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Abstract

This paper studies the effects of hardware thread scheduling on

cache management in GPUs. We propose Cache-Conscious Wave-

front Scheduling (CCWS), an adaptive hardware mechanism that

makes use of a novel intra-wavefront locality detector to capture lo-

cality that is lost by other schedulers due to excessive contention

for cache capacity. In contrast to improvements in the replace-

ment policy that can better tolerate difficult access patterns, CCWS

shapes the access pattern to avoid thrashing the shared L1. We show

that CCWS can outperform any replacement scheme by evaluating

against the Belady-optimal policy. Our evaluation demonstrates that

cache efficiency and preservation of intra-wavefront locality become

more important as GPU computing expands beyond use in high per-

formance computing. At an estimated cost of 0.17% total chip area,

CCWS reduces the number of threads actively issued on a core when

appropriate. This leads to an average 25% fewer L1 data cache

misses which results in a harmonic mean 24% performance improve-

ment over previously proposed scheduling policies across a diverse

selection of cache-sensitive workloads.

1. Introduction

Manycore accelerators, such as GPUs, enable efficient execution of

parallel workloads, allowing continued performance improvement

with each process node despite diminished voltage scaling [11]. Pro-

gramming interfaces like OpenCL [24] and CUDA [33] require the

user to define the behavior of a single scalar thread which can be

run thousands of times across dozens of simple single instruction

multiple data (SIMD) compute units (also known as shader cores).

This type of architecture, sometimes referred to as single instruction

multiple thread (SIMT) [28], allows the GPU’s SIMD core to make

progress on multiple threads using a single instruction by group-

ing them into wavefronts (or warps), thus amortizing the instruction

fetch and decode overhead.

Each cycle, a hardware wavefront scheduler must decide which

of the multiple active wavefronts execute next. Our work focuses

on this decision. The goal of a wavefront scheduler is to ensure

the execution pipeline is kept active in the presence of long latency

operations. The inclusion of caches on GPUs [32] can reduce the la-

tency of memory operations and act as a bandwidth filter, provided

there is some locality in the access stream. Figure 1 presents the av-

erage number of hits and misses per thousand instructions (PKI) of

highly cache-sensitive (HCS) and moderately cache-sensitive (MCS)

benchmark access streams using an unbounded level one data (L1D)

cache. The figure separates hits into two classes. We classify local-

ity that occurs when data is initially referenced and re-referenced

from the same wavefront as intra-wavefront locality. Locality re-

sulting from data that is initially referenced by one wavefront and

re-referenced by another is classified as inter-wavefront locality.

Intra-wavefront locality is a combination of intra-thread locality [27]

(where data is private to a single scalar thread) and inter-thread local-

ity where data is shared among scalar threads in the same wavefront.

0

20

40

60

80

100

120

AVG-Highly Cache Sensitive AVG-Moderately Cache Sensitive

(H
it

s
/M

is
s

) 
P

K
I

Misses PKI

Inter-Wavefront Hits PKI

Intra-Wavefront Hits PKI

Figure 1: Average hits and misses per thousand instructions (PKI)
using an unbounded L1 data cache (with 128B lines) on
cache-sensitive benchmarks.

Figure 1 illustrates that the majority of data reuse observed in our

HCS benchmarks comes from intra-wavefront locality.

To exploit this type of locality in HCS benchmarks, we intro-

duce Cache-Conscious Wavefront Scheduling (CCWS). CCWS uses

a novel lost intra-wavefront locality detector (LLD) that alerts the

scheduler if its decisions are destroying intra-wavefront locality.

Based on this feedback, the scheduler assigns intra-wavefront local-

ity scores to each wavefront and ensures that those wavefronts losing

intra-wavefront locality are given more exclusive access to the L1D

cache.

Simple wavefront scheduling policies such as round-robin are

oblivious to their effect on intra-wavefront locality, potentially

touching data from enough threads to cause thrashing in the L1D.

