5

5 6

0.5

Figure 6.2: Six items and their canonical shelving into three tight shelves of width 1. The items
are numbered by decreasing order of height. Each item has its width mentioned below it. Item
3 was sliced into two items of widths 0.3 and 0.1. Item 5 was sliced into two items of widths
0.4 and 0.5.

We will now prove that the canonical shelving is optimal, i.e., any shelf-based bin packing of

items can be obtained by first computing the canonical shelving and then packing the shelves

into bins like a 1BP instance.

Lemma 6.15. Let I be a set of rectangles packed inside shelves J . Let J∗ := can-shelv(I).

Then J∗ � J .

Proof. We say that a shelf is full if the total width of items in a shelf is 1. Arrange the shelves

J in non-increasing order of height, and arrange the items I in non-increasing order of height.

Then try to pack I into J using the following greedy algorithm: For each item i, pack the

largest possible slice of i into the first non-full shelf and pack the remaining slice (if any) in the

next shelf. If this greedy algorithm succeeds, then within each shelf of J , there is a shelf of J∗,

so J∗ � J . We will now prove that this greedy algorithm always succeeds.

For the sake of proof by contradiction, assume that the greedy algorithm failed, i.e., for an

item (or slice) i there was a non-full shelf S but h(i) > h(S). Let I ′ be the items (and slices)

packed before i and J ′ be the shelves before S. Therefore, w(I ′) = |J ′|.
All items in I ′ have height at least h(i), so all shelves in J ′ have height at least h(i). All

shelves after J ′ have height less than h(i). Therefore, J ′ is exactly the set of shelves of height

at least h(i).

In the packing P , I ′ ∪ {i} can only be packed into shelves of height at least h(i), so w(I ′) +

w(i) ≤ |J ′|. But this contradicts w(I ′) = |J ′|. Therefore, the greedy algorithm cannot fail.

123

Lemma 6.16. Consider the inequality x1 +x2 + . . .+xn ≤ s, where for each j ∈ [n], xj ∈ Z≥0.

Let N be the number of solutions to this inequality. Then N =
(
s+n
n

)
≤ (s+ 1)n.

Proof. The proof of N =
(
s+n
n

)
is a standard result in combinatorics.

To prove N ≤ (s+ 1)n, note that we can choose each xj ∈ {0, 1, . . . , s} independently.

6.4.2 Structural Theorem

Let I be a set of dD items. Let Î := round(I). Let δ ∈ (0, 1) be a constant. Let ÎL := {i ∈ Î :

h(i) > δ} and ÎS := Î − ÎL. Let J := can-shelv(ÎL). Let m := |J |, i.e., J contains m shelves.

We can interpret ÎS as a single sliceable 1D item of size a(ÎS).

We will show the existence of a structured δ-fractional packing of Î into at most T d−1
k (1 +

δ) optdBP(I) + d1/δ2e+ 1 + δ bins. This would prove Theorem 6.6.

Definition 6.9 (Linear grouping [26]). Arrange the 1D items J in non-increasing order of size

and number them from 1 to m. Let q := bδ size(J)c + 1. Let J1 be the first q items, J2 be the

next q items, and so on. Jj is called the jth linear group of J . This gives us t := dm/qe linear

groups. Note that the last group, Jt, may have less than q items.

Let hj be the size of the first item in Jj. Let ht+1 := 0. For j ∈ [t − 1], let J
(lo)
j be the

items obtained by decreasing the height of items in Jj to hj+1. For j ∈ [t], let J
(hi)
j be the items

obtained by increasing the height of items in Jj to hj.

Let J (lo) :=
⋃t−1
j=1 J

(lo)
j and J (hi) :=

⋃t
j=1 J

(hi)
j . We call J (lo) a down-rounding of J and J (hi)

an up-rounding of J .

Lemma 6.17. t ≤ d1/δ2e.

Proof. Since each shelf in J has height more than δ, size(J) > |J |δ.

t :=

⌈
|J |

bδ size(J)c+ 1

⌉
≤
⌈

size(J)/δ

δ size(J)

⌉
=

⌈
1

δ2

⌉
.

Lemma 6.18. J (lo) � J � J (hi) � J (lo) ∪ J (hi)
1 .

Proof. It is trivial to see that J (lo) � J � J (hi). For j ∈ [t− 1], all (1D) items in both J
(lo)
j and

J
(hi)
j+1 have height hj+1, and |Jj+1| ≤ q = |Jj|. Therefore, J

(hi)
j+1 � J

(lo)
j and hence

J (hi) = J
(hi)
1 ∪

t−1⋃
j=1

J
(hi)
j+1 � J

(hi)
1 ∪

t−1⋃
j=1

J
(lo)
j = J

(hi)
1 ∪ J (lo).

124

Lemma 6.19. size(J) < 1 + a(ÎL).

Proof. In the canonical shelving of ÎL, let Sj be the jth shelf. Let h(Sj) be the height of Sj. Let

a(Sj) be the total area of the items in Sj. Since the shelves are tight, items in Sj have height

at least h(Sj+1). So, a(Sj) ≥ h(Sj+1) and

size(J) =

|J |∑
j=1

h(Sj) ≤ 1 +

|J |−1∑
j=1

h(Sj+1) ≤ 1 +

|J |−1∑
j=1

a(Sj) < 1 + a(ÎL).

Lemma 6.20. soptδ(Î) < opt(J (lo) ∪ ÎS) + δa(ÎL) + (1 + δ).

Proof. By the definition of can-shelv, ÎL can be packed into J . By Lemma 6.18, J � J (hi), so

ÎL can be packed into J (hi). By Lemma 6.17, the number of distinct sizes in J (hi) is at most

d1/δ2e. So, the optimal 1D bin packing of J (hi) ∪ ÎS will give us a structured δ-fractional bin

packing of Î. Hence, soptδ(Î) ≤ opt(J (hi) ∪ ÎS).

By Lemma 6.18 and Observation 6.14 we get

opt(J (hi) ∪ ÎS) ≤ opt(J (lo) ∪ J (hi)
1 ∪ ÎS) ≤ opt(J (lo) ∪ ÎS) + opt(J

(hi)
1).

By Lemma 6.19,

opt(J
(hi)
1) ≤ |J (hi)

1 | ≤ q ≤ 1 + δ size(J) < 1 + δ(1 + a(ÎL)).

6.4.2.1 LP for Packing J (lo) ∪ ÎS

We will formulate an integer linear program for bin packing J (lo) ∪ ÎS.

Let C ∈ Zt−1
≥0 such that hC :=

∑t−1
j=1Cjhj+1 ≤ 1. Then C is called a configuration. C

represents a set of 1D items that can be packed into a bin and where Cj items are from J
(lo)
j .

Let C be the set of all configurations. We can pack at most d1/δe − 1 items into a bin because

ht > δ. By Lemma 6.16, we get |C| ≤
(d1/δe−1+t−1

t−1

)
≤ d1/δ2e1/δ.

Let xC be the number of bins packed according to configuration C. Bin packing J (lo) ∪ ÎS
is equivalent to finding the optimal integer solution to the following linear program, which we

125

denote as LP(Î).

min
x∈R|C|

∑
C∈C

xC

where
∑
C∈C

CjxC ≥ q ∀j ∈ [t− 1]

∑
C∈C

(1− hC)xC ≥ a(ÎS)

xC ≥ 0 ∀C ∈ C

Here the first set of constraints say that for each j ∈ [t − 1], all of the q := bδ size(J)c + 1

shelves J
(lo)
j should be covered by the configurations in x. The second constraint says that we

should be able to pack a(ÎS) into the non-shelf space in the bins.

Lemma 6.21. opt(J (lo) ∪ ÎS) ≤ opt(LP(Î)) + t.

Proof. Let x∗ be an optimal extreme-point solution to LP(Î). By rank-lemma, x∗ has at most

t non-zero entries. Let x̂ be a vector where x̂C := dx∗Ce. Then x̂ is an integral solution to LP(Î)

and
∑

C x̂C < t+
∑

C x
∗
C = opt(LP(Î)) + t.

The dual of LP(Î), denoted by DLP(Î), is

max
y∈Rt−1,z∈R

a(ÎS)z + q
t−1∑
j=1

yj

where
t−1∑
j=1

Cjyj + (1− hC)z ≤ 1 ∀C ∈ C

z ≥ 0 and yj ≥ 0 ∀j ∈ [t− 1]

6.4.2.2 Weighting Function for a Feasible Solution to DLP(Î)

We will now see how to obtain a monotonic weighting function η : [0, 1] 7→ [0, 1] from a feasible

solution to DLP(Î). To do this, we adapt techniques from Caprara’s analysis of HDHk [18]. Such

a weighting function will help us upper-bound opt(LP(Î)) in terms of optdBP(I).

We first describe a transformation that helps us convert any feasible solution of DLP(Î) to

a feasible solution that is monotonic. We then show how to obtain a weighting function from

this monotonic solution.

Transformation 6.10. Let (y, z) be a feasible solution to DLP(Î). Let s ∈ [t − 1]. Define

yt := 0 and ht+1 := 0. Then change ys to max(ys, ys+1 + (hs+1 − hs+2)z).

126

Lemma 6.22. Let (y, z) be a feasible solution to DLP(Î). Let (ŷ, z) be the new solution obtained

by applying Transformation 6.10 with parameter s ∈ [t− 1]. Then (ŷ, z) is feasible for DLP(Î).

Proof. For a configuration C, let f(C, y, z) := CTy+(1−hC)z, where CTy :=
∑t−1

j=1 Cjyj. Since

(y, z) is feasible for DLP(Î), f(C, y, z) ≤ 1. As per Transformation 6.10,

ŷj :=

max(ys, ys+1 + (hs+1 − hs+2)z) j = s

yj j 6= s
.

If ys ≥ ys+1 +(hs+1−hs+2)z, then ŷ = y, so (ŷ, z) would be feasible for DLP(Î). So now assume

that ys < ys+1 + (hs+1 − hs+2)z.

Let C be a configuration. Define Ct := 0. Let

Ĉj :=

0 j = s

Cs + Cs+1 j = s+ 1

Cj otherwise

.

Then, CT ŷ − ĈTy = Csŷs + Cs+1ŷs+1 − Ĉsys − Ĉs+1ys+1 = Cs(hs+1 − hs+2)z.

Also, hĈ − hC = Ĉshs+1 + Ĉs+1hs+2 − Cshs+1 − Cs+1hs+2 = −Cs(hs+1 − hs+2).

Since hĈ ≤ hC ≤ 1, Ĉ is a configuration.

f(C, ŷ, z) = CT ŷ + (1− hC)z

= (ĈTy + Cs(hs+1 − hs+2)z) + (1− hĈ − Cs(hs+1 − hs+2))z

= f(Ĉ, y, z) ≤ 1.

Therefore, (ŷ, z) is feasible for DLP(Î).

Definition 6.11. Let (y, z) be a feasible solution to DLP(Î). Let

ŷj :=

max(yt−1, zht) j = t− 1

max(yj, ŷj+1 + (hj+1 − hj+2)z) j < t− 1
.

Then (ŷ, z) is called the monotonization of (y, z).

Lemma 6.23. Let (y, z) be a feasible solution to DLP(Î). Let (ŷ, z) be the monotonization of

(y, z). Then (ŷ, z) is a feasible solution to DLP(Î).

127

Proof. (ŷ, z) can be obtained by multiple applications of Transformation 6.10: first with s =

t − 1, then with s = t − 2, and so on till s = 1. Then by Lemma 6.22, (ŷ, z) is feasible for

DLP(Î).

Let (y∗, z∗) be an optimal solution to DLP(Î). Let (ŷ, z∗) be the monotonization of (y∗, z∗).

Then define the function η : [0, 1] 7→ [0, 1] as

η(x) :=

ŷ1 if x ∈ [h2, 1]

ŷj if x ∈ [hj+1, hj), for 2 ≤ j ≤ t− 1

xz∗ if x < ht

.

Lemma 6.24. η is a monotonic weighting function.

Proof. η is monotonic by the definition of monotonization.

Let X ⊆ (0, 1] be a finite set such that sum(X) ≤ 1. Let X0 := X ∩ [0, ht), let X1 :=

X ∩ [h2, 1] and for 2 ≤ j ≤ t− 1, let Xj := X ∩ [hj+1, hj). Let C ∈ Zt−1
≥0 such that Cj := |Xj|.

Let hC :=
∑t−1

j=1Cjhj+1.

1 ≥ sum(X) = sum(X0) +
t−1∑
j=1

sum(Xj)

≥ sum(X0) +
t−1∑
j=1

Cjhj+1 (for j ≥ 1, each element in Xj is at least hj+1)

= sum(X0) + hC .

Since hC ≤ 1− sum(X0) ≤ 1, C is a configuration. Therefore,

∑
x∈X

η(x) =
t−1∑
j=0

∑
x∈Xj

η(x) = z∗ sum(X0) +
t−1∑
j=1

Cj ŷj (by definition of η)

≤ (1− hC)z∗ + CT ŷ (hC ≤ 1− sum(X0))

≤ 1. (C is a configuration and (ŷ, z∗) is feasible for DLP(Î) by Lemma 6.23)

Lemma 6.25. For i ∈ I, let p(i) := η(h(i))w(i). Then opt(LP(Î)) ≤ p(I) ≤ T d−1
k optdBP(I).

Proof. Let (y∗, z∗) be an optimal solution to DLP(Î). Let (ŷ, z∗) be the monotonization of

(y∗, z∗).

128

In the canonical shelving of I, suppose a rectangular item i (or a slice thereof) lies in

shelf S where S ∈ Jj. Then h(i) ∈ [hj+1, hj], where ht+1 := 0. This is because shelves in

J := can-shelv(Î) are tight. If j = 1, then η(h(i)) = ŷ1 ≥ y∗1. If 2 ≤ j ≤ t − 1, then

η(h(i)) ∈ {ŷj−1, ŷj} ≥ ŷj ≥ y∗j . We are guaranteed that for j ∈ [t − 1], and each shelf S ∈ Jj,
w(S) = 1.

p(I) =
t∑

j=1

∑
S∈Jj

∑
i∈S

η(h(i))w(i) +
∑
i∈ÎS

η(h(i))w(i) (by definition of p)

≥
t−1∑
j=1

∑
S∈Jj

∑
i∈S

y∗jw(i) +
∑
i∈ÎS

(h(i)z∗)w(i) (by definition of η)

=
t−1∑
j=1

y∗j q + a(ÎS)z∗ (since w(Jj) = q for j ∈ [t− 1])

= opt(DLP(Î)). ((y∗, z∗) is optimal for DLP(Î))

By strong duality of linear programs, opt(LP(Î)) = opt(DLP(Î)) ≤ p(I).

Since η and Hk are weighting functions (by Lemma 6.24), we get that p(I) ≤ T d−1
k optdBP(I)

by Theorem 6.1.

Theorem 6.6 (Structural theorem). Let I be a set of dD items. Let δ ∈ (0, 1) be a constant.

Then soptδ(round(I)) < T d−1
k (1 + δ) optdBP(I) + d1/δ2e+ 1 + δ.

Proof.

a(ÎL) ≤ a(Î) =
∑
i∈I

(
`d(i)

d−1∏
j=1

fk(`j(i))

)
≤ T d−1

k optdBP(I). (by Theorem 6.1)

soptδ(Î) < opt(J (lo) ∪ ÎS) + δa(ÎL) + (1 + δ) (by Lemma 6.20)

≤ opt(LP(Î)) +

⌈
1

δ2

⌉
+ δT d−1

k optdBP(I) + (1 + δ) (by Lemmas 6.17 and 6.21)

≤ T d−1
k (1 + δ) optdBP(I) +

⌈
1

δ2

⌉
+ 1 + δ. (by Lemma 6.25)

129

6.4.3 Guessing Shelves and Bins

We want guessShelves(Î, δ) to return all possible packings of empty shelves into at most

n := |Î| bins such that each packing is structured for (flat(Î), δ).

Let H = {h(i) : i ∈ flat(Î)}. Let N := | flat(Î)|. guessShelves(Î, δ) starts by picking

the distinct heights of shelves by iterating over all subsets of H of size at most d1/δ2e. The

number of such subsets is at most N d1/δ
2e + 1. Let H̃ := {h1, h2, . . . , ht} be one such guess,

where t ≤ d1/δ2e. Without loss of generality, assume h1 > h2 > . . . > ht > δ.

Next, guessShelves needs to decide the number of shelves of each height and a packing

of those shelves into bins. Let C ∈ Zt≥0 such that hC :=
∑t−1

j=1Cjhj ≤ 1. Then C is called a

configuration. C represents a set of shelves that can be packed into a bin and where Cj shelves

have height hj. Let C be the set of all configurations. We can pack at most d1/δe − 1 items

into a bin because ht > δ. By Lemma 6.16, we get

|C| ≤
(
d1/δe − 1 + t

t

)
≤
(
d1/δe − 1 + d1/δ2e
d1/δe − 1

)
≤
(⌈

1

δ2

⌉
+ 1

)1/δ

.

There can be at most n bins, and guessShelves has to decide the configuration of each bin.

By Lemma 6.16, the number of ways of doing this is at most
(|C|+n
|C|

)
≤ (n + 1)|C|. Therefore,

guessShelves computes all configurations and then iterates over all
(|C|+n
|C|

)
combinations of

these configs.

This completes the description of guessShelves and proves Theorem 6.7.

6.4.4 chooseAndPack

chooseAndPack(Î, P, δ) takes as input a set Î of 2D itemsets, a packing P of empty shelves

into bins and constant δ ∈ (0, 1). It tries to pack Î into P and one additional shelf. Before we

design chooseAndPack, let us see how to handle a special case, i.e., where Î is simple.

Definition 6.12. A set Î of 2D itemsets is δ-simple iff the width of each δ-large item in flat(Î)

is a multiple of 1/|Î|.

Let P be a bin packing of empty shelves. Let h1 > h2 > . . . > ht be the distinct heights

of the shelves in P , where ht > δ. We will use dynamic programming to either pack a simple

instance Î into P or claim that no assortment of Î can be packed into P . Call this algorithm

simpleChooseAndPack(Î, P, δ).
Let Î := {I1, I2, . . . , In}. For j ∈ {0, 1, . . . , n}, define Îj := {I1, I2, . . . , Ij}, i.e., Îj contains

the first j itemsets from Î. Let ~u := [u1, u2, . . . , ut] ∈ {0, 1, . . . , n2}t be a vector. Let Φ(j, ~u) be

130

the set of all assortments of Îj that can be packed into t shelves, where the rth shelf has height

hr and width ur/n. For a set K of items, define smallArea(K) as the total area of δ-small items

in K. Define g(j, ~u) := minK∈Φ(j,~u) smallArea(K). If Φ(j, ~u) = ∅, then we let g(j, ~u) =∞.

We will show how to compute g(j, ~u) for all j ∈ {0, 1, . . . , n} and all ~u ∈ {0, 1, . . . , n2}t

using dynamic programming. Let there be nr shelves in P having height hr. Then for j = n

and ur = nrn, Î can be packed into P iff g(j, ~u) is at most the area of non-shelf space in P .

Note that in any solution K corresponding to g(j, ~u), we can assume without loss of gen-

erality that the item i from K ∩ Ij is placed in the smallest shelves possible. This is because

we can always swap i with the slices of items in those shelves. This observation gives us the

following recurrence relation for g(j, ~u):

g(j, ~u) =

∞ if uj < 0 for some j ∈ [t]

0 if n = 0 and uj ≥ 0 for all j ∈ [t]

mini∈Ij

 smallArea({i})

+ g(j − 1, reduce(~u, i))

 if n > 0 and uj ≥ 0 for all j ∈ [t]

(6.1)

Here reduce(~u, i) is a vector obtained as follows: If i is δ-small, then reduce(~u, i) := ~u. Oth-

erwise, initialize x to w(i). Let pi be the largest integer r such that h(i) ≤ hr. For r varying

from pi to 2, subtract min(x, uj) from x and uj. Then subtract x from u1. The new value of ~u

is defined to be the output of reduce(~u, i).

The recurrence relation allows us to compute g(j, ~u) for all j and ~u using dynamic program-

ming in time O(Nn2t) time, where N := | flat(Î)|. With a bit more work, we can also compute

the corresponding assortment K, if one exists. Therefore, simpleChooseAndPack(Î, P, δ) com-

putes a packing of Î into P if one exists, or returns null if no assortment of Î can be packed

into P .

Now we will look at the case where Î is not δ-simple. Let Î ′ be the instance obtained

by rounding up the width of each δ-large item in Î to a multiple of 1/n, where n := |Î|.
Let P be the bin packing obtained by adding another bin to P containing a single shelf

of height h1. chooseAndPack(Î, P, δ) computes Î ′ and P , and then returns the output of

simpleChooseAndPack(Î ′, P , δ).

Theorem 6.9. If the output of chooseAndPack(Î, P, δ) is not null, then the output P is a

shelf-based δ-fractional packing of some assortment of Î such that |P | ≤ |P |+1 and the distinct

shelf heights in P are the same as that in P .

Proof. Follows from the definition of simpleChooseAndPack.

131

Theorem 6.8. If there exists an assortment K̂ of Î having a structured δ-fractional bin packing

P , then chooseAndPack(Î, P, δ) does not output null.

Proof. Let K̂ ′ be the items obtained by rounding up the width of each item in K̂ to a

multiple of 1/n. Then K̂ ′ is an assortment of Î ′. We will show that K̂ ′ fits into P , so

simpleChooseAndPack(Î ′, P , δ) will not output null.

Slice each item i ∈ K̂ ′ into two pieces using a vertical cut such that one piece has width

equal to the original width of i in K̂, and the other piece has width less than 1/n. This splits

K̂ ′ into sets K̂ and T . T contains at most n items, each of width less than 1/n. Therefore, we

can pack K̂ into P and we can pack T into the newly-created shelf of height h1. Therefore, K̂ ′

can be packed into P , so simpleChooseAndPack(Î ′, P , δ) won’t output null.

Theorem 6.10. chooseAndPack(Î, P, δ) runs in O(Nn2d1/δ2e) time. Here N := | flat(Î)|,
n := |Î|.

Proof. The running time of chooseAndPack(Î, P, δ) is dominated by computing g(j, ~u) for all

j and ~u, which takes O(Nn2t) time. Since P is structured for (Î, δ), the number of distinct

shelves in P , which is t, is at most d1/δ2e.

6.4.5 inflate

Let I be a set of dD items. Let P be a shelf-based δ-fractional bin packing of Î := round(I)

into m bins. Let there be t distinct heights of shelves in P : h1 > h2 > . . . > ht > δ. We want

to design an algorithm inflate(P) that returns a packing of I into approximately |P | bins.

Define ÎL := {i ∈ Î : h(i) > δ} and ÎS := Î − ÎL. Let there be Q distinct base types in I (so

Q ≤ kd−1).

6.4.5.1 Separating Base Types

We will now impose an additional constraint over P : items in each shelf must have the same

btype. This will be helpful later, when we will try to compute a packing of dD items I.

Separating base types of ÎS is easy, since we can slice them in both directions. An anal-

ogy is to think of a mixture of multiple immiscible liquids of different densities settling into

equilibrium.

Let there be nj shelves of height hj. Let Îj be the items packed into shelves of height hj.

Therefore, w(Îj) ≤ nj. Let Îj,q ⊆ Îj be the items of base type q ∈ [Q].

For each q, pack Îj,q into dw(Îj,q)e shelves of height hj (slicing items if needed). For these

newly-created shelves, define the btype of the shelf to be the btype of the items in it. Let the

132

number of newly-created shelves of height hj be n′j. Then

n′j =

Q∑
q=1

dw(Îj,q)e <
Q∑
q=1

w(Îj,q) +Q ≤ nj +Q =⇒ n′j ≤ nj +Q− 1.

nj of these shelves can be packed into existing bins in place of the old shelves. The remaining

n′j − nj ≤ Q− 1 shelves can be packed on the base of new bins.

Therefore, by using at most t(Q− 1) new bins, we can ensure that for every shelf, all items

in that shelf have the same btype. These new bins don’t contain any items from ÎS. Call this

new bin packing P ′.

6.4.5.2 Forbidding Horizontal Slicing

We will now use P ′ to compute a shelf-based bin packing P ′′ of Î where items in Î can be sliced

using vertical cuts only.

Let Îq,S be the items in ÎS of base type q. Pack items Îq,S into shelves using can-shelv.

Suppose can-shelv used mq shelves to pack Îq,S. For j ∈ [mq], let hq,j be the height of the jth

shelf. Let Hq :=
∑mq

j=1 hq,j and H :=
∑Q

q=1 Hq. Since for j ∈ [mq − 1], all items in the jth shelf

have height at least hq,j+1,

a(Îq,S) >

mq−1∑
j=1

hq,j+1 ≥ Hq − hq,1 ≥ Hq − δ.

Therefore, H < a(ÎS) +Qδ. Let ĴS be the set of these newly-created shelves.

Use Next-Fit to pack ĴS into the space used by ÎS in P ′. ÎS uses at most m bins in P ′

(recall that m := |P |). A height of less than δ will remain unpacked in each of those bins. The

total height occupied by ÎS in P ′ is a(ÎS). Therefore, Next-Fit will pack a height of more than

a(ÎS)− δm.

Some shelves in ĴS may still be unpacked. Their total height will be less than H − (a(ÎS)−
δm) < δ(Q+m). We will pack these shelves into new bins using Next-Fit. The number of new

bins used is at most dδ(Q+m)/(1− δ)e. Call this bin packing P ′′. The number of bins in P ′′

is at most m′ := m+ t(Q− 1) + dδ(Q+m)/(1− δ)e.

6.4.5.3 Shelf-Based dD packing

We will now show how to convert the packing P ′′ of Î that uses m′ bins into a packing of I

that uses m′ dD bins.

133

First, we repack the items into the shelves. For each q ∈ [Q], let Ĵq be the set of shelves in

P ′′ of btype q. Let Î [q] be the items packed into Ĵq. Compute Ĵ∗q := can-shelv(Î [q]) and pack

the shelves Ĵ∗q into Ĵq. This is possible by Lemma 6.15.

This repacking gives us an ordering of shelves in Ĵq. Number the shelves from 1 onwards.

All items have at most 2 slices. If an item has 2 slices, and one slice is packed into shelf number

p, then the other slice is packed into shelf number p+1. The slice in shelf p is called the leading

slice. Every shelf has at most one leading slice.

Let Sj be the jth shelf of Ĵq. Let Rj be the set of unsliced items in Sj and the item whose

leading slice is in Sj. Order the items in Rj arbitrarily, except that the sliced item, if any,

should be last. Then w(Rj − last(Rj)) < 1. So, we can use HDH-unit-pack
[q]
k (Rj) to pack Rj

into a (d− 1)D bin. This (d− 1)D bin gives us a dD shelf whose height is the same as that of

Sj. On repeating this process for all shelves in Ĵq and for all q ∈ [Q], we get a packing of I into

shelves. Since each dD shelf corresponds to a shelf in P ′′ of the same height, we can pack these

dD shelves into bins in the same way as P ′′. This gives us a bin packing of I into m′ bins.

6.4.5.4 The Algorithm

Sections 6.4.5.1, 6.4.5.2 and 6.4.5.3 describe how to convert a shelf-based δ-fractional packing

P of Î having t distinct shelf heights into a shelf-based dD bin packing of I. We call this

conversion algorithm inflate.

It is easy to see that the time taken by inflate is O(|I| log |I|).
If P has m bins, then the number of bins in inflate(P) is at most

m+ t(Q− 1) +

⌈
δ(Q+m)

1− δ

⌉
<

m

1− δ
+ t(Q− 1) + 1 +

δQ

1− δ
.

This proves Theorem 6.11.

6.4.6 Improving Running Time

For simplicity of presentation, we left out some opportunities for improving the running time of

HGaPk. Here we briefly describe a way of speeding up HGaPk which reduces its running time from

O(N1+d1/δ2enR+2d1/δ2e) to O(N1+d1/δ2en2d1/δ2e). Here N := | flat(Î)|, n := |Î|, δ := ε/(2+ε) and

R :=
(d1/δ2e+d1/δe−1

d1/δe−1

)
≤ (1 + d1/δ2e)1/δ.

In guessShelves, we guess two things simultaneously: (i) the number and heights of shelves

(ii) the packing of the shelves into bins. This allows us to guess the optimal structured δ-

fractional packing. But we don’t need that; an approximate structured packing would do.

134

Therefore, we only guess the number and heights of shelves. We guess at most N d1/δ
2e + 1

distinct heights of shelves, and by Lemma 6.16, we guess at most (n+ 1)d1/δ
2e vectors of shelf-

height frequencies. Then we can use Lueker and De La Vega’s O(n log n)-time APTAS for

1BP [26] to pack the shelves into bins.

Also, once we guess the distinct heights of shelves, we don’t need to run chooseAndPack

afresh for every packing of empty shelves. We can reuse the dynamic programming table.

The running time is, therefore,

O
(
N d1/δ

2e
(
nd1/δ

2en log n+Nn2d1/δ2e
))

= O(N1+d1/δ2en2d1/δ2e).

6.5 HDH-unit-packk

This section gives a precise description of HDH-unit-packk (see Section 6.1.3) and proves its

correctness.

6.5.1 Shelf-Based Packing

A packing of 2D items in a bin (or strip) is said to be shelf-based iff the bin can be decomposed

into regions, called shelves, using horizontal cuts, and the bottom edge of each item touches the

bottom edge of some shelf. See Fig. 6.3 for an example. Next-Fit Decreasing Height (NFDH)

and First-Fit Decreasing Height (FFDH) [24] are well-known shelf-based algorithms for 2BP

and 2SP.

Figure 6.3: An example of shelf-based packing for d = 2 with 3 shelves.

The definition of shelf-based packing can be extended to dD for d ≥ 1. For d = 1, every

packing is said to be a shelf-based packing. For d ≥ 2, for a dD cuboid, there are two faces of the

cuboid that are perpendicular to the dth dimension. The face with the smaller dth coordinate is

called the base of the cuboid. A packing of dD items into a bin is shelf-based iff the dD bin can

135

be split into dD shelves using hyperplanes perpendicular to the dth dimension, and the base of

each item is placed on the base of some shelf.

A packing of dD items into a bin is recursive-shelf-based iff the packing is shelf-based and

the packing of the bases of items on the base of each shelf is a (d − 1)D recursive-shelf-based

bin packing. (For d = 1, every packing is said to be recursive-shelf-based.)

This helps us reduce dBP to (d− 1)BP, (d− 1)BP to (d− 2)BP, and so on. The algorithm

HDHk by Caprara [18] outputs a recursive-shelf-based packing by using this strategy.

6.5.2 Description and Analysis of HDH-unit-packk

For a dD item i, define i(j) as the jD item obtained by ignoring all dimensions of i other than

the first j. For a set I of dD items, let I(j) := {i(j) : i ∈ I}.
HDH-unit-packk takes as input a set I of dD items, where all items in I have the same

type vector and vol(fk(I − {last(I)})) < 1. HDH-unit-packk(I) works recursively on d. When

d = 1, it simply returns I. When d > 1, it first sorts I in decreasing order of dth dimension if

typek(`d(i)) = k for each item i ∈ I. It then repeatedly picks the smallest prefix J of I such

that vol(fk(J
(d−1))) ≥ 1, and packs J into a dD shelf. It packs all those shelves into a dD bin

and returns that packing. See Algorithm 13 for a more precise description.

Define f̃k(i) to be the cuboid ı̃ where `j (̃ı) := fk(`j(i)) for j ∈ [d − 1] and `d(̃ı) := `d(i).

Define f̃k(I) := {f̃k(i) : i ∈ I}.

Theorem 6.26 (Correctness). For a set I of dD cuboidal items, if vol(fk(I − {last(I)})) < 1,

then HDH-unit-packk(I) can pack I in a dD bin.

Proof. Let us prove this by induction on d. Let P(d) be this proposition: For every sequence I

of dD items, if vol(fk(I)) < 1 + vol(fk(last(I))), then HDH-unit-packk(I) can pack I into a dD

bin.

Base case: Let I be a sequence of 1D items such that vol(fk(I)) < 1 + vol(fk(last(I))).

Suppose t1 6= k. Then for all i ∈ I, vol(i) ≤ 1/t1 = vol(fk(i)). Therefore,

vol(fk(I)) < 1 + vol(fk(last(I)))

=⇒ |I|
t1

< 1 +
1

t1

=⇒ |I| < t1 + 1 =⇒ |I| ≤ t1

=⇒ vol(I) ≤ |I|
t1
≤ 1.

136

Algorithm 13 HDH-unit-pack
[t]
k (I): For any d ≥ 1, returns a recursive-shelf-based packing of

I into a dD bin, where I is a sequence of dD cuboidal items and vol(fk(I − {last(I)})) < 1.
Here last(I) is the last item in sequence I. Also, all items in I have the same type t, i.e.,
∀i ∈ I, type(i) = t.

1: if d == 1 then // when items are 1D
2: return I. // Theorem 6.26 proves that they fit in a bin.
3: end if
4: if td == k then // when length in dth dimension is small
5: Sort I in decreasing order of dth dimension.
6: end if // otherwise don’t disturb ordering of items.
7: Let P be an empty list.
8: while |I| > 0 do
9: Find J , the smallest prefix of I such that J = I or vol(fk(J

(d−1))) ≥ 1.
10: Let t′ be a (d− 1)-dimensional vector obtained by removing the dth entry from t.

11: S = HDH-unit-pack
[t′]
k (J (d−1)) // S is a dD shelf containing items J .

12: Append S to the list P .
13: Remove J from I.
14: end while
15: Return the shelf packing P . // Theorem 6.26 proves that the sum of heights of shelves

doesn’t exceed 1, so this is a valid packing.

Since vol(I) ≤ 1, I fits in a bin.

Suppose t1 = k. Then for all i ∈ I, vol(fk(i)) = k
k−2

vol(i). Therefore,

vol(I) =
k − 2

k
vol(fk(I))

<
k − 2

k
(1 + vol(fk(last(I))))

=
k − 2

k
+ vol(last(I))

≤ k − 2

k
+

1

k
< 1.

Since vol(I) ≤ 1, I fits in a bin. Therefore, P(1) holds.

Inductive step:

Let d ≥ 2 and assume P(d− 1) holds. Let I be a sequence of dD items such that vol(fk(I)) <

1 + vol(fk(last(I))). P(d − 1) implies that HDH-unit-packk(I) doesn’t fail at line 11. Let

s := last(I).

For i ∈ I, define w(i) :=
∏d−1

j=1 fk(`j(i)) and for X ⊆ I, define w(X) :=
∑

i∈X w(i). Let

there be p shelves in the list P . Let Sj be the jth shelf that was added to P . Given the way

137

each prefix is chosen in line 9,

∀j ≤ p− 1, w(Sj) ≥ 1 (6.2)

Define `d(Sj) := maxi∈Sj
`d(i) to be the height of shelf Sj. Let H be the total height of the

shelves, i.e. H :=
∑p

j=1 `d(Sj). Then we need to prove that the shelves fit in the bin, i.e.

H ≤ 1.

Case 1: Suppose td 6= k.

Then ∀i ∈ I, `d(i) ≤ 1/td = fk(`d(i)). Therefore,

1 > vol(fk(I − s)) =
w(I − s)

td
=⇒ w(I − s) < td.

Since ordering of items is not disturbed, s ∈ Sp. Therefore,

td > w(I − s) =

p−1∑
j=1

w(Sj) + w(Sp − s) ≥ p− 1 (by (6.2))

=⇒ p < td + 1 =⇒ p ≤ td

=⇒ H =

p∑
j=1

`d(Sj) ≤
p

td
≤ 1. (∀i ∈ I, `d(i) ≤ 1/td)

Since H ≤ 1, the shelves fit in a dD bin.

Case 2: Suppose td = k.

Then ∀i ∈ I, fk(`d(i)) = k
k−2

`d(i). Therefore,

vol(f̃k(I)) =
∑
i∈I

w(i)`d(i) =
k − 2

k

∑
i∈I

w(i)fk(`d(i)) =
k − 2

k
vol(fk(I))

<
k − 2

k
(1 + vol(fk(s))) =

k − 2

k
+ vol(f̃k(s)). (6.3)

Since items in I were sorted in decreasing order of `d (line 5), ∀i ∈ Sj, `d(i) ≥ `d(Sj+1). Then

by (6.2), we get that for all j ∈ [p− 1],

vol(f̃k(Sj)) ≥ w(Sj)`d(Sj+1) ≥ `d(Sj+1) (6.4)

138

Therefore,

H =

p∑
j=1

`d(Sj) ≤
1

k
+

p−1∑
j=1

`d(Sj+1) (since `d(S1) ≤ 1/k)

≤ 1

k
+

p−1∑
j=1

vol(f̃k(Sj)) (by (6.4))

<
1

k
+ vol(f̃k(I))

<
1

k
+
k − 2

k
+ w(s)`d(s) (by (6.3))

≤ k − 1

k
+

1

k
= 1. (since `d(s) ≤ 1/k and w(s) = vol(fk(s

(d−1))) ≤ 1)

Since H ≤ 1, the shelves fit in a dD bin. Therefore, P(d) holds.

Therefore, by mathematical induction, P(d) holds for all d ≥ 1.

Note that HDH-unit-packk has a running time of O(n log n).

Comment on Caprara’s [18] analysis of HDHk. Caprara [18] implicitly proves Theo-

rem 6.26 in Lemma 4.1 in their paper and their proof is less detailed than ours. Their algorithm

is similar to ours, except that they allow arbitrarily reordering I when td 6= k, and instead of

choosing a prefix of I (line 9 in HDH-unit-packk), they choose a subset of I that is minimal for

some properties.

6.6 Harmonic Algorithm for Strip Packing

6.6.1 Multiple-Choice Strip Packing

Let I be a set of dD cuboidal items. In the dD strip packing problem (dSP), we have to compute

a feasible packing of I (without rotating the items) into a dD cuboid (called a strip) that has

length one in the first d − 1 dimensions and has the minimum possible length (called height)

in the dth dimension. Let optdSP(I) denote the minimum height of a strip needed to pack I.

In the dD multiple-choice strip packing problem (dMCSP), we are given as input a set

I = {I1, I2, . . . , In}, where for each j, Ij is a set of items, called an itemset. We have to pick

exactly one item from each itemset and pack those items into a strip of minimum height.

Equivalently, given an input instance I, we have to select an assortment K ∈ Ψ(I) and

output a strip packing of K, such that the total height of the strip is minimized. Therefore,

optdMCSP(I) := minK∈Ψ(I) optdSP(K).

139

6.6.2 Revisiting the HDHk Algorithm

Caprara [18] gave an algorithm for dSP, which we call HDH-SPk. We will first prove a few useful

properties of HDH-SPk and then see how to extend it to dMCSP.

For a dD item i, btype(i) (called base type) is defined to be a (d − 1)-dimensional vector

whose jth component is typek(`j(i)). Define f̃k(i) to be the cuboid ı̃ where `j (̃ı) := fk(`j(i)) for

j ∈ [d− 1] and `d(̃ı) := `d(i). Define f̃k(I) := {f̃k(i) : i ∈ I}. Similarly define H̃k(i) and H̃k(I).

Define i(j) to be the j-dimensional item obtained by ignoring all dimensions of i other than the

first j. For a set I of dD items, let I(j) := {i(j) : i ∈ I}.
HDH-SPk works by first partitioning the items based on btype. Then for each partition, it

repeatedly picks the smallest prefix J such that vol(fk(J
(d−1))) ≥ 1 and packs J into a dD

shelf by using HDH-unit-packk on J (d−1) (see Section 6.5.1 for the definition of a dD shelf). See

Algorithm 14 for a more precise description of HDH-SPk. Note that HDH-SPk(I) has a running

time of O(n log n), where n := |I|.

Algorithm 14 HDH-SPk(I): Returns a strip packing of dD items I (d ≥ 2).

1: Let P be an empty list.
2: for each btype t do
3: I [t] = {i ∈ I : btype(i) = t}.
4: Sort items in I [t] in non-increasing order of their length in the dth dimension.
5: while |I [t]| > 0 do
6: Find J , the smallest prefix of I [t] such that J = I [t] or vol(fk(J

(d−1))) ≥ 1.

7: S = HDH-unit-pack
[t]
k (J (d−1)) // S is a dD shelf containing items J .

8: Append S to the list P .
9: Remove J from I [t].

10: end while
11: end for
12: Return the strip packing formed by the shelves P .

Theorem 6.27. The height of the strip packing produced by HDH-SPk(I) is less than Q +

vol(f̃k(I)), where Q is the number of distinct btypes of items (so Q ≤ kd−1).