A two level scheduler such as that proposed by Narasiman et al. [31]

exploits inter-wavefront locality while ensuring wavefronts reach

long latency operations at different times by scheduling groups of

wavefronts together. However, Figure 1 demonstrates that the HCS

benchmarks we studied will benefit more from exploiting intra-

wavefront locality than inter-wavefront locality. Existing schedulers

do not take into account the effect issuing more wavefronts has on

the intra-wavefront locality of those wavefronts that were previously

scheduled. In the face of L1D thrashing, the round-robin nature of

their techniques will cause the destruction of older wavefront’s intra-

wavefront locality.

Figure 2 illustrates the cache size sensitivity of our benchmarks

(described in Section 4) when using a round-robin scheduler and the

baseline system described in Section 4. Although all of these bench-

marks are somewhat cache-sensitive, the HCS benchmarks plotted

on the left in Figure 2 see 3× or more performance improvement

with a much larger L1 data cache.

For GPU-like architectures to effectively address a wider range of

workloads, it is critical that their performance on irregular workloads

is improved. Recent work on the highly cache-sensitive Memcached

(MEMC) [16] and BFS [30] has shown promising results running

these commercially relevant irregular parallel workloads on GPUs.

However, since current GPUs face many performance challenges

running irregular applications, there are relatively few of them writ-

ten. In this work we evaluate a set of irregular GPU applications and
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Figure 2: Performance using a loose round-robin scheduler at various L1D cache sizes for highly cache-sensitive (left) and moderately cache-
sensitive benchmarks (right), normalized to a cache size of 32k. All caches are 8-way set-associative with 128B cache lines.
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Figure 3: Average misses per thousand instructions (MPKI) and har-
monic mean (HMEAN) performance improvement of HCS
benchmarks with different levels of multithreading. Instruc-
tions per cycle (IPC) is normalized to 32 wavefronts.

demonstrate their performance can be highly sensitive to the GPU’s

wavefront scheduling policy.

Figure 3 highlights the impact wavefront scheduling can have

on preserving intra-wavefront locality. It shows the effect of stat-

ically limiting the number of wavefronts actively scheduled on a

core. Peak throughput occurs at a multithreading value less than

maximum concurrency, but greater than the peak cache performance

point (which limits concurrency to a single wavefront). Although it

may seem counterintuitive to limit the amount of multithreading in a

GPU, our data demonstrates a trade-off between hiding long latency

operations and creating more of them by destroying intra-wavefront

locality.

Our work draws inspiration from cache replacement and inser-

tion policies in that it attempts to predict when cache lines will be

reused. However, cache way-management policies’ decisions are

made among a small set of blocks. A thread scheduler effectively

chooses which blocks get inserted into the cache from a pool of po-

tential memory accesses that can be much larger than the cache’s

associativity. Similar to how cache replacement policies effectively

predict each line’s re-reference interval [21], our proposed scheduler

effectively changes the re-reference interval to reduce the number

of interfering references between repeated accesses to high locality

data. Unlike scheduling approaches for managing contention im-

plemented in the operating system [39], our technique exploits fine-

grained information available to the low-level hardware scheduler.

This paper makes the following contributions:

• It identifies intra and inter wavefront locality and quantifies the

trade-off between maximizing intra-wavefront locality and con-

current multithreading.

• It proposes a novel Cache-Conscious Wavefront Scheduling

(CCWS) mechanism which can be implemented with no changes

to the cache replacement policy. CCWS uses a novel lost intra-

wavefront locality detector (LLD) to update an adaptive locality

scoring system and improves the performance of HCS workloads

by 63% over existing wavefront schedulers.
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Figure 4: Overview of our GPU-like baseline accelerator architecture.

• It demonstrates that CCWS reduces L1D cache misses more than

the Belady-optimal replacement scheme.

• It demonstrates that CCWS can be tuned to trade-off power and

performance. A power-tuned configuration of CCWS reduces

energy-expensive L1D cache misses an additional 18% above the

performance tuned configuration while still achieving a 49% in-

crease in performance on HCS workloads.

The rest of this paper is organized as follows, Section 2 describes

our baseline architecture, Section 3 describes our scheduling tech-

niques including CCWS, Section 4 describes methodology, Sec-

tion 5 describes our results, Section 6 describes related work, and

Section 7 concludes.