Proof. Let there be p[q] shelves of btype q produced by HDH-SPk(I). Let S
[q]
j be the set of items

in the jth shelf of btype q. Define `d(S
[q]
j) := max

i∈S[q]
j
`d(i) to be the height of shelf S

[q]
j .

Since items in I [q] were sorted in decreasing order of `d, ∀i ∈ S[q]
j , `d(i) ≥ `d(S

[q]
j+1). Given

the way we choose prefixes, vol(fk(S
[q](d−1)
j)) ≥ 1 for j ∈ [p− 1].

vol(f̃k(S
[q]
j)) ≥ vol(fk(S

[q](d−1)
j))`d(S

[q]
j+1) ≥ `d(S

[q]
j+1) (6.5)

140

Total height of the strip packing is

Q∑
q=1

p[q]∑
j=1

`d(S
[q]
j) ≤

Q∑
q=1

1 +

p[q]−1∑
j=1

`d(S
[q]
j+1)

 (since `d(S
[q]
1) ≤ 1)

≤ Q+

Q∑
q=1

p[q]−1∑
j=1

vol(f̃k(S
[q]
j)) (by (6.5))

< Q+

Q∑
q=1

p[q]∑
j=1

vol(f̃k(S
[q]
j)) = Q+ vol(f̃k(I)).

Theorem 6.28. For a set I of dD items, vol(f̃k(I)) ≤ T d−1
k optdSP(I).

Proof. I fits in a unit strip of height optdSP(I). Let I ′ be the items obtained by scaling each

item’s height by 1/ optdSP(I). Then I ′ fits in a unit cube.

Since Hk is a weighting function, H̃k(I
′) fits in a unit cube by Theorem 6.1. Therefore, H̃k(I)

can be packed into a unit strip of height optdSP(I). Therefore, vol(f̃k(I)) ≤ T d−1
k vol(H̃k(I)) ≤

T d−1
k optdSP(I).

Corollary 6.29. HDH-SPk(I) packs I into a strip of height less than Q+ T d−1
k optdSP(I), where

Q is the number of distinct btypes of items.

Proof. Follows from Theorems 6.27 and 6.28.

6.6.3 Extending HDH-SPk to dMCSP

Theorem 6.30. Let I be a dMCSP instance. Let K̂ := {argmini∈I vol(f̃k(i)) : I ∈ I}, i.e.,

K̂ is the assortment obtained by picking from each itemset the item i having the minimum

value of vol(f̃k(i)). Then the height of the strip packing produced by HDH-SPk(K̂) is less than

Q + T d−1
k optdMCSP(I), where Q is the number of distinct btypes of items in flat(I) (so Q ≤

kd−1).

Proof. For any assortment K, vol(f̃k(K̂)) ≤ vol(f̃k(K)). Let K∗ be the assortment in an

optimal packing of I. By Theorems 6.27 and 6.28, the height of the strip packing produced by

HDH-SPk(K̂) is less than

Q+ vol(f̃k(K̂)) ≤ Q+ vol(f̃k(K
∗)) ≤ Q+ T d−1

k optdSP(K∗) = Q+ T d−1
k optdMCSP(I).

141

Let N := | flat(I)| and n := |I|. Then we can find K̂ in O(N) time and compute HDH-SPk(K̂)

inO(n log n) time. Therefore, we get a T d−1
k -asymptotic-approximate algorithm for dMCSP that

runs in O(N + n log n) time.

6.7 Harmonic Algorithm for dMCKS

In the dD knapsack problem (dKS), we are given a set I of dD items, and a profit p(i) for each

item i ∈ I. We have to compute a maximum-profit packing of a subset of I (without rotating

the items) into a dD unit cube (called a knapsack).

In the dD multiple-choice knapsack problem (dMCKS), we are given a set I = {I1, I2, . . . , In}
as input, where for each j, Ij is a set of items, called an itemset, and each item i ∈ Ij has a

profit p(i). We have to pick at most one item from each itemset and pack those items into a

dD bin such that the total profit is maximized.

For a dD item i, btype(i) (called base type) is defined to be a (d − 1)-dimensional vector

whose jth component is typek(`j(i)). Define f̃k(i) to be the cuboid ı̃ where `j (̃ı) := fk(`j(i)) for

j ∈ [d− 1] and `d(̃ı) := `d(i). Define f̃k(I) := {f̃k(i) : i ∈ I}. Similarly define H̃k(i) and H̃k(I).

We will see a fast and simple algorithm HDH-NFk(I) (Algorithm 15) for dBP that we will use

to design an algorithm for dMCKS.

Algorithm 15 HDH-NFk(I): Returns a bin packing of dD items I (d ≥ 2).

1: Let P be the list of shelves output by HDH-SPk(I). // cf. Section 6.6 for HDH-SPk.
2: Let P ′ be an empty list.
3: for each btype q do
4: Let S

[q]
1 , S

[q]
2 , . . . , S

[q]

p[q]
be the shelves in P of btype q, in decreasing order of height.

5: Pack S
[q]
1 in a dD bin.

6: For j ≥ 2, add S
[q]
j to P ′.

7: end for
8: Interpreting each shelf S

[q]
j in P ′ as a 1D item of size `d(S

[q]
j), pack the shelves into dD bins

using Next-Fit.

Note that HDH-NFk(I) runs in O(n log n) time.

Theorem 6.31. HDH-NFk(I) uses at most Q + d2 vol(f̃k(I))e bins, where Q is the number of

distinct btypes of items.

Proof. For each q ∈ [Q], S
[q]
1 occupies one bin.

As per Eq. (6.5) in the proof of Theorem 6.27, for all t ≤ p[q] − 1, we get vol(f̃k(S
[q]
t)) ≥

`d(S
[q]
t+1).

142

Let H be the total height of the shelves in P ′. Then

H =

Q∑
q=1

p[q]−1∑
t=1

`d(S
[q]
t+1) ≤

Q∑
q=1

p[q]−1∑
t=1

vol(f̃k(S
[q]
t)) (by (6.5))

<

Q∑
q=1

p[q]∑
t=1

vol(f̃k(S
[q]
t)) = vol(f̃k(I)).

Next-Fit guarantees that for a 1BP instance J , number of bins used is at most d2 vol(J)e (see

Lemma 3.1). So for the shelves in P ′, we use d2He bins. The total number of bins used is

therefore Q+ d2He ≤ Q+ d2 vol(f̃k(I))e.

By Theorems 6.28 and 6.31, we get that HDH-NFk is 2T d−1
k -asymptotic-approximate.

Lawler gave an FPTAS for 1MCKS that has a running time of O(N logN + Nn/ε) [55],

where N := | flat(I)| and n := |I|. We will use it along with HDH-NF3 to get an algorithm for

dMCKS, called HDH-KS (see Algorithm 16).

Our algorithm for dMCKS, called HDH-KS(I), works as follows: It computes a 1MCKS

instance Î by replacing each item i in I by a 1D item vol(H̃3(i)). It uses the FPTAS for 1MCKS

to obtain a (1 + ε)-approximate solution J to Î. It uses HDH-NF3 to pack the corresponding

dD items of J into bins. It then selects the most profitable bin. See Algorithm 16 for a more

detailed description.

Algorithm 16 HDH-KS(I): algorithm for dMCKS.

1: Î = {{vol(H̃3(i)) : i ∈ I} : I ∈ I}. // Reduction to 1MCKS.

2: Let Ĵ be a (1 + ε)-approximate solution to the 1MCKS instance Î output by the FPTAS
for 1MCKS.

3: Let J be the items of I corresponding to Ĵ .
4: Let [J1, J2, . . . , Jb] be the bin packing of J produced using HDH-NF3.

5: jmax =
b

argmax
j=1

p(Jj)

6: return Jjmax .

HDH-KS runs in O(N logN +Nn/ε) time.

Theorem 6.32. HDH-KS is 3d(1 + ε)-approximate.

Proof. Let I be a set of dD items. Suppose S ⊆ I can be packed into a bin. Then by

Theorem 6.1, Ŝ = {vol(H̃3(i)) : i ∈ S} can also be packed into a bin. Therefore, opt1MCKS(Î) ≥
optdMCKS(I).

143

The FPTAS for 1MCKS gives us Ĵ such that p(Ĵ) ≥ opt1MCKS(Î)/(1 + ε). HDH-NFk packs

J into b ≤ 3d−1 + d2T d−1
3 vol(H̃3(J))e ≤ 3d bins. Given the way we choose jmax,

p(Jjmax) ≥ p(J)

b
=
p(Ĵ)

b
≥ opt1MCKS(Î)

b(1 + ε)
≥ optdMCKS(I)

3d(1 + ε)
.

6.8 Weighting Function Transform

In this section, we prove Theorem 6.1.

Lemma 6.33. Let I be a set of dD items that can be packed into a bin. Let g be a weighting

function. Let q ∈ [d]. For i ∈ I, define g(i) to be the item ı̂ for which `j (̂ı) := `j(i) when

j 6= q and `q (̂ı) := g(`q(i)). Then the items {g(i) : i ∈ I} can be packed into a dD bin (without

rotating the items).

Bansal, Caprara and Sviridenko [10] give a brief proof sketch for d = 2, based on which we

provide a full proof below.

Proof. Any dD cuboid can be represented as the Cartesian product of d closed intervals on the

real line. Let the bin be [0, 1]d. Any item i ∈ I can be written as
∏d

j=1[vj(i), vj(i) + `j(i)]. Here

vj(i) is called the position of item i in dimension j. Since each item i lies completely inside the

bin, 0 ≤ vj(i) < vj(i) + `j(i) ≤ 1. Two cuboids A and B are said to overlap if their intersection

has positive volume. Since I is a valid packing, no two items overlap.

Assume without loss of generality that q = d. Let proj(i) be the projection of item i onto

the hyperplane perpendicular to the dth dimension. This hyperplane can be thought of as the

base of the bin.

We will now show that for each item i, we can change `d(i) to g(`d(i)) and change vd(i) so

that the items continue to fit in the bin. But to define what the new value of vd(i) would be,

we need to first introduce some notation.

For two items i1 and i2, we say that i1 ≺ i2 (i1 is a predecessor of i2) iff vd(i1) < vd(i2) and

proj(i1) overlaps proj(i2). Call a sequence [i0, i1, . . . , im−1] of items a chain iff im−1 ≺ im−2 ≺
. . . ≺ i0. i0 is called the head of this chain. The augmented height of a chain S is defined to

be
∑

i∈S g(`d(i)). For each item i, we wish to find the chain headed at i with the maximum

augmented height.

144

For an item i, define

level(i) :=

0 if i has no predecessors

1 + max
i′≺i

level(i′) otherwise
.

Since ≺ is anti-symmetric, level is well-defined. Define π and u as

u(i) := g(`d(i)) +

0 if level(i) = 0

u(π(i)) otherwise
π(i) :=

null if level(i) = 0

argmax
i′≺i

u(i′) otherwise
.

In the definition of π, ties can be broken arbitrarily for argmax. i′ ≺ i implies level(i′) < level(i),

so level(π(i)) < level(i). This ensures that the definitions of π and u are not mutually circular.

We can prove, by inducting on level(i), that Π(i) := [i, π(i), π(π(i)), . . .] is the chain headed

at i with the maximum augmented height, and that the augmented height of Π(i) is u(i).

Transformation 6.13. For each item i ∈ I, change `d(i) to g(`d(i)) and change vd(i) to

v′d(i) := u(i)− g(`d(i)).

We need to prove that Transformation 6.13 produces a valid packing, i.e. items don’t overlap

and all items lie completely inside the bin [0, 1]d.

Let i1 and i2 be any two items. We will prove that they don’t overlap in the new packing.

If proj(i1) and proj(i2) don’t overlap, then i1 and i2 don’t overlap and we are done, so assume

proj(i1) and proj(i2) overlap. Assume without loss of generality that i1 ≺ i2. Then level(i2) ≥ 1

and

v′d(i2) = u(i2)− g(`d(i2)) = max
i′≺i2

u(i′) ≥ u(i1) = v′d(i1) + g(`d(i1)).

Therefore, i1 and i2 don’t overlap in the new packing.

After Transformation 6.13, item i lies completely inside the bin iff v′d(i)+g(`d(i)) = u(i) ≤ 1.

Let i0 := i and Π(i) = [i0, i1, i2, . . . , im−1]. Then u(i) =
∑m−1

j=0 g(`d(ij)) and for all j ∈ [m −
1], ij ≺ ij−1. Since ij and ij−1 don’t overlap in the original packing, but proj(ij) and proj(ij−1)

overlap, we get vd(ij−1) ≥ vd(ij) + `d(ij). Therefore,

m−1∑
j=0

`d(ij) ≤ `d(i) +
m−1∑
j=1

(vd(ij−1)− vd(ij)) (since vd(ij−1) ≥ vd(ij) + `d(ij))

= `d(i) + vd(i)− vd(im−1) ≤ 1. (∵ in the original packing, i lies in the bin)

145

Since g is a weighting function and
∑m−1

j=0 `d(ij) ≤ 1, we get u(i) =
∑m−1

j=0 g(`d(ij)) ≤ 1.

Therefore, the packing obtained by Transformation 6.13 is valid. So {g(i) : i ∈ I} can be

packed into a bin.

Theorem 6.1. Let I be a set of dD items that can be packed into a bin. Let g1, g2, . . . , gd

be weighting functions. For i ∈ I, define g(i) as the item whose length is gj(`j(i)) in the jth

dimension. Then {g(i) : i ∈ I} can be packed into a dD bin (without rotating the items).

Proof. Apply Lemma 6.33 multiple times, with q ranging from 1 to d.

6.9 Hard Instance for Shelf-Based Packing

We will prove that no shelf-based algorithm can get an asymptotic approximation ratio better

than T d−1
∞ for dD SP or dD BP. Caprara [18] proved this for d = 2. To do this, for any k ≥ 3 and

m > 0, we will show a set of items that fit into m dD bins but their optimal shelf-based strip-

packing has height more than m(1 − ε)Sd−1
k , where Sk :=

∑k−1
j=1

1
rj

. Define S∞ := limk→∞ Sk.

It can be proved that T∞ = S∞ ≈ 1.6910302.

It’s important to note what exactly we mean by shelf-based. Here we forbid item rotation

and only allow stacking shelves along the dth dimension (for d = 3, this means that the base

of each shelf is perpendicular to the z-axis, and for d = 2, this means that all shelves have

width 1). As noted by Caprara [18] for d = 2, if at the beginning of the algorithm we can

choose whether to use horizontal shelves (width=1) or vertical shelves (height=1), and this

choice depends on the input items, then we may get an asymptotic approximation ratio less

than T∞.

For simplicity of presentation, we will only consider the d = 3 case. We call the first

dimension x-axis, the second dimension y-axis and the third dimension z-axis. An item’s

length in the dth dimension is called height. It’s easy to extend our result to higher dimensions,

and we will give a few hints on how to do so.

Let rj be the jth harmonic number. Choose an integer k ≥ 2 and positive constant 0 <

δ ≤ 1/(rk − 1) and ε > 0 such that 1/ε ∈ Z. Define a0 := 0 and for j ∈ [k − 1], define

aj := (1 + δ)(1− 1/rj+1). Therefore, 0 = a0 < a1 < a2 < . . . < ak−1 ≤ 1. Create a cube of side

length ak−1. We will cut this cube into pieces, and then cut those pieces into items. Therefore,

the items will fit into a bin. See Fig. 6.4 for an example.

First cut the cube using the planes x = aj for j ∈ [k − 2]. Then cut the cube using the

planes y = aj for j ∈ [k − 2]. This will give us Q := (k − 1)2 pieces. For the piece between

the planes x = aq1−1, x = aq1 , y = aq2−1 and y = aq2 , we call ~q := (q1, q2) the base type of that

146

1
2

3
4

3/5 2/5

3/5

2/5

1 2 3 4

Figure 6.4: Constructing a hard instance for dD shelf-based packing, where d = 3, k = 3,
ε = 1/2, and δ = 1/(rk−1) = 1/5. The top half of the figure shows how to cut out (k−1)d−1 = 4
pieces from a cube of side length ak−1 = 1. The bottom half shows how to cut out 1/εj−1 items
from piece number j.

piece. (For general d, make such cuts in each of the first d− 1 dimensions in a dD cube to get

Q := (k − 1)d−1 pieces. The type of a piece is a (d − 1)-dimensional vector.) Now arbitrarily

order these pieces and number them from 1 to Q. This number is called the height type of the

piece. For the piece having height type j, use planes perpendicular to the z-axis to cut it into

items of height εj−1.

Repeat this process for m − 1 additional cubes. Let I be the resulting set of items. So I

can fit into m bins. We call I a hard instance for shelf-based packing.

Theorem 6.34. Let I be a hard instance for shelf-based packing, parametrized by m > 0,

k ≥ 3, 0 < δ ≤ 1/(rk−1), ε > 0. Then the height of an optimal strip-packing of I is more than

m(1− ε)Sd−1
k .

Proof. Consider items of height type j. They all have the same base type ~q. These items have

length (1 + δ)/(rq1 + 1) along the x-axis and length (1 + δ)/(rq2 + 1) along the y-axis. For

any j ∈ [k − 1], we have 1/(rj + 1) < (1 + δ)/(rj + 1) ≤ 1/rj . Hence, we can have at most

rq1rq2 such items in one shelf. Let Rj := rq1rq2 . Since there are m/εj−1 items of height type

j, these items will be spread across at least m/Rjε
j−1 shelves. Those shelves will have height

147

at least εj−1. Therefore, for all j ∈ [Q], we have at least mj := m/Rjε
j−1 shelves of height

at least hj := εj−1. We will use this fact to lower-bound the height of the optimal shelf-based

strip-packing of I.

Let xj be the number of shelves of height exactly εj−1. Then the total height of the optimal

shelf-based strip-packing of I is lower-bounded by the following linear program:

min
x∈RQ

Q∑
i=1

hixi where
i∑

j=1

xj ≥ mi ∀i ∈ [Q].

Define m0 := hQ+1 := 0. Let x̂i := mi − mi−1. Then x̂ is a feasible solution to this linear

program and has objective value

Q∑
i=1

hix̂i =

Q∑
i=1

hi(mi −mi−1) =

Q∑
i=1

(hi − hi+1)mi.

The dual of this linear program is

max
y∈RQ

Q∑
i=1

yimi where

Q∑
j=i

yj ≤ hi ∀i ∈ [Q].

Let ŷi := hi − hi+1. Then ŷ is a feasible solution to the dual linear program and has objective

value
∑Q

i=1 hix̂i. By the weak duality of linear programs, x̂ is an optimal solution to the

linear program. Therefore, the total height of the optimal shelf-based strip-packing of I is

lower-bounded by

Q∑
i=1

(hi − hi+1)mi > m

Q∑
i=1

(εi−1 − εi) 1

Riεi−1
= m(1− ε)

Q∑
i=1

1

Ri

= m(1− ε)
k−1∑
q1=1

k−1∑
q2=1

1

rq1rq2
= m(1− ε)

(
k−1∑
q=1

1

rq

)d−1

= m(1− ε)Sd−1
k .

148

Chapter 7

Guillotine-Separable Packing of

Skewed Rectangles

In this chapter, we consider the problem of obtaining tight upper and lower bounds on the

Asymptotic Price of Guillotinability (APoG). See Section 1.2.3 to recall the definition and

significance of APoG. See Section 1.1.4 to recall the definition of guillotinable packing and

k-stage packing.

We focus on the special case where the items are (δW , δH)-skewed rectangles, i.e., each item

has width at most δW or height at most δH , where δW and δH are constants. We give lower

and upper bounds of roughly 4/3 when δW and δH are very small constants.

7.1 Overview of the Chapter

In Section 7.2, we show a lower bound of 4/3 on APoG for skewed rectangles. Formally, we

prove the following theorem.

Definition 7.1 (Hard instance). Let m and k be positive integers and ε ∈ (0, 1). Define

hardItems(m, k, ε) as a set of 4mk rectangular items, where 2mk items have width (1 + ε)/2

and height (1− ε)/2k, and 2mk items have height (1 + ε)/2 and width (1− ε)/2k.

Theorem 7.1. Let I := hardItems(m, k, ε). Let opt(I) be the number of bins in the optimal

packing of I and optg(I) be the number of bins in the optimal guillotinable packing of I. Then

optg(I)

opt(I)
≥ 4

3
(1− ε).

149

This holds true even if items in I are allowed to be rotated.

In Section 7.3, we give an algorithm for non-rotational 2D GBP, called skewed4Packε, that

takes a parameter ε ∈ (0, 1) as input. For a set I of (δW , δH)-skewed rectangles, we show that

when δW , δH and ε are close to 0, skewed4Packε(I) outputs a guillotinable packing of I into

roughly 4 opt(I)/3+O(1) bins. This proves an upper bound of roughly 4/3 on APoG for skewed

rectangles. Formally, we prove the following theorems about skewed4Pack.

Theorem 7.2. skewed4Packε(I) outputs a 4-stage packing of I in time O((1/ε)O(1/ε)+n log n).

Theorem 7.3. Let I be a set of items where each item has width at most δW or height at most

δH . Then skewed4Packε(I) uses less than α(1 + ε) opt(I) + 2β bins, where

∆ :=
1

2

(
δH

1− δH
+

δW
1− δW

)
α :=

4

3
(1 + 4∆) + 4ε

(
1 +

7∆

3

)
≤ 4

3
(1 + 4∆)(1 + 3ε)

β :=
2∆(1 + ε)

ε2
+

10

3
+

19∆

3
+

16∆ε

3
.

In Section 7.4, we show that the APoG for the rotational case is at most the APoG for the

non-rotational case. So, when are items are skewed, we get an upper bound of 4/3 on APoG

in the rotational case too.

7.2 Lower Bound on APoG

Lemma 7.4. Let m and k be positive integers and ε be a positive real number. Let J be a

set of items packed into a bin, where each item has the longer dimension equal to (1 + ε)/2

and the shorter dimension equal to (1 − ε)/2k. If the bin is guillotine-separable, then a(J) ≤
3/4 + ε/2− ε2/4.

Proof. For an item packed in the bin, if the height is (1− ε)/2k, call it a wide item, and if the

width is (1− ε)/2k, call it a tall item. Let W be the set of wide items in J .

The packing of items in the bin can be represented as a tree, called the guillotine tree of

the bin, where each node u represents a rectangular region of the bin and the child nodes

v1, v2, . . . , vp of node u represent the sub-regions obtained by parallel guillotine cuts. The

ordering of the children has a significance here: if the guillotine cuts were vertical, children

150

3 4 5

1 2

7 8

6
1 2 3 4 5

6

7 8

Figure 7.1: A guillotinable packing of items into a bin and the corresponding guillotine tree.

are ordered by increasing x-coordinate, and if the cuts were horizontal, children are ordered by

increasing y-coordinate. See Fig. 7.1 for an example.

We will now see how to rearrange the items in the bin so that the packing remains guillotine-

separable but becomes more structured. We will exploit this structure to show that the packing

has a large unpacked area. See Fig. 7.2 for an example.

Figure 7.2: Structuring a guillotine-separable packing.

In the guillotine tree, suppose there is a node u that has children v1, v2, . . . , vp. Without

loss of generality, assume that the children are obtained by making vertical cuts. At most one

of these children can contain items from W . We can assume without loss of generality that the

other children contain only one item, because otherwise we can separate them by vertical cuts.

We can reorder the children (which is equivalent to repacking the guillotine partitions) so that

the child containing items from W (if any) is the first child. Therefore, we can assume without

loss of generality that at any level in the guillotine tree, only the first node has children.

Based on the argument above, we can see that the first node in each level touches the

bottom-left corner of the bin. All the other nodes either contain a single wide item and touch

151

the left edge of the bin but not the bottom edge, or they contain a single tall item and touch

the bottom edge of the bin but not the left edge. In each node containing a wide item, shift

the item leftwards, and in each node containing a tall item, shift the item downwards. Then

each wide item touches the left edge of the bin and each tall item touches the bottom edge of

the bin.

Therefore, the square region of side length (1 − ε)/2 at the top-right corner of the bin is

empty. Hence, the area occupied in each bin is at most 3/4 + ε/2− ε2/4.

Definition 7.1 (Hard instance). Let m and k be positive integers and ε ∈ (0, 1). Define

hardItems(m, k, ε) as a set of 4mk rectangular items, where 2mk items have width (1 + ε)/2

and height (1− ε)/2k, and 2mk items have height (1 + ε)/2 and width (1− ε)/2k.

Theorem 7.1. Let I := hardItems(m, k, ε). Let opt(I) be the number of bins in the optimal

packing of I and optg(I) be the number of bins in the optimal guillotinable packing of I. Then

optg(I)

opt(I)
≥ 4

3
(1− ε).

This holds true even if items in I are allowed to be rotated.

Proof. For an item i ∈ I, if h(i) = (1− ε)/2k, call it a wide item, and if w(i) = (1− ε)/2k, call

it a tall item. Let W be the set of wide items and H be the set of tall items.

We will show that opt(I) and optg(I) have a big difference, which will give us a lower-bound

on APoG.

Partition W into groups of k elements. In each group, stack items one-over-the-other. This

gives us 2m containers of width (1 + ε)/2 and height (1− ε)/2. Similarly, get 2m containers of

height (1 + ε)/2 and height (1 − ε)/2 by stacking items from H side-by-side. We can pack 4

containers in one bin, so I can be packed into m bins. See Fig. 7.3 for an example. Therefore,

opt(I) ≤ m.

We will now show a lower-bound on optg(I). In any guillotine-separable packing of I, the

area occupied by each bin is at most 3/4 + ε/2 − ε2/4 (by Lemma 7.4). Note that a(I) =

m(1− ε2). Therefore,

optg(I) ≥ m(1− ε2)

3/4 + ε/2− ε2/4

=⇒
optg(I)

opt(I)
≥ 4

3
× 1− ε2

1 + 2ε/3− ε2/3
=

4

3
× 1− ε

1− ε/3
≥ 4

3
(1− ε).

152

Figure 7.3: Packing 4k items in one bin. Here k = 7.

7.3 Algorithm skewed4Pack

7.3.1 Packing With Slicing

Before we look at the problem of computing a (guillotinable) packing of skewed rectangles, let

us first look at a closely-related variant of this problem, called the 2D sliceable bin packing

problem, denoted as 2D SBP. In this problem, we are given two sets of rectangular items, W̃

and H̃, where items in W̃ have width more than 1/2, and items in H̃ have height more than

1/2. W̃ is called the set of wide items and H̃ is called the set of tall items. We are allowed to

slice items in W̃ using horizontal cuts and slice items in H̃ using vertical cuts, and our task is

to pack W̃ ∪ H̃ into the minimum number of bins without rotating the items. See Fig. 7.4 for

an example that illustrates the difference between 2D GBP and 2D SBP.

We first describe a fast and simple 4/3-asymptotic-approximation algorithm for 2D SBP,

called greedyPack, that outputs a 2-stage packing. Later, we will show how to use greedyPack

to design skewed4Pack.

We assume that the bin is a square of side length 1. Since we can slice items, we allow items

in W̃ to have height more than 1 and items in H̃ to have width more than 1.

For a set X ⊆ W̃ of items, define

hsum(X) :=
∑
i∈X

h(i) and wmax(X) :=

maxi∈X w(i) if X 6= ∅

0 if X = ∅
.

153

W̃ :

H̃ :

(a) Packing items into 4 bins without slicing.

W̃ :

H̃ :

"

"

(b) Packing items into 2 bins by horizontally

slicing an item in W̃ and vertically slicing an
item in H̃.

Figure 7.4: Example to illustrate the difference between 2D geometric bin packing and 2D
sliceable bin packing. There are 2 wide items (W̃) and 2 tall items (H̃). The items are squares
of side length 0.6 and the bins are squares of side length 1.

For a set X ⊆ H̃ of items, define

wsum(X) :=
∑
i∈X

w(i) and hmax(X) :=

maxi∈X h(i) if X 6= ∅

0 if X = ∅
.

In the algorithm greedyPack(W̃ , H̃), we first sort the items W̃ in decreasing order of width

and sort the items H̃ in decreasing order of height. If hsum(W̃) ≥ wsum(H̃), then we pack

the largest possible prefix of W̃ into a bin such that the items touch the right edge of the bin.

Then we pack a prefix of H̃ into the remaining space in the side of the bin. We call this a

type-1 bin. See Fig. 7.5 for an example. If hsum(W̃) < wsum(H̃), we proceed analogously in

a coordinate-swapped way, i.e., we first pack tall items in the bin and then pack wide items in

the remaining space. Call this bin a type-2 bin. We pack the rest of the items into bins in the

same way. See Algorithm 17 for a more precise description of greedyPack.

Definition 7.2. Let W̃ be a sequence of wide items. Define hprefix(W̃ , γ) as the prefix of W̃ of

total height γ if hsum(W̃) > γ (slice items if necessary). If hsum(W̃) ≤ γ, define hprefix(W̃ , γ)

to be W̃ . Let H̃ be a sequence of tall items. Define wprefix(H̃, γ) as the prefix of H̃ of total

154

(a) A type-1 bin. Wide items are packed on
the right. Tall items are packed on the left.

(b) A type-2 bin. Tall items are packed above.
Wide items are packed below.

Figure 7.5: Examples of type-1 and type-2 bins produced by greedyPack.

width γ if wsum(H̃) > γ (slice items if necessary). If wsum(H̃) ≤ γ, define wprefix(H̃, γ) to

be H̃.

Algorithm 17 greedyPack(W̃ , H̃): Packs items W̃ ∪ H̃ into bins. The items W̃ have width

more than 1/2 and can be sliced using horizontal cuts. The items H̃ have width more than 1/2
and can be sliced using vertical cuts.

1: Sort the items in W̃ in decreasing order of width.
2: Sort the items in H̃ in decreasing order of height.
3: while W̃ 6= ∅ or H̃ 6= ∅ do
4: Create an empty bin.
5: if hsum(W̃) ≥ wsum(H̃) then

6: Let X := hprefix(W̃ , 1). // see Definition 7.2
7: Pack X in a region of width wmax(X) on the right side of the bin.

8: Remove X from W̃ .
9: Let Y := wprefix(H̃, 1− wmax(X)). // see Definition 7.2

10: Pack Y in a region of width 1− wmax(X) on the left side of the bin.

11: Remove Y from H̃.
12: Label the bin as a type-1 bin.
13: else
14: Proceed analogous to the previous case, i.e., X is a prefix of H̃ of width at most 1

and Y is a prefix of W̃ of total height at most 1− hmax(X).

15: Label the bin as a type-2 bin.
16: end if
17: end while

Claim 7.5. greedyPack(W̃ , H̃) always outputs a 2-stage packing of W̃ ∪ H̃. It runs in time

O(m + |W̃ | log |W̃ | + |H̃| log |H̃|), where m is the number of bins used. Furthermore, it slices

155

items in W̃ by making at most m− 1 horizontal cuts and slices items in H̃ by making at most

m− 1 vertical cuts.

If all bins are of type 1, then the number of bins used is dhsum(W̃)e. If all bins are of

type 2, then the number of bins used is dwsum(H̃)e. Since items in W̃ have width more

than 1/2, no two items can be placed side-by-side. If H̃ = {}, then the optimal solution is

to stack the items W̃ one-over-the-other. Therefore, dhsum(W̃)e ≤ opt(W̃ ∪ H̃). Similarly,

dwsum(H̃)e ≤ opt(W̃ ∪ H̃). Hence, if all bins are of the same type, the number of bins used is

at most opt(W̃ ∪ H̃).

We will now focus on the more interesting case, i.e., some bins are of type 1 and some are

of type 2.

Definition 7.3 (Full bin). In a type-1 bin, let X be the items from W̃ and Y be the items from

H̃. The bin is said to be full iff hsum(X) = 1 and wsum(Y) = 1− wmax(X). Define fullness

for a type-2 bin analogously.

We first show that full bins pack items of a large total area, and then we show that if some

bins are of type 1 and some bins are of type 2, then there can be at most 2 non-full bins. This

will help us get an upper-bound on the number of bins used by greedyPack(W̃ , H̃) in terms of

a(W̃ ∪ H̃).

Lemma 7.6. Let there be m1 full bins of type 1. Let J1 be the items inside those bins. Then

m1 ≤ 4a(J1)/3 + 1/3.

Proof. In the jth full bin of type 1, let Xj be the items from W̃ and Yj be the items from H̃.

Let

`j :=

wmax(Xj) if j ≤ m1

1/2 if j = m1 + 1
.

Since all items have their larger dimension more than 1/2, `j ≥ 1/2 and hmax(Yj) > 1/2.

a(Xj) ≥ `j+1, since Xj has height 1 and width at least `j+1. a(Yj) ≥ (1 − `j)/2, since Yj

156

has width 1− `j and height more than 1/2. Therefore,

a(J1) =
m1∑
j=1

(a(Xj) + a(Yj)) ≥
m1∑
j=1

(`j+1 + (1− `j)/2)

≥
m1∑
j=1

(
`j+1

2
+

1

4
+

1

2
− `j

2

)
(`j+1 ≥ 1/2)

=
3m1

4
+

1

4
− `1

2
≥ 3m1 − 1

4
.

Therefore, m1 ≤ 4a(J1)/3 + 1/3.

An analogue of Lemma 7.6 can be proven for type-2 bins.

Let m be the number of bins used by greedyPack(W̃ , H̃). After j bins have been packed,

let Aj be the height of the remaining items in W̃ and Bj be the width of the remaining

items in H̃. Let tj be the type of the jth bin (1 for type-1 bin and 2 for type-2 bin). So

tj = 1 ⇐⇒ Aj−1 ≥ Bj−1.

We first show that |Aj−1 − Bj−1| ≤ 1 =⇒ |Aj − Bj| ≤ 1. This means that once the

difference between h(W̃) and w(H̃) becomes at most 1, it continues to stay at most 1. Next,

we show that tj 6= tj+1 =⇒ |Aj−1−Bj−1| ≤ 1. This means that if there are some bins of type

1 and some bins of type 2, then the difference between h(W̃) and w(H̃) will eventually become

at most 1. In the first non-full bin, we will use up all the wide items or the tall items. Then

the remaining items will have total height or total width at most 1, so we can have at most 1

more non-full bin. This would imply that there can be at most 2 non-full bins when we have

both type-1 and type-2 bins.

In the jth bin, let aj be the height of items from W̃ and bj be the width of items from H̃.

Hence, for all j ∈ [m], Aj−1 = Aj + aj and Bj−1 = Bj + bj .

Lemma 7.7. |Aj−1 −Bj−1| ≤ 1 =⇒ |Aj −Bj| ≤ 1.

Proof. Case 1: Aj−1 −Bj−1 ∈ [0, 1].

This means that tj = 1.

Assume (for the sake of proof by contradiction) that aj < bj . Then aj < 1, so we used up

all of W̃ in the jth bin. Therefore, Aj = 0 and Aj−1 = aj . Therefore,

Aj−1 = aj < bj ≤ bj +Bj = Bj−1 =⇒ ⊥.

157

Therefore, aj ≥ bj . Since Aj−1 −Bj−1 ∈ [0, 1] and aj − bj ∈ [0, 1], we get

Aj −Bj = (Aj−1 −Bj−1)− (aj − bj) ∈ [−1, 1].

Therefore, |Aj −Bj| ≤ 1.

Case 2: Aj−1 −Bj−1 ∈ [−1, 0).

This means that tj = 2. By an analysis similar to case 1, we get |Aj −Bj| ≤ 1.

Lemma 7.8. tj 6= tj+1 =⇒ |Aj−1 −Bj−1| ≤ 1.

Proof.

tj = 1 and tj+1 = 2

=⇒ Aj−1 ≥ Bj−1 and Aj < Bj

=⇒ Bj−1 ≤ Aj−1 < Bj−1 + aj − bj
=⇒ Aj−1 −Bj−1 ∈ [0, 1).

tj = 2 and tj+1 = 1

=⇒ Aj−1 < Bj−1 and Aj ≥ Bj

=⇒ Aj−1 < Bj−1 ≤ Aj−1 + (bj − aj)

=⇒ Aj−1 −Bj−1 ∈ [−1, 0).

Lemma 7.9. Let there be p full bins. If all bins don’t have the same type, then |Ap −Bp| ≤ 1.

Proof. If m = p, then Ap = Bp = 0, so |Ap−Bp| ≤ 1 trivially holds. If m = p+ 1, then Ap ≤ 1

and Bp ≤ 1, so |Ap −Bp| ≤ 1 trivially holds. So now assume m ≥ p+ 2.

Suppose that in the (p+1)th bin, we used up all items from W̃ but not H̃. Then ∀i ≥ p+2,

ti = 2. Since all bins don’t have the same type, ∃k ≤ p+ 1 such that tk = 1 and tk+1 = 2. By

Lemmas 7.7 and 7.8, we get |Ap − Bp| ≤ 1. Similarly, if we used up all items from H̃ in the

(p+ 1)th bin, then |Ap −Bp| ≤ 1.

Lemma 7.10. If all bins don’t have the same type, then there can be at most 2 non-full bins.

Proof. Let there be p full bins. Assume that there are more than 2 non-full bins. Without loss

of generality, assume that the first non-full bin used up all wide items. Hence, Ap+1 = 0. By

Lemma 7.9, we get |Ap − Bp| ≤ 1. By Lemma 7.7, we get |Ap+1 − Bp+1| ≤ 1, which implies

158

that Bp+1 ≤ 1. Hence, the (p+ 1)th bin will have type 2 and will use up all tall items, so there

can be at most 2 non-full bins.

Theorem 7.11. The number of bins used by greedyPack is at most

max

(
dhsum(W̃)e, dwsum(H̃)e, 4

3
a(W̃ ∪ H̃) +

8

3

)
.

Proof. Let there be m bins in the output of greedyPack(W̃ , H̃). If all bins have the same type,

then m ≤ max(dhsum(W̃)e, dwsum(H̃)e).
Let there be m1 full bins of type 1 and let J1 be the items inside those bins. Let there be

m2 full bins of type 2 and let J2 be the items inside those bins. Then by Lemma 7.6, we get

m1 ≤ 4a(J1)/3 + 1/3 and m2 ≤ 4a(J2)/3 + 1/3. Hence, m1 +m2 ≤ 4a(W̃ ∪ H̃)/3 + 2/3. If all

bins don’t have the same type, then by Lemma 7.10, there can be at most 2 non-full bins, so

greedyPack(W̃ , H̃) uses at most 4a(W̃ ∪ H̃)/3 + 8/3 bins.

7.3.2 Overview of skewed4Pack

skewed4Pack takes as input a set I of rectangular items and a parameter ε ∈ (0, 1). It outputs

a 4-stage bin packing of I.

skewed4Pack has the following outline:

1. Use linear grouping to round up the width or height of each item in I. This gives us a

new instance Î.

2. Pack Î into 1/ε2 + 1 shelves, after possibly slicing some items. Each shelf has width or

height more than 1/2 and is fully packed, i.e., the total area of items in a shelf equals the

area of the shelf. If we treat each shelf as an item, we get a new instance Ĩ.

3. Compute a packing of Ĩ into bins, after possibly slicing some items, using greedyPack.

4. Pack most of the items of I into the shelves in the bins. We will prove that the remaining

items have very small area, so they can be packed separately.

To simplify our algorithm, we assume that ε−1 ∈ Z.

7.3.3 Item Classification and Rounding

Define W := {i ∈ I : h(i) ≤ δH} and H := I −W . Items in W are called wide and items

in H are called tall. Let W (L) := {i ∈ W : w(i) > ε} and W (S) := W −W (L). Similarly, let

159

H(L) := {i ∈ H : h(i) > ε} and H(S) := H −H(L).

We will now use linear grouping [26, 49] to round up the widths of items in W (L) and the

heights of items in H(L). Arrange the items of W (L) in decreasing order of width and stack

them one-over-the-other (i.e., the widest item in W (L) is at the bottom). Let hL be the height

of the stack. Let y(i) be the y-coordinate of the bottom edge of item i. Split the stack into

sections of height ε2hL each. For j ∈ [1/ε2], let wj be the width of the widest item intersecting

the jth section from the bottom, i.e.,

wj := max({w(i) : i ∈ W (L) and (y(i), y(i) + h(i)) ∩ ((j − 1)ε2hL, jε
2hL) 6= ∅}).

Round up the width of each item i to the smallest wj that is at least w(i) (see Fig. 7.6). Let

W
(L)
j be the items whose width got rounded to wj and let Ŵ

(L)
j be the resulting rounded items.

(There may be ties, i.e., there may exist j1 < j2 such that wj1 = wj2 . In that case, define

W
(L)
j2

:= Ŵ
(L)
j2

= ∅. This ensures that all W
(L)
j are disjoint.) Let Ŵ (L) :=

⋃
j Ŵ

(L)
j .