2. Baseline Architecture

In this work we study modifications to the GPU-like accelerator

architecture illustrated in Figure 4. The workloads we study are

written in OpenCL [24] or CUDA [33]. Initially, an application be-

gins execution on a host CPU and then a kernel is launched on the

GPU. An OpenCL kernel is composed of “work items” which can

be thought of as scalar threads. To facilitate communication, “work

items” are collected into “work groups” which can communicate

through local memory. Work items are grouped into wavefronts that

execute in lock-step on a GPU core. The microarchitecture of the

baseline GPU core with the extensions required to support CCWS is

illustrated in Figure 5. The GPGPU-Sim 3.x Manual [1] describes

the baseline pipeline in more detail.

Issuing a single wavefront memory instruction can generate up

to W data cache accesses where W is the wavefront width. Mod-

ern GPUs attempt to reduce the number of memory accesses gener-

ated from each wavefront by coalescing the lane’s memory requests

into cache line sized chunks when there is spatial locality across

the wavefront [33]. Applications with highly regular access patterns

may generate as few as two memory requests that service all W lanes.

Our baseline (L1D) cache evicts global data on writes and reserves

cache lines on misses.
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Our baseline architecture assigns workgroup sized chunks of

threads to compute units. Each compute unit is able to schedule

wavefronts from multiple workgroups. The number of workgroups

assigned to each core is limited by the total number of threads on the

core and the static resource usage of each workgroup [32].

This work focuses on the decision made by the wavefront issue

arbiter (WIA) ( 1 in Figure 5). An in-order scoreboard ( 2 ) and de-

code unit ( 3 ) control when each instruction in an instruction buffer

(I-Buffer 2 ) is ready to issue. The WIA decides which of these

ready instructions issues next.

3. Wavefront Scheduling to Preserve Locality

This section describes our scheduling techniques, which take advan-

tage of the insights mentioned in Section 1. First, Section 3.1 an-

alyzes wavefront scheduling for locality preservation in an exam-

ple workload with intra-wavefront locality. Next, Section 3.2 intro-

duces static wavefront limiting (SWL) which gives high-level lan-

guage programmers an interface to tune the level of multithreading.

Finally, Section 3.3 describes Cache-Conscious Wavefront Schedul-

ing (CCWS), an adaptive hardware scheduler that uses fine-grained

memory system feedback to capture intra-wavefront locality.

3.1. A Code Example

Consider the inner loop of a graph processing workload presented in

Example 1. The problem has been partitioned by having each scalar

thread operate on all the edges of a single node. The adjoining edges

of each node are stored sequentially in memory. This type of storage

is common in many graph data structures including the highly space

efficient compressed sparse rows [6] representation. This workload

contains intra-wavefront locality resulting from intra-thread locality

(data’s initial reference and subsequent re-references come from the

same scalar thread).

The inner loop of each scalar thread strides through attributes of

its assigned node’s edges sequentially. This sequential access stream

has significant spatial locality that can be captured by a GPU’s large

cache line size (e.g. 128B). If the GPU was limited to just a single

thread per compute unit, the memory loads inside the loop would

hit in the L1D cache often. In realistic workloads, more than one

thousand threads executing this loop will share the same L1D cache.

Example 1 Example graph algorithm kernel run by each scalar

thread.

int node_degree = nodes[thread_id].degree;

int thread_first_edge = nodes[thread_id].starting_edge;

for ( int i = 0; i < node_degree; i++ ) {

edge_attribtes = edges[thread_first_edge + i];

int neighbour_node_id = edge_attributes.node;

int edge_weight = edge_attributes.weight;

...

}

We find that if the working set of all the threads is small enough

to be captured by the L1D, optimizing both cache efficiency and

overall throughput is largely independent of the scheduler choice. In

the other extreme, if only one wavefront’s working set fits in the

cache, optimizing misses would have each wavefront run to comple-

tion before starting another. Optimizing performance when the L1D

is not large enough to capture all of the locality requires the wave-

front scheduler to intelligently trade-off preserving intra-wavefront

locality with concurrent multithreading.