Allow horizontally slicing each item in Ŵ (L). Let Ŵ (S) be the same as W (S), except that

we are allowed to slice items in Ŵ (S) both horizontally and vertically. Let Ŵ := Ŵ (L) ∪ Ŵ (S).

Define Ĥ analogously. Let Î := Ŵ ∪ Ĥ.

Claim 7.12. Items in Ŵ (L) have at most 1/ε2 distinct widths. Items in Ĥ(L) have at most

1/ε2 distinct heights.

Lemma 7.13. opt(Î) < (1 + ε) opt(I) + 2.

Proof. Consider the optimal packing of I. To convert this to a packing of Î − (Ŵ
(L)
1 ∪ Ĥ(L)

1),

unpack W
(L)
1 and H

(L)
1 , and for each j ∈ [1/ε2 − 1], pack Ŵ

(L)
j+1 in the place of W

(L)
j and pack

Ĥ
(L)
j+1 in the place of H

(L)
j , possibly after slicing the items. Therefore,

opt(Î − (Ŵ
(L)
1 ∪ Ĥ(L)

1)) ≤ opt(I). (7.1)

We can pack Ĥ
(L)
1 in a bin by stacking the items side-by-side on the base of bins. We can

pack Ŵ
(L)
1 in a bin by stacking the items one-over-the-other. Let wL be the total width of items

in Ĥ(L). The number of bins used is dε2hLe+ dε2wLe. Also,

opt(I) ≥ opt(W (L) ∪H(L)) ≥ a(W (L)) + a(H(L)) ≥ ε(hL + wL).

Therefore,

opt(Ŵ
(L)
1 ∪ Ĥ(L)

1) ≤ dε2hLe+ dε2wLe < ε opt(I) + 2. (7.2)

160

w1 w2 w3 w4

ε2hL

Figure 7.6: Linear grouping of W (L) for ε = 1/2.

On combining (7.1) and (7.2), we get

opt(Î) ≤ opt(Î − (Ŵ
(L)
1 ∪ Ĥ(L)

1)) + opt(Ŵ
(L)
1 ∪ Ĥ(L)

1) < (1 + ε) opt(I) + 2.

7.3.4 Creating Containers

We will use ideas from Kenyon and Rémila’s strip packing algorithm [49] to pack Î into con-

tainers and pack the containers into shelves. In the strip packing problem, we are given a set

of rectangular items, and we have to pack them into a bin of width 1 and minimum height.

Since we allow horizontally slicing items in Ŵ , a packing of Ŵ into m bins gives us a packing

of Ŵ into a strip of height m, and a packing of Ŵ into a strip of height h′ gives us a packing

of Ŵ into dh′e bins. Hence, if we denote the optimal strip packing of Ŵ by optSP(Ŵ), then

opt(Ŵ) = doptSP(Ŵ)e. We will now try to compute a near-optimal strip packing of Ŵ .

161

Define a horizontal configuration S as a tuple of 1/ε2 + 1 non-negative integers, where

S0 ∈ {0, 1} and
∑1/ε2

j=1 Sjwj ≤ 1. For any horizontal line at height y in a strip packing of Ŵ ,

the multiset of items intersecting the line corresponds to a configuration. S0 indicates whether

the line intersects items from Ŵ (S), and Sj is the number of items from Ŵ
(L)
j that the line

intersects. Let S be the set of all horizontal configurations. Let N := |S|.
To obtain an optimal packing, we need to determine the height of each configuration. This

can be done with the following linear program.

min
x∈RN

∑
S∈S

xS

where
∑
S∈S

SjxS = h(Ŵ
(L)
j) ∀j ∈ [1/ε2]

and
∑

S:S0=1

1−
1/ε2∑
j=1

Sjwj

xS = a(Ŵ (S))

and xS ≥ 0 ∀S ∈ S

Let x∗ be an optimal extreme-point solution to the above LP. This gives us a packing where

the strip is divided into rectangular regions called shelves that are stacked on top of each other.

Each shelf has a configuration S associated with it and has height h(S) := x∗S and contains

Sj containers of width wj . Containers of width wj only contain items from Ŵ
(L)
j , and we call

them type-j containers. If S0 = 1, S also contains a container of width 1 −
∑1/ε2

j=1 Sjwj that

contains small items. We call this container a type-0 container. Each container is fully filled

with items. Let w(S) denote the width of shelf S, i.e., the sum of widths of all containers in S.

Note that if S0 = 1, then w(S) = 1. Otherwise, w(S) =
∑1/ε2

j=1 Sjwj .

Lemma 7.14. x∗ contains at most 1/ε2 + 1 positive entries.

Proof sketch. Follows by applying rank lemma (Corollary 3.8) to the linear program.

Lemma 7.15. x∗S > 0 =⇒ w(S) > 1/2.

Proof. Suppose w(S) ≤ 1/2. Then we could have split S into two parts by making a horizontal

cut in the middle and packed the parts side-by-side, reducing the height of the strip by x∗S/2.

But that would contradict the fact that x∗ is optimal.

Now treat each shelf S as an item of width w(S) and height h(S). Allow each such item to

be sliced using horizontal cuts. This gives us a new set W̃ of items such that Ŵ can be packed

inside W̃ . By Lemma 7.15, each item in W̃ has width more than 1/2.

162

By applying an analogous approach to Ĥ, we get a new set H̃ of items. Let Ĩ := W̃ ∪H̃. We

call the shelves of W̃ horizontal shelves and the shelves of H̃ vertical shelves. The containers

in horizontal shelves are called wide containers and the containers in vertical shelves are called

tall containers.

Claim 7.16. a(Ĩ) = a(Î).

Lemma 7.17. Let h(W̃) be the sum of heights of all items in W̃ . Let w(H̃) be the sum of

widths of all items in H̃. Then max(dh(W̃)e, dw(H̃)e) ≤ opt(Î).

Proof. Since x∗ is the optimal solution to the linear program for strip packing Ŵ , h(W̃) =∑
S∈S x

∗
S = optSP(Ŵ). Therefore, dh(W̃)e = opt(Ŵ) ≤ opt(Î). Similarly, dw(H̃)e = opt(Ĥ) ≤

opt(Î).

7.3.5 Packing Shelves Into Bins

So far, we have packed Î into shelves W̃ and H̃. We will now use greedyPack(W̃ , H̃) to pack

the shelves into bins. By Claim 7.5, we get a 2-stage packing of W̃ ∪ H̃ into m bins, where we

make at most m− 1 horizontal cuts in W̃ and at most m− 1 vertical cuts in H̃.

By Lemma 7.14, we get a packing of m + 1/ε2 horizontal shelves and m + 1/ε2 vertical

shelves into m bins.

By Theorem 7.11, Lemma 7.17, and Claim 7.16, we get that

m ≤ max

(
dh(W̃)e, dw(H̃)e, 4

3
a(Ĩ) +

8

3

)
≤ 4

3
opt(Î) +

8

3
.

7.3.6 Packing Items Into Containers

We will now try to pack a large subset of items into the containers. See Fig. 7.7 for an example

output.

Lemma 7.18. Let P be a packing of Ĩ into m bins, where we sliced horizontal shelves by making

at most m− 1 horizontal cuts and sliced vertical shelves by making at most m− 1 vertical cuts.

Then we can pack a large subset of items I into the containers in P such that the unpacked

items from W have area less than

εh(W̃) + δH(1 + ε)(m+ 1/ε2),

163

Figure 7.7: A type-1 bin in the packing of Î computed by skewed4Pack. The packing contains
5 tall containers in 2 tall shelves and 18 wide containers in 8 wide shelves.

and the unpacked items from H have area less than

εw(H̃) + δW (1 + ε)(m+ 1/ε2).

Proof. For each j ∈ [1/ε2], number the type-j wide containers arbitrarily, and number the

items in W
(L)
j arbitrarily. Now greedily assign items from W

(L)
j to the first container C until

the total height of the items exceeds h(C). Then move to the next container and repeat. As per

the constraints of the linear program, all items in W
(L)
j will get assigned to some type-j wide

container. Similarly, number the type-0 wide containers arbitrarily and number the items in

W (S) arbitrarily. Greedily assign items from W (S) to the first container C until the total area of

the items exceeds a(C). Then move to the next container and repeat. As per the constraints of

the linear program, all items in W (S) will get assigned to some type-0 wide container. Similarly,

assign all items from H to tall containers.

Let C be a type-j wide container and J be the items assigned to it. If we discard the

last item from J , then the items can be packed into C. The area of the discarded item is at

most w(C)δH . Let C be a type-0 wide container and J be the items assigned to it. Arrange

the items in J in decreasing order of height and pack the largest prefix J ′ ⊆ J into C using

NFDW (Next-Fit Decreasing Width), which is an analogue of NFDH with the coordinate axes

swapped.

164

Discard the items J − J ′. By Lemma 3.4, a(J − J ′) < εh(C) + δHw(C) + εδH . Therefore,

for a horizontal shelf S, the total area of discarded items is less than εh(S) + δH(1 + ε).

After slicing the shelves in Ĩ to get P , we get at most m + 1/ε2 horizontal shelves and at

most m+1/ε2 vertical shelves. Therefore, the total area of discarded items from W is less than

εh(W̃) + δH(1 + ε)(m+ 1/ε2),

and the total area of discarded items from H is less than

εw(H̃) + δW (1 + ε)(m+ 1/ε2).

We will pack the discarded items into new bins using NFDH (or NFDW), and NFDH always

outputs a 2-stage packing. Since greedyPack outputs a 2-stage packing of the shelves and the

packing of items into the shelves is a 2-stage packing, the bin packing of non-discarded items

is a 4-stage packing.

7.3.7 Summary

A summary of skewed4Pack is given in Algorithm 18.

Algorithm 18 skewed4Packε(I): Packs items I into square bins of side length 1, where each
item in I has width at most δW or height at most δH .

1: Let W := {i ∈ I : h(i) ≤ δH} and H := I −W .

2: Compute Î using linear grouping with parameter ε as per Section 7.3.3.
3: Create shelves Ĩ from items Î as per Section 7.3.4.
4: Pack Ĩ into bins using greedyPack.
5: Pack a large subset of I into the shelves using Lemma 7.18. Let W d be the unpacked items

from W and Hd be the unpacked items from H.
6: Pack W d into new bins using NFDH.
7: Pack Hd into new bins using NFDW.

Lemma 7.19. Let I be a set of rectangular items where each item has height at most δ. Then

the number of bins required by NFDH to pack I is less than (2a(I) + 1)/(1− δ).

Proof. The bin packing version of NFDH first packs I into shelves and then packs the shelves

into bins using Next-Fit. Let H be the sum of heights of all the shelves. By Lemma 3.3, H <

2a(I)+δ. By Lemma 3.2, the number of bins is less than 1+H/(1−δ) < (2a(I)+1)/(1−δ).

Theorem 7.2. skewed4Packε(I) outputs a 4-stage packing of I in time O((1/ε)O(1/ε)+n log n).

165

Proof. greedyPack outputs a 2-stage packing, so skewed4Pack outputs a 4-stage packing.

Linear grouping takes O(n log n + 1/ε2) time. Computing the shelves requires solving a

linear program in at most 2(1/ε2)1/ε variables and 1 + 1/ε2 constraints. greedyPack takes

O(n log n) time. Packing I into containers takes O(n log n) time. NFDH and NFDW take

O(n log n) time.

Theorem 7.3. Let I be a set of items where each item has width at most δW or height at most

δH . Then skewed4Packε(I) uses less than α(1 + ε) opt(I) + 2β bins, where

∆ :=
1

2

(
δH

1− δH
+

δW
1− δW

)
α :=

4

3
(1 + 4∆) + 4ε

(
1 +

7∆

3

)
≤ 4

3
(1 + 4∆)(1 + 3ε)

β :=
2∆(1 + ε)

ε2
+

10

3
+

19∆

3
+

16∆ε

3
.

Proof. Suppose greedyPack uses at most m bins. Then by Theorem 7.11,

m ≤ 4 opt(Î)/3 + 8/3.

Let W d and Hd be the unpacked items from W and H, respectively. By Lemmas 7.17 and 7.18,

a(W d) < ε opt(Î) + δH(1 + ε)(m+ 1/ε2),

a(Hd) < ε opt(Î) + δW (1 + ε)(m+ 1/ε2).

By Lemma 7.19, the number of bins used by skewed4Packε(I) is less than

m+
2a(W d) + 1

1− δH
+

2a(Hd) + 1

1− δW
≤ (1 + 4∆(1 + ε))m+ 4ε(1 + ∆) opt(Î) + 2(1 + ∆) + 4∆(1 + ε)/ε2

≤ α opt(Î) + 2(β − 1) < α(1 + ε) opt(I) + 2β. (by Lemma 7.13)

7.4 APoG for the Rotational Case

Theorem 7.20. For a set I of rectangular items, let optnr(I) and optr(I) be the minimum

number of bins needed to pack I in the non-rotational and rotational versions, respectively.

166

Let optnr
g (I) and optr

g(I) be the minimum number of guillotinable bins needed to pack I in the

non-rotational and rotational versions, respectively.

Let S be a family of inputs that is closed under rotation, i.e., for a set I ∈ S of items, if

we rotate some items in I to get a set J of items, then J ∈ S. Let APoGnr and APoGr be the

APoG for the non-rotational and rotational versions, respectively, restricted to the family S.

Then APoGr ≤ APoGnr.

Proof. Let I be any set of items in S. Let K be the corresponding rotated items in the optimal

rotational packing of I, i.e., optr(I) = optnr(K). Then

optr
g(I) ≤ optnr

g (K)

≤ APoGnr optnr(K) + o(optnr(K))

= APoGnr optr(I) + o(optr(I)).

Since this is true for all I ∈ S, we get APoGr ≤ APoGnr.

Assume without loss of generality that bins have width and height at least 1. The class

of (δ, δ)-skewed rectangles is closed under rotation, so by Theorem 7.20, the APoG for the

rotational case is upper-bounded by

4

3

(
1 +

4δ

1− δ

)
.

When δ is very small, this is close to 4/3.

167

Chapter 8

Almost-Optimal Bin Packing of Skewed

Rectangles

For a constant δ > 0, a rectangle is said to be δ-skewed iff either its width is at most δ or its

height is at most δ. We give an approximation algorithm for bin packing δ-skewed rectangles

where the algorithm’s AAR approaches 1 as δ approaches 0. Formally, we give an algorithm

for 2D GBP, called skewedCPack (abbreviates skewed compartmental packing), that accepts a

parameter ε, and we show that for every constant ε ∈ (0, 1), there exists a constant δ ∈ (0, ε)

such that the algorithm has an AAR of 1+ε when all items in the input are δ-skewed rectangles.

Our result shows that the approximability of the δ-skewed case is very different from the

general 2BP problem, since it is NP-hard to obtain an asymptotic approximation ratio better

than 1 + 1/2196 for general 2BP [21].

The best-known AAR for 2D GBP is 1+ln(1.5)+ε ≈ 1.405+ε. Our result indicates that to

improve upon algorithms for 2D GBP, we should focus on big rectangles, i.e., rectangles whose

width and height are both more than a constant δ.

Overview of the Algorithm

skewedCPack takes a set I of items as input and has the following outline:

1. Invoke the subroutine round(I) (described in Section 8.1). round(I) removes some items

Imed ⊆ I of low total area and rounds up the width or height of each remaining item so

that the resulting items Ĩ have special properties that help us pack them easily.

2. Compute the optimal fractional compartmental bin-packing of Ĩ (we will define compart-

mental and fractional later).

168

3. Use this packing of Ĩ to obtain a packing of I that uses slightly more number of bins.

Let opt(I) be the minimum number of bins needed to pack I. To bound the AAR of

skewedCPack, we will prove a structural theorem in Section 8.2, i.e., we will prove that the

optimal fractional compartmental packing of Ĩ uses close to opt(I) bins.

We will focus on the case where the items cannot be rotated, so we will assume without loss

of generality that the bin is a square of side length 1. In Section 8.4, we show how to extend

skewedCPack to the case where the items can be rotated by 90◦.

Organization of the Chapter

• In Section 8.1, we describe the subroutine round and define fractional packing.

• In Section 8.2, we define compartmental packing and prove the structural theorem.

• In Section 8.3, we describe the skewedCPack algorithm.

• In Section 8.4, we show how to extend skewedCPack to handle item rotations.

8.1 Classifying and Rounding Items

In this section, we will describe the algorithm round(I). round(I) returns a pair (Ĩ , Imed),

where Ĩ is called the set of rounded items and Imed ⊆ I is called the set of medium items. We

will show that a(Imed) ≤ εa(I) and Ĩ is obtained by rounding up the width or height of each

item in I − Imed.

We assume that ε ≤ 1/2 and that ε−1 ∈ Z.

8.1.1 Removing Medium Items

We will choose Imed ⊆ I such that for two constants ε2 and ε1, no item in I−Imed has its width

or height in the interval (ε2, ε1] and ε2 � ε1 < 1 (we will soon precisely define the meaning of

ε2 � ε1). For skewedCPack to work, we require δ ≤ ε2.

Definition 8.1. Let µ0 ∈ (0, 1] be a constant and let f : (0, 1] 7→ (0, 1] be a function such that

∀x ∈ (0, 1], f(x) < x. Let T := d2/εe. For t ∈ [T], define µt := f(µt−1) and define

Jt := {i ∈ I : w(i) ∈ (µt, µt−1] or h(i) ∈ (µt, µt−1]}.

Define removeMedium(I, ε, f, µ0) as the tuple (Jr, µr, µr−1), where r := argminTt=1 a(Jt).

169

Lemma 8.1. Let (Imed, ε2, ε1) := removeMedium(I, ε, f, µ0). Then a(Imed) ≤ εa(I).

Proof. Each item belongs to at most 2 sets Jt. Therefore,

a(Imed) =
T

min
t=1

a(Jt) ≤
1

T

T∑
t=1

a(Jt) ≤
2

d2/εe
a(I) ≤ εa(I).

No item in I − Imed has width or height in the interval (ε2, ε1].

Let µ0 = ε. So, ε1 ≤ ε and ε2 := f(ε1). We choose f to be

f(x) :=
εx

104(1 + 1/(εx))2/x−2
. (8.1)

We will explain this choice later in Section 8.3.4. Intuitively, such an f ensures that ε2 =

f(ε1) � ε1. Note that f is independent of I, so ε1 and ε2 are constants. Also note that

x−1 ∈ Z =⇒ f(x)−1 ∈ Z, so ε−1
1 , ε−1

2 ∈ Z.

8.1.2 Classifying Items

Classify the items in I − Imed into three disjoint classes:

• Wide items: W := {i ∈ I : w(i) > ε1 and h(i) ≤ ε2}.

• Tall items: H := {i ∈ I : w(i) ≤ ε2 and h(i) > ε1}.

• Small items: S := {i ∈ I : w(i) ≤ ε2 and h(i) ≤ ε2}.

8.1.3 Linear Grouping

We will now use linear grouping [26, 49] to round up the widths of items in W and the heights

of items in H. Arrange the items of W in decreasing order of width and stack them one-over-

the-other (i.e., the widest item in W is at the bottom). Let hL be the height of the stack. Let

y(i) be the y-coordinate of the bottom edge of item i. Split the stack into sections of height

εε1hL each. For j ∈ [1/εε1], let wj be the width of the widest item intersecting the jth section

from the bottom, i.e.,

wj := max({w(i) : i ∈ W and (y(i), y(i) + h(i)) ∩ ((j − 1)εε1hL, jεε1hL) 6= ∅}).

Round up the width of each item i to the smallest wj that is at least w(i). Let Wj be the items

whose width got rounded to wj and let W̃j be the resulting rounded items. (There may be ties,

170

i.e., there may exist j1 < j2 such that wj1 = wj2 . In that case, define Wj2 := W̃j2 = ∅. This

ensures that all Wj are disjoint.) Let W̃ :=
⋃
j W̃j .

Define H̃ analogously. Let Ĩ := W̃ ∪ H̃ ∪ S.

Claim 8.2. Items in W̃ have at most 1/εε1 distinct widths. Items in H̃ have at most 1/εε1

distinct heights.

Definition 8.2 (Fractional packing). Suppose we are allowed to slice wide items in Ĩ using

horizontal cuts, slice tall items in Ĩ using vertical cuts and slice small items in Ĩ using both

horizontal and vertical cuts. For any X̃ ⊆ Ĩ, a bin packing of the slices of X̃ is called a

fractional packing of X̃. The optimal fractional packing of X̃ is denoted by fopt(X̃).

Lemma 8.3. fopt(Ĩ) < (1 + ε) opt(I) + 2.

Proof. Consider the optimal packing of I. To convert this to a packing of Ĩ−(W̃1∪H̃1), unpack

W1 and H1, and for each j ∈ [1/εε1 − 1], pack W̃j+1 in the place of Wj and pack H̃j+1 in the

place of Hj , possibly after slicing the items. Therefore,

fopt(Ĩ − (W̃1 ∪ H̃1)) ≤ opt(I). (8.2)

We can pack H̃1 in a bin by stacking the items side-by-side on the base of bins. We can

pack W̃1 in a bin by stacking the items one-over-the-other. Let wL be the total width of items

in H̃. The number of bins used is dεε1hLe+ dεε1wLe. Also,

opt(I) ≥ opt(W ∪H) ≥ a(W) + a(H) ≥ ε1(hL + wL).

Therefore,

fopt(W̃1 ∪ H̃1) ≤ dεε1hLe+ dεε1wLe < ε opt(I) + 2. (8.3)

On combining (8.2) and (8.3), we get

fopt(Ĩ) ≤ fopt(Ĩ − (W̃1 ∪ H̃1)) + fopt(W̃1 ∪ H̃1) < (1 + ε) opt(I) + 2.

8.2 Structural Theorem

In this section, we will define compartmental packing and we will prove the structural theorem,

which says that the number of bins in the optimal fractional compartmental packing of Ĩ is

roughly equal to fopt(Ĩ).

171

For any rectangle i packed in a bin, let x1(i) and x2(i) denote the x-coordinates of its left

and right edges, respectively, and let y1(i) and y2(i) denote the y-coordinates of its bottom and

top edges, respectively. Let R be the set of distinct widths of items in W̃ . Given the way we

rounded items, |R| ≤ 1/εε1.

Recall that ε1 ≤ ε ≤ 1/2.

8.2.1 Discretizing Horizontal Positions

We will show that given a fractional packing of items in a bin, we can remove a small fraction

of tall and small items and shift the remaining items leftwards so that the left and right edges

of each wide item belong to a constant-sized set T .

Let T0 := {0} and t0 := 1. For any j > 0, define

• tj := (1 + 1/εε1)2j .

• δj := εε1/tj−1.

• Sj := Tj−1 ∪ {kδj : k ∈ Z and 0 ≤ k < 1/δj}.

• Tj := {x+ y : x ∈ Sj and y ∈ R ∪ {0}}.

Observation 8.4. For all j > 0, we have Tj−1 ⊆ Sj ⊆ Tj and δ−1
j ∈ Z.

Lemma 8.5. For all j ≥ 0, |Tj| ≤ tj.

Proof. We will prove this by induction. The base case holds because |T0| = t0 = 1.

Now assume |Tj−1| ≤ tj−1. Then

|Tj| ≤ (|R|+ 1)|Sj| ≤
(

1

εε1
+ 1

)(
|Tj−1|+

1

δj

)
≤
(

1

εε1
+ 1

)2

tj−1 = tj .

Hence, by mathematical induction, |Tj| ≤ tj for all j ≥ 0.

Define T := T1/ε1−1. Therefore, |T | ≤ t1/ε1−1 = (1 + 1/εε1)2/ε1−2.

Lemma 8.6. Given a fractional packing of items J̃ ⊆ Ĩ into a bin, we can remove tall and

small items of total area less than ε and shift some of the remaining items to the left such that

for every wide item i, we get x1(i), x2(i) ∈ T .

172

Proof. We will describe an algorithm for such a transformation.

For wide items u and v, we say that u ≺ v iff the right edge of u is to the left of the left edge

of v. Formally u ≺ v ⇐⇒ x2(u) ≤ x1(v). We call u a predecessor of v. Note that the relation

≺ is transitive. A sequence [i1, i2, . . . , ik] such that i1 ≺ i2 ≺ . . . ≺ ik is called a chain ending

at ik. For a wide item i, define level(i) as the number of items in the longest chain ending at

i. Formally,

level(i) :=

1 if i has no predecessors

1 + max
j≺i

level(j) otherwise
.

Let Wj be the items at level j, i.e., Wj := {i : level(i) = j}.

a

b
c

d

e

f

Figure 8.1: Example illustrating the ≺ relationship between wide items in a bin. An edge is
drawn from u to v iff u ≺ v. Here W1 = {a, e, b}, W2 = {d, f} and W3 = {c}.

Note that the level of an item can be at most 1/ε1−1, since each wide item has width more

than ε1.

Our algorithm will proceed in stages, where in the jth stage, we apply two transformations

to the items in the bin. In the first transformation, called strip-removal, we will remove some

tall and small items. In the second transformation, called compaction, we will first shift some

tall and small items leftwards and then shift each item in Wj leftwards.

We will maintain the following invariant throughout the algorithm:

Invariant: after k stages, for each j ∈ [k], each item i ∈ Wj has x1(i) ∈ Sj (and hence

x2(i) ∈ Tj). Note that the invariant is trivially true for k = 0.

Definition 8.3 (Strip-removal). In the jth stage, for each x ∈ Tj−1, consider a strip of width

173

δj and height 1 in the bin whose left edge has coordinate x. Discard the slices of tall and small

items inside the strips. This transformation is called strip-removal.

Lemma 8.7. Items discarded from a bin by strip-removal (across all stages) have total area

less than ε.

Proof. In the jth stage, we create |Tj−1| strips, and each strip has total area at most δj . There-

fore, the area discarded in the jth stage is at most |Tj−1|δj ≤ tj−1δj = εε1. Since there can be

at most 1/ε1 − 1 stages, we discard an area of less than ε across all stages.

Definition 8.4 (Compaction). In the jth stage, move all tall and small items as much towards

the left as possible (imagine a gravitational force acting leftwards on the tall and small items)

while keeping the wide items fixed. Then move each wide item i ∈ Wj leftwards till x1(i) ∈ Sj.
This transformation is called compaction.

Lemma 8.8. Compaction always succeeds, i.e., in the jth stage, while moving item i ∈ Wj

leftwards, no other item will block its movement.

Proof. Let i ∈ Wj . Let z be the x-coordinate of the left edge of the strip immediately to the

left of item i, i.e., z := max({x ∈ Tj−1 : x ≤ x1(i)}).
For any wide item i′, we have x2(i′) ≤ x1(i) ⇐⇒ i′ ≺ i ⇐⇒ level(i′) ≤ j − 1. By our

invariant, we get

level(i′) ≤ j − 1 =⇒ x2(i′) ∈ Tj−1 =⇒ x2(i′) ≤ z.

Therefore, for every wide item i′, x2(i′) 6∈ (z, x1(i)].

In the jth strip-removal, we cleared the strip [z, z + δj]× [0, 1]. If x1(i) ∈ [z, z + δj], then i

can freely move to z, and z ∈ Tj−1 ⊆ Sj . Since no wide item has its right edge in (z, x1(i)], if

x1(i) > z + δj , all the tall and small items in [z + δj , x1(i)] will move leftwards by at least δj

during compaction. Hence, there would be an empty space of width at least δj to the left of

item i (see Fig. 8.2). Therefore, we can move i leftwards to make x1(i) a multiple of δj , and

then x1(i) would belong to Sj .

Since compaction in the jth stage would force x1(i) to belong to Sj for each i ∈ Wj , the

invariant is maintained after each stage. Therefore, after 1/ε1 − 1 stages, we get that for each

wide item i, x1(i) ∈ S1/ε1−1 ⊆ T and x2(i) ∈ T1/ε1−1 = T .

174

δj

i

k

· · · · · ·

z x1(i)

C

shift tall and small
items leftwards by δj

i

k

· · · · · ·

z x1(i)

C

δj

Figure 8.2: This figure shows a region in the bin in the vicinity of item i ∈ Wj . It illustrates
how shifting tall and small items during compaction in the jth stage creates a free space of
width δ to the left of some wide items, including i. Wide items are shaded dark and the lightly
shaded region potentially contains tall and small items. Note that some tall and small items
in the region C may be unable to shift left because item k is blocking them. All other tall and
small items in this figure to the right of z can shift left by δj .

8.2.2 Creating Compartments

Definition 8.5 (Compartmental packing). Consider a bin with some items packed into it. A

compartment C is defined as a rectangular region in the bin satisfying the following properties:

• x1(C), x2(C) ∈ T .

• y1(C), y2(C) are multiples of εcont := εε1/6|T |.

• C does not contain both wide items and tall items.

175

• If C contains tall items, then x1(C) and x2(C) are consecutive values in T .

If a compartment C contains a wide item, it is called a wide compartment. Otherwise it is

called a tall compartment.

A packing of items J̃ into a bin is said to be compartmental iff there is a set of non-

overlapping compartments in the bin such that each wide or tall item lies completely inside

some compartment, and there are at most nW := 3(1/ε1 − 1)|T |+ 1 wide compartments in the

bin and there are at most nH := (1/ε1 − 1)|T | tall compartments in the bin.

A packing of items into bins is called compartmental iff each bin in the packing is compart-

mental.

Lemma 8.9. Let there be a set I of rectangles packed inside a bin. Then there is a polynomial-

time algorithm that can decompose the empty space in the bin into at most 3|I| + 1 rectangles

by making horizontal cuts only.

Proof. Extend the top and bottom edge of each rectangle leftwards and rightwards till they hit

another rectangle or an edge of the bin. This decomposes the empty region into rectangles R.

See Fig. 8.3.

For each rectangle i ∈ I, the top edge of i is the bottom edge of a rectangle in R, the bottom

edge of i is the bottom edge of two rectangles in R. Apart from possibly the rectangle in R

whose bottom edge is at the bottom of the bin, the bottom edge of every rectangle in R is

either the bottom or top edge of a rectangle in I. Therefore, |R| ≤ 3|I|+ 1.

1

2 3

4
5

6
7

8

9

Figure 8.3: Using horizontal cuts to partition the empty space around the 3 items into 9
rectangular regions.

Lemma 8.10. Let J̃ be a packing of items into a bin such that for each wide item i, x1(i), x2(i) ∈
T . Then by removing wide and small items of area less than ε, we can get a compartmental

packing of the remaining items.

176

Proof. Draw vertical lines in the bin at the x-coordinates in T − {0}. This splits the bin into

|T | columns (see Fig. 8.4a). Each column has 0 or more wide items crossing it. These wide

items divide the column into cells. A cell is called tall iff it contains a tall item (see Fig. 8.4b).

There can be at most 1/ε1− 1 tall cells in a column, so there can be at most (1/ε1− 1)|T | tall

cells in the bin.

1 2 3 4 5 6

(a) A packing of items in a bin. Wide items are
green and tall items are blue. Draw vertical
lines at x-coordinates from T − {0}. They
divide the bin into columns. In this figure, we
have 6 columns.

1 2 3

4 5
6

7
8

9

(b) Wide items divide each column into cells.
Each cell containing a tall item is called a tall
cell. There are 9 tall cells in this figure, which
are shaded gray.

Figure 8.4: Creating tall cells in a bin

By Lemma 8.9, we can use horizontal cuts to partition the space outside tall cells into at

most 3(1/ε1 − 1)|T |+ 1 rectangular regions (this can slice some wide items). See Fig. 8.5a. If

a region contains a wide item, call it a box.

For each box i, slice and discard some items from the bottom of the box and increase y1(i)

so that it becomes a multiple of εcont. Then slice and discard some items from the top of the

box and reduce y2(i) so that it becomes a multiple of εcont. The total area of items discarded

is less than 2εcont. If i continues to contain a wide item, it becomes a wide compartment. Now

all wide items belong to some wide compartment (see Fig. 8.5b).

Each column has 0 or more wide compartments crossing it. These wide compartments divide

the column into rectangular regions. Each region that contains a tall item is a tall compartment

(see Fig. 8.6).

Therefore, by removing wide and small items of area less than 6|T |εcont/ε1 ≤ ε, we get a

177

1

2

3

4

5
6

7

(a) Partition the space outside tall cells into
rectangular regions by extending the horizon-
tal edges of tall cells (see Lemma 8.9). Each
rectangular region containing a wide item is
called a box. There are 7 boxes in this figure,
which are shaded gray.

2

3

4

5
6

7

(b) For each box, discard some items and shift
horizontal edges to make their y-coordinates
multiples of εcont. Boxes that continue to con-
tain a wide item are now wide compartments.

Figure 8.5: Obtaining wide compartments

1 2 3

4 5
6

7
8

9

Figure 8.6: Wide compartments divide each column into rectangular regions. Each such region
containing a tall item is a tall compartment. There are 9 tall compartments in this figure.

compartmental packing of items where there are at most (1/ε1 − 1)|T | tall compartments and

at most 3(1/ε1 − 1)|T |+ 1 wide compartments.

178

8.2.3 Existence of Near-Optimal Compartmental Packing

For a set Ĩ of rounded items, define fcopt(Ĩ) as the number of bins in the optimal fractional

compartmental packing of Ĩ.

Theorem 8.11. Let Ĩ be a set of δ-skewed rounded items. Then fcopt(Ĩ) < (1+4ε) fopt(Ĩ)+2.

Proof. Consider a fractional packing of Ĩ into m := fopt(Ĩ) bins. By Lemmas 8.6 and 8.10,

in each bin, we can discard items of area at most 2ε from the bin and get a compartmental

packing of the remaining items.

Let X be the set of wide and small discarded items and let Y be the set of tall discarded

items. For each item i ∈ X, if w(i) ≤ 1/2, slice it using a horizontal cut in the middle and place

the pieces horizontally next to each other to get a new item of width 2w(i) and height h(i)/2.

Repeat until w(i) > 1/2. Now pack the items in bins by stacking them one-over-the-other so

that for each item i ∈ X, x1(i) = 0. This will require less than 2a(X) + 1 bins, and the packing

will be compartmental.

Similarly, we can get a compartmental packing of Y into 2a(Y) + 1 bins. Since a(X ∪ Y) <

2εm, we will require less than 4εm + 2 bins. Therefore, the total number of compartmental

bins used to pack Ĩ is less than (1 + 4ε)m+ 2.

8.3 Packing Rounded Items

Let I be a set of δ-skewed items. In this section, we give an algorithm for computing a near-

optimal packing of I, called skewedCPack. Roughly, skewedCPack first computes (Ĩ , Imed) :=

round(I). It then computes the optimal fractional compartmental packing of Ĩ by first guessing

a packing of empty compartments into bins and then fractionally packing the wide and tall items

into the compartments. It then converts the fractional packing of Ĩ to a non-fractional packing

of I with only a tiny increase in the number of bins. See Fig. 8.7 for a visual overview of

skewedCPack.

8.3.1 Enumerating Packing of Compartments

We will compute the optimal fractional compartmental packing of Ĩ in two steps. First, for

each bin, we will guess the compartments in the bin. Each such packing of compartments into

bins is called a configuration. Then we will fractionally pack the items into the compartments.

There can be at most nW := 3(1/ε1 − 1)|T | + 1 wide compartments in a bin. Each wide

compartment can have (1/εcont)
2 y-coordinates of the top and bottom edges and at most |T |2/2

179

(a) Guess the packing of
empty compartments in each
bin (Section 8.3.1).

(b) Fractionally pack wide and
tall items into compartments.
This partitions each compart-
ment into containers (Sec-
tion 8.3.2).

(c) Pack the items non-
fractionally (Section 8.3.3).

Figure 8.7: Major steps of skewedCPack after rounding I.

x-coordinates of the left and right edges, where εcont := εε1/6|T |. The rest of the space is for

tall compartments. Therefore, the number of configurations is at most

nC :=
(
(1/εcont)

2|T |2/2
)nW ≤

(
3|T |2

εε1

)6|T |/ε1
≤
(

1 +
1

εε1

)(1+ 1
εε1

)2/ε1+1

.

Since each configuration can have at most n bins, the number of combinations of configurations

is at most (n+ 1)nC .

Therefore, we can iterate over all possible bin packings of empty compartments in O(nnC)

time. Let iterPackings(Ĩ) be an algorithm for this, i.e., iterPackings(Ĩ) outputs the set of

all possible bin packings of empty compartments into at least da(Ĩ)e and at most n bins, where

n is the number of items in Ĩ.

8.3.2 Packing Items Into Compartments

For each bin packing of empty compartments, we will try to fractionally pack the items into the

bins. Formally, let P be a packing of empty compartments into bins. We will create a feasibility

linear program, called FP(Ĩ , P), that is feasible iff wide and tall items in Ĩ can be packed into

the compartments in P . If FP(Ĩ , P) is feasible, then small items can also be fractionally packed

since P contains at least a(Ĩ) bins.

Let w′1, w
′
2, . . . , w

′
p be the distinct widths of wide compartments in P . Let Uj be the set of

wide compartments in P having width w′j . Let h(Uj) be the sum of heights of the compartments

in Uj . By Definition 8.5, we know that p ≤ |T |2/2. Let w1, w2, . . . , wr be the distinct widths

180

of items in W̃ (recall that W̃ is the set of wide items in Ĩ). Let W̃j be the items in W̃ having

width wj . Let h(W̃j) be the sum of heights of all items in W̃j . By Claim 8.2, we get r ≤ 1/εε1.

Let C := [C0, C1, . . . , Cr] be a vector, where C0 ∈ [p] and Cj ∈ Z≥0 for j ∈ [r]. C is

called a wide configuration iff w(C) :=
∑r

j=1Cjwj ≤ w′C0
. Intuitively, a wide configuration

C represents a set of wide items that can be placed side-by-side into a compartment of width

w′C0
. Let C be the set of all wide configurations. Then |C| ≤ p/εr1, which is a constant. Let

Cj := {C ∈ C : C0 = j}.
To pack W̃ into wide compartments, we must determine the height of each configuration.

Let x ∈ R|C|≥0 be a vector where xC denotes the height of configuration C. Then W̃ can be packed

into wide compartments according to x iff x is a feasible solution the following feasibility linear

program, named FPW (Ĩ , P):∑
C∈C

CjxC ≥ h(W̃j) ∀j ∈ [r] (W̃j should be covered)

∑
C∈C and C0=j

xC ≤ h(Uj) ∀j ∈ [p] (Cj should fit in Uj)

xC ≥ 0 ∀C ∈ C

Let x∗ be an extreme point solution to FPW (Ĩ , P) (if FPW (Ĩ , P) is feasible). By Rank

Lemma, at most p+ r entries of x∗ are non-zero. Since the number of variables and constraints

is constant, x∗ can be computed in constant time.

Let H̃ be the set of tall items in Ĩ. By Claim 8.2, we get that items in H̃ have at most 1/εε1

distinct heights. Let there be q distinct heights of tall compartments in P . By Definition 8.5,

we know that q ≤ 1/εcont = 6|T |/εε1. We can similarly define tall configurations and we can

similarly define a feasibility linear program for tall items, named FPH(Ĩ , P). H̃ can be packed

into tall compartments in P iff FPH(Ĩ , P) is feasible. Let y∗ be an extreme point solution to

FPH(Ĩ , P). Then y∗ can be computed in constant time and y∗ has at most q + 1/εε1 positive

entries.

Therefore, Ĩ can be packed into P iff the feasibility linear program FP(Ĩ , P) := FPW (Ĩ , P)∧
FPH(Ĩ , P) is feasible.

The solution (x∗, y∗) shows us how to split each compartment into shelves, where each shelf

corresponds to a configuration C and the shelf can be split into Cj containers of width wj and

one container of width w′C0
−w(C). Let there be m bins in P . After splitting the configurations

across compartments, we get at most p+ q + 2/εε1 +m(nW + nH) shelves.

181

8.3.3 Converting a Fractional Packing to a Non-Fractional Packing

Let there be m bins in a packing P of empty compartments into bins. Suppose it is possible

to pack Ĩ into P . Let x∗ and y∗ be extreme-point solutions to FPW (Ĩ , P) and FPH(Ĩ , P),

respectively. This gives us a fractional compartmental packing of Ĩ into m bins. We will now

show how to convert this to a non-fractional compartmental packing by removing some items

of small total area. Formally, we give an algorithm called greedyPack(Ĩ , P, x∗, y∗). It returns

a pair (Q,D), where Q is a (non-fractional) compartmental bin packing of items Ĩ −D, where

the compartments in the bin are as per P . D is called the set of discarded items, and we will

prove that a(D) is small.