If the scheduler had oracle information about the nature of the

workload, it could limit the number of wavefronts actively scheduled

to maximize performance. This observation motivates the introduc-

tion of static wavefront limiting (SWL) which allows a high-level

programmer to specify a limit on the number of wavefronts actively

scheduled per compute unit at kernel launch.

3.2. Static Wavefront Limiting (SWL)

Figure 3 shows the effect limiting the number of wavefronts actively

scheduled on a compute unit has on cache performance and sys-

tem throughput. Current programming API’s such as CUDA and

OpenCL allow the programmer to specify workgroup size. How-

ever, they allow as many wavefronts to run on each compute unit

as shared core resources (e.g., registers, shared scratchpad memory)

permit. Consequently, even if the programmer specifies small work-

groups, multiple workgroups will run on the same compute unit if

resources permit. As a result, the number of wavefronts/warps run-

ning at once may still be too large a working set for the L1D. For

this reason, we propose static wavefront limiting (SWL) which is

implemented as a minor extension to the wavefront scheduling logic

where a register is used to determine how many wavefronts are ac-

tively issued, independent of workgroup size.

In SWL, the programmer must specify a limit on the number of

wavefronts when launching the kernel. This technique is useful if

the user knows the optimal number of wavefronts prior to launching

the kernel, which could be determined by profiling.

In benchmarks that make use of work group level synchronization,

SWL limits the number of wavefronts running until a barrier, allows

the rest of the work-group to reach the barrier, then continues with

the same multithreading constraints.

In Section 5 we demonstrate that the optimal number of wave-

fronts is different for different benchmarks. Moreover, we find this

number changes in each benchmark when its input data is changed.

This dependence on benchmark and input data makes an adaptive

CCWS system desirable.

3.3. Cache-Conscious Wavefront Scheduling (CCWS)

This subsection first defines the goal and high level implementation

of CCWS in Section 3.3.1. Next, Section 3.3.2 details how CCWS

is applied to the baseline scheduling logic. Section 3.3.3 explains

the lost intra-wavefront locality detector (LLD), followed by Sec-

tion 3.3.4 which explains how our locality scoring system makes

use of LLD information to determine which wavefronts can issue.

Finally, Section 3.3.5 describes the locality score value assigned to

a wavefront when lost locality is detected.

3.3.1. High-Level Description The goal of CCWS is to dynamically

determine the number of wavefronts allowed to access the mem-

ory system and which wavefronts those should be. At a high level,

CCWS is a wavefront scheduler that reacts to access level feedback

( 4 in Figure 5) from the L1D cache and a victim tag array (VTA)

at the memory stage. CCWS uses a dynamic locality scoring system

to make scheduling decisions.

The intuition behind why our scoring system works can be ex-

plained by Figure 6. At a high level, each wavefront is given a score

based on how much intra-wavefront locality it has lost. These scores

change over time. Wavefronts with the largest scores fall to the bot-

tom of a sorted stack (for example, W2 at T1), pushing wavefronts

with smaller scores above a cutoff (W3 at T1) which prevents them

from accessing the L1D. In effect, the locality scoring system re-

duces the number of accesses between data re-references from the

3
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same wavefront by removing the accesses of other wavefronts. The

following subsections describe CCWS in more detail.

3.3.2. Effect on Baseline Issue Logic Figure 5 shows the modifica-

tions to the baseline wavefront issue arbiter ( 1 ) and memory unit

( 5 ) required for CCWS. CCWS is implemented as an extension to

the system’s baseline wavefront prioritization logic ( 6 ). This prior-

itization could be done in a greedy, round-robin or two level manner.

CCWS operates by preventing loads that are predicted to interfere

with intra-wavefront locality from issuing through a "Can Issue" bit

vector ( 7 ) output by the locality scoring system ( 8 ). The intersec-

tion logic block ( 9 ) selects the highest priority ready wavefront that

has issue permission.