For a configuration C in a wide compartment, there is a container of width w′C0
− w(C)

available for packing small items. Hence, there are p + q + 2/εε1 + m(nW + nH) containers

available inside compartments for packing small items. By Lemma 8.9, we can partition the

space outside compartments into at most m(3(nW + nH) + 1) containers. Therefore, the total

number of containers available for packing small items is at most

mS := (p+ q + 2/εε1) +m(4(nW + nH) + 1) ≤
(
|T |2

2
+

6|T |
εε1

+
2

εε1

)
+

16|T |
ε1

m.

Greedily assign small items to small containers, i.e., keep assigning small items to a container

till the area of items assigned to it is at least the area of the container, and then resume from the

next container. Each small item will get assigned to some container. For each container C, pack

the largest possible prefix of the assigned items using the Next-Fit Decreasing Height (NFDH)

algorithm. By Lemma 3.4, the area of unpacked items would be less than ε2 +δ+ε2δ. Summing

over all containers, we get that the unpacked area is less than (ε2 + δ + ε2δ)mS ≤ 3ε2mS.

For each j, greedily assign wide items from W̃j to containers of width wj , i.e., keep assigning

items till the height of items exceeds the height of the container. Each wide item will get

assigned to some container. Then discard the last item from each container. For each shelf in a

wide compartment having configuration C, the total area of items we discard is at most δw(C).

Similarly, we can discard tall items of area at most δh(C) from each shelf in a tall compartment

having configuration C.

Hence, across all configurations, we discard wide and tall items of area at most

δ((p+ q + 2/εε1) +m(nW + nH)) ≤ δ

(
|T |2

2
+

6|T |
εε1

+
2

εε1

)
+

4δ|T |
ε1

m.

182

Therefore, for (Q,D) := greedyPack(Ĩ , P, x∗, y∗), we get

a(D) <
52|T |ε2

ε1
m+ 4ε2

(
|T |2

2
+

6|T |
εε1

+
2

εε1

)
(8.4)

where m is the number of bins used by P .

8.3.4 The Algorithm

We now summarize the algorithm for bin packing δ-skewed items I (see Algorithm 19 for

a more precise description). First, use round on I, i.e., let (Ĩ , Imed) := round(I). Then

enumerate all packings P of compartments into bins as per Section 8.3.1. For each packing

P , check if Ĩ can be fractionally packed into P by solving the feasibility linear program (see

Section 8.3.2). If yes, then use a solution to the feasibility linear program to compute a (non-

fractional) compartmental packing of Ĩ −D using greedyPack (see Section 8.3.3), where D is

the set of items discarded by greedyPack. Then pack Imed ∪ D into bins using the Next-Fit

Decreasing Height (NFDH) algorithm. Output the best bin packing of I across all choices of

P .

Algorithm 19 skewedCPackε(I): Packs a set I of δ-skewed rectangular items into bins without
rotating the items.

1: (Ĩ , Imed) = roundε(I).
2: Initialize Qbest to null.
3: for P ∈ iterPackings(Ĩ) do // iterPackings is defined in Section 8.3.1.

4: x∗ = opt(FPW (Ĩ , P)). // FPW and FPH are defined in Section 8.3.2.

5: // If FPW (Ĩ , P) is feasible, x∗ is an extreme-point solution to FPW (Ĩ , P).

6: // If FPW (Ĩ , P) is infeasible, x∗ is null.

7: y∗ = opt(FPH(Ĩ , P)).

8: if x∗ 6= null and y∗ 6= null then // if Ĩ can be packed into P
9: (Q,D) = greedyPack(Ĩ , P, x∗, y∗). // greedyPack is defined in Section 8.3.3.

10: QD = NFDH(D ∪ Imed).
11: if Q ∪QD uses less bins than Qbest then
12: Qbest = Q ∪QD.
13: end if
14: end if
15: end for
16: return Qbest

183

Recall the function f from Eq. (8.1) in Section 8.1.1. Since ε2 := f(ε1), we get

ε2 = f(ε1) =
εε1

104(1 + 1/εε1)2/ε1−2
≤ εε1

104|T |
. (8.5)

The last inequality follows from the fact that |T | ≤ (1 + 1/εε1)2/ε1−2.

Lemma 7.19. Let I be a set of rectangular items where each item has height at most δ. Then

the number of bins required by NFDH to pack I is less than (2a(I) + 1)/(1− δ).

Proof. (See Section 7.3.7.)

Lemma 8.12. Let I be a set of rectangular items where each item has width at most δ. Then

the number of bins required by NFDH to pack I is less than 2a(I)/(1− δ) + 3.

Proof. The bin packing version of NFDH first packs I into shelves and then packs the shelves

into bins using Next-Fit. Let the number of shelves be p. Let hj be the height of the jth shelf.

Let Sj be the items in the jth shelf. For j ∈ [p− 1], in the jth shelf, the total width of items is

more than (1− δ) and each item has height more than hj+1. Therefore, a(Sj) > hj+1(1− δ).
Let H be the sum of heights of all the shelves. Then

a(I) >

p−1∑
i=1

a(Sj) >

p−1∑
i=1

hj+1(1− δ) > (1− δ)(H − h1)

=⇒ H <
a(I)

1− δ
+ 1.

By Lemma 3.1, the number of bins is less than 2H + 1 < 2a(I)/(1− δ) + 3.

Theorem 8.13. The number of bins used by skewedCPackε(Ĩ) is less than

(1 + 20ε) opt(I) +
1

13

(
1 +

1

εε1

)2/ε1−2

+ 23.

Proof. In an optimal fractional compartmental bin packing of Ĩ, let P ∗ be the corresponding

packing of empty compartments into bins. Hence, P ∗ contains m := fcopt(Ĩ) bins. Since

iterPackings(Ĩ) iterates over all packings of compartments into bins, P ∗ ∈ iterPackings(Ĩ).

Since wide and tall items in Ĩ can be packed into the compartments of P ∗, we get that x∗

and y∗ are not null. By Lemmas 8.12 and 7.19, the number of bins used by NFDH to pack

Imed ∪D is less than 2a(Imed ∪D)/(1− δ) + 3 + 1/(1− δ). Therefore, the number of bins used

184

by skewedCPack(I) is less than

m+
2a(Imed ∪D)

1− δ
+ 3 +

1

1− δ

< m+
2ε

1− δ
a(I) +

2ε2

1− δ

(
52|T |
ε1

m+ 4

(
|T |2

2
+

6|T |+ 2

εε1

))
+ 3 +

1

1− δ
(by Lemma 8.1 and Eq. (8.4))

=

(
1 +

104ε2|T |
ε1(1− δ)

)
m+

2ε

1− δ
a(I) + 3 +

1

1− δ
+

8ε2

1− δ

(
|T |2

2
+

6|T |+ 2

εε1

)
=

(
1 +

ε

1− δ

)
m+

2ε

1− δ
a(I) + 3 +

1

13(1− δ)

(
εε1|T |

2
+ 19 +

2

|T |

)
. (by Eq. (8.5))

By Theorem 8.11 and Lemma 8.3, we get

m = fcopt(Ĩ) < (1 + 4ε) fopt(Ĩ) + 2 < (1 + 4ε)(1 + ε) opt(I) + 4 + 8ε.

Therefore, the number of bins used by skewedCPack(I) is less than(
(1 + 4ε)(1 + ε)

(
1 +

ε

1− δ

)
+

2ε

1− δ

)
opt(I)

+ (4 + 8ε)

(
1 +

ε

1− δ

)
+ 3 +

1

13(1− δ)

(
εε1|T |

2
+ 19 +

2

|T |

)
≤ (1 + 20ε) opt(I) +

1

13

(
1 +

1

εε1

)2/ε1−2

+ 23. (since δ ≤ ε1 ≤ ε ≤ 1/2)

8.4 Handling Item Rotations

In this section, we will briefly explain changes to skewedCPack and its analysis so that they

work for the case where items can be rotated by 90◦.

For the rotational version of the problem, we can assume without loss of generality that the

height of each δ-skewed rectangle is at most δ, because otherwise we can rotate the item. We

assume without loss of generality that the width of the bin is 1 and the height of the bin is at

least 1, because we can rotate the bin and scale its width and height equally. We also assume

that the height of the bin is a constant.

To handle the rotational case, we do not require any change in Section 8.1.

The structural theorem in Section 8.2 doesn’t require any conceptual modifications. The

185

only change is that the number of tall compartments in a tall cell can be more than 1/ε1 − 1.

Specifically, if the height of the bin is H, the number of tall compartments in a tall cell is now

upper-bounded by H/ε1. (Hence, for the number of compartments to be a constant, we require

the bin’s height to be a constant). This will increase the running time of iterPackings, but

there will be no change to Theorem 8.11.

The feasibility linear program of Section 8.3.2 will have to change to take item rotations into

account. Instead of using two programs—FPW and FPH—which fractionally pack wide and

tall items separately, we will use just one program which will also decide which items to rotate.

To do this, we allow an item to belong to both wide and tall configurations. The number of

constraints in the feasibility linear program will be a constant that depends on ε and ε1.

The greedyPack algorithm of Section 8.3.3 will remain the same, but the total area of

discarded items will be slightly different because the number of compartments in a bin can now

be larger. Finally, the AAR of skewedCPack for the rotational version will be 1 + Θ(1)ε by the

same kind of analysis as in Section 8.3.4.

186

Chapter 9

Conclusion and Future Directions

In this thesis, we studied approximation algorithms for different kinds of geometric packing

problems.

In Chapters 4 and 5, we give approximation algorithms for the generalized multidimensional

bin packing problem, a problem that has wide practical applications but had not yet received

attention from the theoretical computer science community. We hope that our work will drive

interest into this problem. Possible future directions of research for this problem include obtain-

ing algorithms with better asymptotic approximation ratios, and identifying important special

cases that can be solved efficiently.

In Section 4.3, we extended the Round-and-Approx framework [10, 14] to a larger class of

bin packing algorithms. We expect that our progress will help in better understanding the

power of Round-and-Approx and enable the design of better approximation algorithms for

other packing problems. It would also be interesting to see applications of Round-and-Approx

to other set-cover type problems, like round-SAP and round-UFP [30].

In Chapter 6, we give approximation algorithms for the rotational version of geometric bin

packing. Our algorithm for 3D GBP obtains the best-known asymptotic approximation ratio.

Most previous works make assumptions about bin sizes which are unlikely to hold in practice.

Our algorithms, however, don’t rely on such assumptions. An important problem is to obtain

better asymptotic approximation ratios for dD GBP, especially 3D GBP. There is currently

an exponential gap between the lower and upper bounds on the AAR achievable for dD GBP

(constant lower bound, upper bound of 1.691d−1). It would be interesting to reduce this huge

gap.

We have seen that for 2D GBP, the algorithm of Bansal, Lodi and Sviridenko [15] has an

AAR equal to the asymptotic price of guillotinability (APoG). It is known that 4/3 ≤ APoG ≤
T∞ ≈ 1.69103. If we could obtain a better upper bound on APoG, that could give us the

187

best-known algorithm for 2D GBP. Hence, obtaining tight bounds on APoG is an important

problem. In Chapter 7, we show that for the special case of δ-skewed rectangles, when δ is close

to 0, both the lower and upper bounds on APoG are close to 4/3. We hope that our work will

shed more light on the general case of the problem. A good next step would be to obtain tight

bounds on APoG when all rectangles are non-δ-skewed, and after that focus on the general case

of the problem.

In Chapter 8, we gave an approximation algorithm for 2D GBP when the rectangles are

δ-skewed. Our work indicates that to improve the AAR for 2D GBP, a good next step would

be to focus on the special case of non-δ-skewed rectangles.

Finally, it would be interesting to see if our work can be extended to other problems similar

to bin packing, like bin covering [4] and scheduling. Another direction is to explore different

problem paradigms, like online algorithms, or different analysis paradigms, like average-case

analysis.

188

Bibliography

[1] Fidaa Abed, Parinya Chalermsook, José Correa, Andreas Karrenbauer, Pablo Pérez-

Lantero, José A Soto, and Andreas Wiese. On guillotine cutting sequences. In International

Workshop on Approximation Algorithms for Combinatorial Optimization Problems (AP-

PROX), pages 1–19, 2015. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.1. 6

[2] M. T. Alonso, R. Alvarez-Valdes, Manuel Iori, F. Parreño, and J. M. Tamarit. Math-

ematical models for multicontainer loading problems. Omega, 66:106–117, 2017. doi:

10.1016/j.omega.2016.02.002. 8

[3] Samir V. Amiouny, John J. Bartholdi III, John H. Vande Vate, and Jixian Zhang. Balanced

loading. Operations Research, 40(2):238–246, 1992. doi:10.1287/opre.40.2.238. 8

[4] Susan F Assmann, David S. Johnson, Daniel J. Kleitman, and JY-T Leung. On a dual

version of the one-dimensional bin packing problem. Journal of algorithms, 5(4):502–525,

1984. doi:10.1016/0196-6774(84)90004-X. 188

[5] Brenda S Baker and Edward G Coffman, Jr. A tight asymptotic bound for next-fit-

decreasing bin-packing. SIAM Journal on Algebraic Discrete Methods, 2(2):147–152, 1981.

doi:10.1137/0602019. 17

[6] János Balogh, József Békési, György Dósa, Leah Epstein, and Asaf Levin. A New and

Improved Algorithm for Online Bin Packing. In Yossi Azar, Hannah Bast, and Grzegorz

Herman, editors, 26th Annual European Symposium on Algorithms (ESA 2018), volume

112 of Leibniz International Proceedings in Informatics (LIPIcs), pages 5:1–5:14, Dagstuhl,

Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs

.ESA.2018.5. 15, 16

[7] János Balogh, József Békési, György Dósa, Leah Epstein, and Asaf Levin. A new lower

bound for classic online bin packing. Algorithmica, pages 1–16, 03 2021. doi:10.1007/s0

0453-021-00818-7. 15

189

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.1
https://doi.org/10.1016/j.omega.2016.02.002
https://doi.org/10.1016/j.omega.2016.02.002
https://doi.org/10.1287/opre.40.2.238
https://doi.org/10.1016/0196-6774(84)90004-X
https://doi.org/10.1137/0602019
https://doi.org/10.4230/LIPIcs.ESA.2018.5
https://doi.org/10.4230/LIPIcs.ESA.2018.5
https://doi.org/10.1007/s00453-021-00818-7
https://doi.org/10.1007/s00453-021-00818-7

BIBLIOGRAPHY

[8] János Balogh, József Békési, and Gábor Galambos. New lower bounds for certain classes

of bin packing algorithms. Theoretical Computer Science, 440:1–13, 2012. doi:10.1016/

j.tcs.2012.04.017. 15

[9] Nikhil Bansal, Alberto Caprara, Klaus Jansen, Lars Prädel, and Maxim Sviridenko. A

structural lemma in 2-dimensional packing, and its implications on approximability. In

International Symposium on Algorithms and Computation, pages 77–86. Springer, 2009.

doi:10.1007/978-3-642-10631-6_10. 18, 28

[10] Nikhil Bansal, Alberto Caprara, and Maxim Sviridenko. A new approximation method for

set covering problems, with applications to multidimensional bin packing. SIAM Journal

on Computing, 39(4):1256–1278, 2010. doi:10.1137/080736831. 7, 9, 11, 17, 20, 27, 32,

33, 34, 37, 144, 187

[11] Nikhil Bansal, José R Correa, Claire Kenyon, and Maxim Sviridenko. Bin packing in

multiple dimensions: inapproximability results and approximation schemes. Mathematics

of operations research, 31(1):31–49, 2006. doi:10.1287/moor.1050.0168. 5, 17, 18

[12] Nikhil Bansal, Marek Eliáš, and Arindam Khan. Improved approximation for vector bin

packing. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1561–1579.

SIAM, 2016. doi:10.1137/1.9781611974331.ch106. 7, 8, 20, 32

[13] Nikhil Bansal, Xin Han, Kazuo Iwama, Maxim Sviridenko, and Guochuan Zhang. Har-

monic algorithm for 3-dimensional strip packing problem. In SODA, volume 7, pages

1197–1206. Citeseer, 2007. 19

[14] Nikhil Bansal and Arindam Khan. Improved approximation algorithm for two-dimensional

bin packing. In SODA, pages 13–25, 2014. doi:10.1137/1.9781611973402.2. ii, 5, 9, 10,

11, 17, 27, 34, 35, 39, 187

[15] Nikhil Bansal, Andrea Lodi, and Maxim Sviridenko. A tale of two dimensional bin packing.

In IEEE Symposium on Foundations of Computer Science (FOCS), pages 657–666. IEEE,

2005. doi:10.1109/SFCS.2005.10. 6, 12, 38, 187

[16] Suman Kalyan Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Negahbani.

Fair algorithms for clustering. In Conference on Neural Information Processing Systems

(NeurIPS), pages 4955–4966, 2019. 8

190

https://doi.org/10.1016/j.tcs.2012.04.017
https://doi.org/10.1016/j.tcs.2012.04.017
https://doi.org/10.1007/978-3-642-10631-6_10
https://doi.org/10.1137/080736831
https://doi.org/10.1287/moor.1050.0168
https://doi.org/10.1137/1.9781611974331.ch106
https://doi.org/10.1137/1.9781611973402.2
https://doi.org/10.1109/SFCS.2005.10

BIBLIOGRAPHY

[17] Andreas Bortfeldt and Gerhard Wäscher. Constraints in container loading–a state-of-the-

art review. European Journal of Operational Research, 229(1):1–20, 2013. doi:10.1016/

j.ejor.2012.12.006. 8

[18] Alberto Caprara. Packing d-dimensional bins in d stages. Mathematics of Operations

Research - MOR, 33:203–215, 02 2008. doi:10.1287/moor.1070.0289. ii, 5, 10, 12, 13,

17, 19, 33, 49, 113, 114, 115, 119, 126, 136, 139, 140, 146

[19] Timothy M Chan. Approximation schemes for 0-1 knapsack. In 1st Symposium on Simplic-

ity in Algorithms (SOSA 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

doi:10.4230/OASIcs.SOSA.2018.5. 16

[20] Chandra Chekuri and Sanjeev Khanna. On multidimensional packing problems. SIAM

journal on computing, 33(4):837–851, 2004. doi:10.1137/S0097539799356265. 20

[21] Miroslav Chleb́ık and Janka Chleb́ıková. Hardness of approximation for orthogonal rect-

angle packing and covering problems. Journal of Discrete Algorithms, 7(3):291–305, 2009.

doi:10.1016/j.jda.2009.02.002. 5, 13, 18, 168

[22] Fan RK Chung, Michael R Garey, and David S Johnson. On packing two-dimensional bins.

SIAM Journal on Algebraic Discrete Methods, 3(1):66–76, 1982. doi:10.1137/0603007.

17

[23] Edward G. Coffman, János Csirik, Gábor Galambos, Silvano Martello, and Daniele Vigo.

Bin packing approximation algorithms: Survey and classification. In Handbook of com-

binatorial optimization. Springer, 2013. doi:10.1007/978-1-4419-7997-1_35. 1, 15,

16

[24] Edward G. Coffman, Michael R. Garey, David S. Johnson, and Robert E. Tarjan. Perfor-

mance bounds for level-oriented two-dimensional packing algorithms. SIAM Journal on

Computing, 9:808–826, 1980. doi:10.1137/0209062. 17, 19, 25, 135

[25] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Maximum

flow. In Introduction to Algorithms. MIT press, 2009. 80, 81

[26] W Fernandez De La Vega and George S. Lueker. Bin packing can be solved within 1+ε

in linear time. Combinatorica, 1(4):349–355, 1981. doi:10.1007/BF02579456. 2, 16, 20,

116, 119, 124, 135, 160, 170

191

https://doi.org/10.1016/j.ejor.2012.12.006
https://doi.org/10.1016/j.ejor.2012.12.006
https://doi.org/10.1287/moor.1070.0289
https://doi.org/10.4230/OASIcs.SOSA.2018.5
https://doi.org/10.1137/S0097539799356265
https://doi.org/10.1016/j.jda.2009.02.002
https://doi.org/10.1137/0603007
https://doi.org/10.1007/978-1-4419-7997-1_35
https://doi.org/10.1137/0209062
https://doi.org/10.1007/BF02579456

BIBLIOGRAPHY

[27] Florian Diedrich, Rolf Harren, Klaus Jansen, Ralf Thöle, and Henning Thomas. Ap-

proximation algorithms for 3d orthogonal knapsack. Journal of Computer Science and

Technology, 23(5):749, 2008. doi:10.1007/s11390-008-9170-7. 18, 32, 33, 42

[28] György Dósa. The tight bound of first fit decreasing bin-packing algorithm is FFD(I) ≤
11/9 OPT(I) + 6/9. In International Symposium on Combinatorics, Algorithms, Proba-

bilistic and Experimental Methodologies, pages 1–11. Springer, 2007. doi:10.1007/978-3

-540-74450-4_1. 2, 16

[29] György Dósa and Jiŕı Sgall. First fit bin packing: A tight analysis. In 30th International

Symposium on Theoretical Aspects of Computer Science (STACS 2013). Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik, 2013. doi:10.4230/LIPIcs.STACS.2013.538. 2, 16

[30] Khaled M. Elbassioni, Naveen Garg, Divya Gupta, Amit Kumar, Vishal Narula, and

Arindam Pal. Approximation algorithms for the unsplittable flow problem on paths and

trees. In FSTTCS, volume 18 of Leibniz International Proceedings in Informatics (LIPIcs),

pages 267–275, 2012. doi:10.4230/LIPIcs.FSTTCS.2012.267. 10, 187

[31] Leah Epstein and Rob Van Stee. This side up! ACM Transactions on Algorithms (TALG),

2(2):228–243, 2006. doi:10.1145/1150334.1150339. 10, 12, 18, 19

[32] Sándor P. Fekete and Jörg Schepers. A general framework for bounds for higher-

dimensional orthogonal packing problems. Mathematical Methods of Operations Research,

60(2):311–329, 2004. doi:10.1007/s001860400376. 113

[33] Alan M Frieze, MRB Clarke, et al. Approximation algorithms for the m-dimensional 0-1

knapsack problem: worst-case and probabilistic analyses. European Journal of Operational

Research, 15(1):100–109, 1984. 21, 33

[34] Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, Klaus Jansen, Arindam Khan,

and Malin Rau. A tight (3/2+ ε) approximation for skewed strip packing. In Approx-

imation, Randomization, and Combinatorial Optimization. Algorithms and Techniques

(APPROX/RANDOM 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

doi:10.4230/LIPIcs.APPROX/RANDOM.2020.44. 13

[35] Waldo Gálvez, Fabrizio Grandoni, Sandy Heydrich, Salvatore Ingala, Arindam Khan, and

Andreas Wiese. Approximating geometric knapsack via l-packings. In 2017 IEEE 58th

Annual Symposium on Foundations of Computer Science (FOCS), pages 260–271. IEEE,

2017. doi:10.1109/FOCS.2017.32. 38

192

https://doi.org/10.1007/s11390-008-9170-7
https://doi.org/10.1007/978-3-540-74450-4_1
https://doi.org/10.1007/978-3-540-74450-4_1
https://doi.org/10.4230/LIPIcs.STACS.2013.538
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.267
https://doi.org/10.1145/1150334.1150339
https://doi.org/10.1007/s001860400376
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.44
https://doi.org/10.1109/FOCS.2017.32

BIBLIOGRAPHY

[36] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its

consequences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981. doi:

10.1007/BF02579273. 28

[37] Rebecca Hoberg and Thomas Rothvoss. A logarithmic additive integrality gap for bin

packing. In SODA, pages 2616–2625, 2017. doi:10.1137/1.9781611974782.172. 16

[38] Klaus Jansen. A (3/2 + ε) approximation algorithm for scheduling moldable and non-

moldable parallel tasks. In SPAA, pages 224–235, 2012. doi:10.1145/2312005.2312048.

11

[39] Klaus Jansen and Lars Prädel. New approximability results for two-dimensional bin pack-

ing. In SODA, pages 919–936, 2013. doi:10.1007/s00453-014-9943-z. 17

[40] Klaus Jansen and Lars Prädel. A new asymptotic approximation algorithm for 3-

dimensional strip packing. In International Conference on Current Trends in Theory and

Practice of Informatics, pages 327–338. Springer, 2014. doi:10.1007/978-3-319-04298

-5_29. 19

[41] Klaus Jansen and Lars Prädel. New approximability results for two-dimensional bin pack-

ing. Algorithmica, 74(1):208–269, 2016. doi:10.1007/s00453-014-9943-z. 11, 17, 38,

48, 50, 52, 53

[42] Klaus Jansen and Roberto Solis-Oba. An asymptotic approximation algorithm for 3d-strip

packing. In ACM-SIAM Symposium on Discrete Algorithm (SODA), pages 143–152, 2006.

19

[43] Klaus Jansen and Rob van Stee. On strip packing with rotations. In ACM Symposium on

Theory of Computing (STOC), pages 755–761, 2005. doi:10.1145/1060590.1060702. 19

[44] Klaus Jansen and Guochuan Zhang. On rectangle packing: maximizing benefits. In SODA,

volume 4, pages 204–213, 2004. 18

[45] Ce Jin. An improved fptas for 0-1 knapsack. In International Colloquium on Automata,

Languages, and Programming (ICALP 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer In-

formatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.76. 16

[46] David S Johnson. Near-Optimal Bin Packing Algorithms. PhD thesis, Massachusetts

Institute of Technology, USA, 1973. 15, 16

193

https://doi.org/10.1007/BF02579273
https://doi.org/10.1007/BF02579273
https://doi.org/10.1137/1.9781611974782.172
https://doi.org/10.1145/2312005.2312048
https://doi.org/10.1007/s00453-014-9943-z
https://doi.org/10.1007/978-3-319-04298-5_29
https://doi.org/10.1007/978-3-319-04298-5_29
https://doi.org/10.1007/s00453-014-9943-z
https://doi.org/10.1145/1060590.1060702
https://doi.org/10.4230/LIPIcs.ICALP.2019.76

BIBLIOGRAPHY

[47] Matthew Joseph, Michael J. Kearns, Jamie H. Morgenstern, and Aaron Roth. Fairness in

learning: Classic and contextual bandits. In Conference on Neural Information Processing

Systems (NIPS), pages 325–333, 2016. 8

[48] Narendra Karmarkar and Richard M Karp. An efficient approximation scheme for the one-

dimensional bin-packing problem. In 23rd Annual Symposium on Foundations of Computer

Science (SFCS 1982), pages 312–320. IEEE, 1982. doi:10.1109/SFCS.1982.61. 16, 28

[49] Claire Kenyon and Eric Rémila. Approximate strip packing. In FOCS, pages 31–36, 1996.

doi:10.1109/SFCS.1996.548461. 17, 19, 160, 161, 170

[50] Arindam Khan. Approximation algorithms for multidimensional bin packing. PhD thesis,

Georgia Institute of Technology, 2015. 35, 41, 48

[51] Arindam Khan, Arnab Maiti, Amatya Sharma, and Andreas Wiese. On guillotine separable

packings for the two-dimensional geometric knapsack problem. ArXiv, 2102.05854, 2021.

arXiv:2103.09735. 6

[52] Arindam Khan and Madhusudhan Reddy Pittu. On guillotine separability of squares

and rectangles. In Approximation, Randomization, and Combinatorial Optimization. Al-

gorithms and Techniques (APPROX/RANDOM 2020). Schloss Dagstuhl-Leibniz-Zentrum

für Informatik, 2020. doi:10.4230/LIPIcs.APPROX/RANDOM.2020.47. 6

[53] Arindam Khan, Eklavya Sharma, and K. V. N. Sreenivas. Approximation algorithms for

generalized multidimensional knapsack. ArXiv, 2102.05854, 2021. arXiv:2102.05854. 43,

51, 109

[54] Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. Iterative methods in combinatorial

optimization, volume 46. Cambridge University Press, 2011. 27

[55] Eugene L Lawler. Fast approximation algorithms for knapsack problems. Mathematics of

Operations Research, 4(4):339–356, 1979. doi:10.1287/moor.4.4.339. 3, 11, 16, 143

[56] C. C. Lee and D. T. Lee. A simple on-line bin-packing algorithm. J. ACM, 32(3):562–572,

July 1985. doi:10.1145/3828.3833. 10, 15, 16, 114

[57] Keqin Li and Kam-Hoi Cheng. On three-dimensional packing. SIAM Journal on Comput-

ing, 19(5):847–867, 1990. doi:10.1137/0219059. 19

194

https://doi.org/10.1109/SFCS.1982.61
https://doi.org/10.1109/SFCS.1996.548461
http://arxiv.org/abs/2103.09735
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.47
http://arxiv.org/abs/2102.05854
https://doi.org/10.1287/moor.4.4.339
https://doi.org/10.1145/3828.3833
https://doi.org/10.1137/0219059

BIBLIOGRAPHY

[58] Colin McDiarmid. On the method of bounded differences. Surveys in combinatorics,

141(1):148–188, 1989. 41, 45

[59] Michael L McHale and Roshan P Shah. Cutting the guillotine down to size. PC AI,

13:24–26, 1999. URL: https://www.amzi2.com/articles/papercutter.htm. 6

[60] Flavio Keidi Miyazawa and Yoshiko Wakabayashi. Three-dimensional packings with rota-

tions. Computers & Operations Research, 36(10):2801–2815, 2009. doi:10.1016/j.cor.

2008.12.015. 10, 18, 19

[61] Maria Flavia Monaco, Marcello Sammarra, and Gregorio Sorrentino. The terminal-oriented

ship stowage planning problem. EJOR, 239(1):256–265, 2014. doi:10.1016/j.ejor.201

4.05.030. 8

[62] Célia Paquay, Michael Schyns, and Sabine Limbourg. A mixed integer programming

formulation for the three-dimensional bin packing problem deriving from an air cargo

application. International Transactions in Operational Research, 23(1-2):187–213, 2016.

doi:10.1111/itor.12111. 7

[63] Deval Patel, Arindam Khan, and Anand Louis. Group fairness for knapsack problems.

ArXiv, 2006.07832, 2020. arXiv:2006.07832. 8

[64] Boaz Patt-Shamir and Dror Rawitz. Vector bin packing with multiple-choice. Discrete

Applied Mathematics, 160(10-11):1591–1600, 2012. doi:10.1016/j.dam.2012.02.020. 11

[65] Serge A Plotkin, David B Shmoys, and Éva Tardos. Fast approximation algorithms for

fractional packing and covering problems. Mathematics of Operations Research, 20(2):257–

301, 1995. doi:10.1287/moor.20.2.257. 28

[66] Lars Dennis Prädel. Approximation Algorithms for Geometric Packing Problems. PhD

thesis, Kiel University, 2012. URL: https://macau.uni-kiel.de/servlets/MCRFileNod

eServlet/dissertation_derivate_00004634/dissertation-praedel.pdf?AC=N. 50,

52, 53, 79, 85, 96

[67] Jakob Puchinger, Günther R Raidl, and Gabriele Koller. Solving a real-world glass cut-

ting problem. In European Conference on Evolutionary Computation in Combinatorial

Optimization, pages 165–176. Springer, 2004. doi:10.1007/978-3-540-24652-7_17. 6

195

https://www.amzi2.com/articles/papercutter.htm
https://doi.org/10.1016/j.cor.2008.12.015
https://doi.org/10.1016/j.cor.2008.12.015
https://doi.org/10.1016/j.ejor.2014.05.030
https://doi.org/10.1016/j.ejor.2014.05.030
https://doi.org/10.1111/itor.12111
http://arxiv.org/abs/2006.07832
https://doi.org/10.1016/j.dam.2012.02.020
https://doi.org/10.1287/moor.20.2.257
https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/dissertation_derivate_00004634/dissertation-praedel.pdf?AC=N
https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/dissertation_derivate_00004634/dissertation-praedel.pdf?AC=N
https://doi.org/10.1007/978-3-540-24652-7_17

BIBLIOGRAPHY

[68] Thomas Rothvoß. Approximating bin packing within O(logOPT ∗ log logOPT) bins. In

2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), pages

20–29, 2013. doi:10.1109/FOCS.2013.11. 16

[69] Sai Sandeep. Almost optimal inapproximability of multidimensional packing problems.

ArXiv, 2101.02854, 2021. arXiv:2101.02854. 20

[70] W Schneider. Trim-loss minimization in a crepe-rubber mill; optimal solution versus heuris-

tic in the 2 (3) - dimensional case. European Journal of Operational Research, 34(3):273–

281, 1988. doi:10.1016/0377-2217(88)90148-8. 6

[71] Eklavya Sharma. Analysis of the harmonic function used in bin-packing. ArXiv,

2011.11618, 2020. arXiv:2011.11618. 114

[72] Eklavya Sharma. An approximation algorithm for covering linear programs and its appli-

cation to bin-packing. ArXiv, 2011.10963, 2020. arXiv:2011.11268. 34, 42, 51, 109

[73] Knut Olav Brathaug Sørset. A heuristic approach to the three-dimensional bin packing

problem with weight constraints. Master’s thesis, Høgskolen i Molde-Vitenskapelig høgskole

i logistikk, 2019. 8

[74] A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM Journal

on Computing, 26(2):401–409, 1997. doi:10.1137/S0097539793255801. 30, 31

[75] Gregory S. Taylor, Yupo Chan, and Ghulam Rasool. A three-dimensional bin-packing

model: exact multicriteria solution and computational complexity. Annals of Operations

Research, 251(1-2):397–427, 2017. doi:10.1007/s10479-015-2048-5. 8

[76] Alan Tsang, Bryan Wilder, Eric Rice, Milind Tambe, and Yair Zick. Group-fairness in

influence maximization. In IJCAI, pages 5997–6005, 2019. 8

[77] David P Williamson and David B Shmoys. Deterministic rounding of linear programs. In

The design of approximation algorithms. Cambridge university press, 2011. 27

[78] David P Williamson and David B Shmoys. Random sampling and randomized rounding of

linear programs. In The design of approximation algorithms. Cambridge university press,

2011. 27

[79] David P Williamson and David B Shmoys. Rounding data and dynamic programming. In

The Design of Approximation Algorithms. Cambridge university press, 2011. 3, 16

196

https://doi.org/10.1109/FOCS.2013.11
http://arxiv.org/abs/2101.02854
https://doi.org/10.1016/0377-2217(88)90148-8
http://arxiv.org/abs/2011.11618
http://arxiv.org/abs/2011.11268
https://doi.org/10.1137/S0097539793255801
https://doi.org/10.1007/s10479-015-2048-5

BIBLIOGRAPHY

[80] Gerhard J Woeginger. There is no asymptotic ptas for two-dimensional vector packing.

Information Processing Letters, 64(6):293–297, 1997. doi:10.1016/S0020-0190(97)001

79-8. 20

[81] Guang Yang. gbp: a bin packing problem solver, 2017. R package version 0.1.0.4. URL:

https://CRAN.R-project.org/package=gbp. 8

[82] Hu Zhang and Klaus Jansen. Scheduling malleable tasks. In Handbook of Approximation

Algorithms and Metaheuristics. Chapman & Hall/CRC, 2007. 11

197

https://doi.org/10.1016/S0020-0190(97)00179-8
https://doi.org/10.1016/S0020-0190(97)00179-8
https://CRAN.R-project.org/package=gbp

	Acknowledgements
	Abstract
	Publications based on this Thesis
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Well-Known Packing Problems
	1.1.1 Classical Bin Packing
	1.1.2 Classical Knapsack
	1.1.3 Geometric Bin Packing
	1.1.4 Guillotine-Separable Geometric Bin Packing
	1.1.5 Vector Bin Packing

	1.2 Contributions of This Thesis
	1.2.1 Generalized Multidimensional Bin Packing
	1.2.2 Harmonic Algorithms for dD GBP with Rotations
	1.2.3 Guillotine-Separable Packing of Skewed Rectangles
	1.2.4 Almost-Optimal Bin Packing of Skewed Rectangles

	1.3 Organization of the Thesis

	2 Related Problems and Prior Work
	2.1 Classical Bin Packing
	2.2 Classical Knapsack
	2.3 Geometric Bin Packing
	2.4 Geometric Knapsack
	2.5 Strip Packing
	2.6 Vector Bin Packing
	2.7 Vector Knapsack

	3 Notation and Preliminaries
	3.1 Notation
	3.1.1 General
	3.1.2 Items
	3.1.3 Packing of Items

	3.2 Approximation Algorithms
	3.2.1 Minimization Problems
	3.2.2 Maximization Problems

	3.3 Simple Packing Algorithms
	3.4 Configuration Linear Program
	3.4.1 Solving the Configuration LP

	4 Generalized Multidimensional Bin Packing
	4.1 Preliminaries
	4.2 Simple Algorithms
	4.2.1 Steinberg's Algorithm
	4.2.2 Algorithms simple-pack and better-simple-pack
	4.2.3 Extending to Higher Geometric Dimensions
	4.2.4 Simple Algorithm for the Knapsack Problem

	4.3 Round-and-Approx Framework
	4.3.1 Comparison to Previous Versions of R&A
	4.3.2 Description of the R&A Algorithm
	4.3.3 Fractional structured packing
	4.3.4 Properties of round
	4.3.5 complex-pack
	4.3.6 unround
	4.3.7 AAR of R&A
	4.3.8 Example: simple-pack

	4.4 Details of the R&A Framework
	4.4.1 Error in previous R&A framework

	4.5 The fullh4 Algorithm

	5 Improved Algorithm for Generalized Multidimensional Bin Packing
	5.1 Overview of the Algorithm and its Analysis
	5.1.1 Overview of Key Ideas used in the Structural Theorem

	5.2 Classifying Items
	5.3 Getting a Semi-Structured Packing
	5.3.1 Rounding One Side
	5.3.2 Getting Slack in Weight of Bins
	5.3.3 Rounding Weights
	5.3.4 Rounding the Other Side

	5.4 Rounding Algorithm
	5.4.1 Big Items
	5.4.2 Wide and Tall Items
	5.4.3 Rounding Algorithm

	5.5 Existence of Compartmental Packing
	5.6 Packing Algorithm
	5.6.1 Guessing Bin Configurations
	5.6.2 Fractionally Packing Wide, Tall, Small and Light items
	5.6.3 Getting Containers from a Fractional Packing Solution
	5.6.4 Packing Light Dense Items
	5.6.5 Packing Wide and Tall Non-Dense Items
	5.6.6 Packing Small Non-Dense Items
	5.6.7 The Algorithm and its Approximation Factor

	5.7 Using the Round-and-Approx Framework

	6 Harmonic Algorithms for dD Geometric Bin Packing
	6.1 Important Ideas from the HDHk Algorithm
	6.1.1 Weighting Functions
	6.1.2 The Harmonic Function
	6.1.3 The HDH-unit-pack Subroutine

	6.2 Fast and Simple Algorithm for dMCBP (fullh_k)
	6.3 Better Algorithm for dMCBP (HGaP)
	6.3.1 Structured Packing
	6.3.2 Subroutines
	6.3.3 Correctness and Running Time of HGaP

	6.4 Details of the HGaP Algorithm
	6.4.1 Preliminaries
	6.4.2 Structural Theorem
	6.4.3 Guessing Shelves and Bins
	6.4.4 choose-and-pack
	6.4.5 inflate
	6.4.6 Improving Running Time

	6.5 HDH-unit-pack
	6.5.1 Shelf-Based Packing
	6.5.2 Description and Analysis of HDH-unit-pack

	6.6 Harmonic Algorithm for Strip Packing
	6.6.1 Multiple-Choice Strip Packing
	6.6.2 Revisiting the HDHk Algorithm
	6.6.3 Extending HDH-SP to dMCSP

	6.7 Harmonic Algorithm for dMCKS
	6.8 Weighting Function Transform
	6.9 Hard Instance for Shelf-Based Packing

	7 Guillotine-Separable Packing of Skewed Rectangles
	7.1 Overview of the Chapter
	7.2 Lower Bound on APoG
	7.3 Algorithm thin4Pack
	7.3.1 Packing With Slicing
	7.3.2 Overview of thin4Pack
	7.3.3 Item Classification and Rounding
	7.3.4 Creating Containers
	7.3.5 Packing Shelves Into Bins
	7.3.6 Packing Items Into Containers
	7.3.7 Summary

	7.4 APoG for the Rotational Case

	8 Almost-Optimal Bin Packing of Skewed Rectangles
	8.1 Classifying and Rounding Items
	8.1.1 Removing Medium Items
	8.1.2 Classifying Items
	8.1.3 Linear Grouping

	8.2 Structural Theorem
	8.2.1 Discretizing Horizontal Positions
	8.2.2 Creating Compartments
	8.2.3 Existence of Near-Optimal Compartmental Packing

	8.3 Packing Rounded Items
	8.3.1 Enumerating Packing of Compartments
	8.3.2 Packing Items Into Compartments
	8.3.3 Converting a Fractional Packing to a Non-Fractional Packing
	8.3.4 The Algorithm

	8.4 Handling Item Rotations

	9 Conclusion and Future Directions
	Bibliography