3.3.3. Lost Intra-Wavefront Locality Detector (LLD) To evaluate

which wavefronts are losing intra-wavefront locality, we introduce

the LLD unit ( 10 ) which uses a victim tag array (VTA) ( 11 ). The

VTA is a highly modified variation of a victim cache [23]. The sets

of the VTA are sub-divided among the all the wavefront contexts

supported on this core. This gives each wavefront its own small

VTA ( 12 ). The VTA only stores cache tags and does not store line

data. When a miss occurs and a line is reserved in the L1D cache, the

wavefront ID (WID) of the wavefront reserving that line is written

in addition to the tag ( 13 ). When that line is evicted from the cache,

its tag information is written to that wavefront’s portion of the VTA.

Whenever there is a miss in the L1D cache, the VTA is probed. If the

tag is found in that wavefront’s portion of the VTA, the LLD sends

a VTA hit signal to the locality scoring system ( 14 ). These signals

inform the scoring system that a wavefront has missed on a cache

line that may have been a hit if that wavefront had more exclusive

access to the L1D cache.

3.3.4. Locality Scoring System Operation Figure 6 provides a

visual example of the locality scoring system’s operation. In this

example, there are four wavefronts initially assigned to the com-

pute unit. Time T0 corresponds to the time these wavefronts are

initially assigned to this core. Each segment of the stacked bar rep-

resents a score given to each wavefront to quantify the amount of

intra-wavefront locality it has lost. We call these values lost-locality

scores (LLS). At T0 we assign each wavefront a constant base lo-

cality score. LLS values are stored in a max heap ( 15 ) inside the

locality scoring system. A wavefront’s LLS can increase when the

LLD sends a VTA hit signal for this wavefront. The scores each

decrease by one point every cycle until they reach the base local-

ity score. The locality scoring system gives wavefronts losing the

most intra-wavefront locality more exclusive L1D cache access by

preventing the wavefronts with the smallest LLS from issuing load

instructions. Wavefronts whose LLS falls above the cumulative LLS

cutoff ( a in Figure 6) in the sorted heap are prevented from issu-

ing loads. The value of the cumulative LLS cutoff is defined as

NumActiveWaves×BaseLocalityScore, where NumActiveWaves is

the number of waves currently assigned to this core.

The LLS cutoff test block ( 16 ) takes in a bit vector from the in-

struction buffer indicating what wavefronts are attempting to issue

loads. It also takes in a sorted list of LLSs, performs a prefix sum

and clears the "Can Issue" bit for wavefronts attempting to issue

loads whose LLS is above the cutoff. The locality scoring system is

not on the critical path, can be pipelined and does not have to update

the score cutoffs every compute unit cycle. In our example from Fig-

ure 6, between T0 and T1, W2 has received a VTA hit and its score has

been increased to the lost-locality detected score (LLDS), ( b in Fig-

ure 6). Section 3.3.5 explains the LLDS in more detail. W2’s higher

score has pushed W3 above the cumulative LLS cutoff, clearing W3’s

"Can Issue" bit if it attempts to issue a load instruction. From a mi-

croarchitecture perspective, LLSs are modified by the score update

logic ( 17 ). The update logic block receives VTA hit Signals (with

a WID) from the LLD which triggers a change to that wavefront’s

LLS. We limit the amount one wavefront can dominate the point sys-

tem by capping each wavefront’s score at LLDS, regardless of how

many VTA hits it has received. Other methods of capping a wave-

front’s LLS were attempted and we found that limiting them to the

LLDS simplified the point system and yielded the best results. In

the example, between T1 and T2 both W2 and W0 have received VTA

hits, pushing both W3 and W1 above the cutoff. Between T2 and T3,
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no VTA hits have occurred and the scores for W2 and W0 have de-

creased enough to allow both W1 and W3 to issue loads again. This

illustrates how the system naturally backs off thread throttling over

time. Between time T3 and T4, W2 finishes and W0 has received a

VTA hit to increase its score. This illustrates that when a wavefront

is added or removed from the system, the cumulative LLS cutoff

changes. Now that there are three wavefronts active, the LLS cutoff

becomes 3× the base score. Having the LLS cutoff be a multiple

of the number of active wavefronts ensures the locality scoring sys-

tem maintains its sensitivity to lost-locality. If the LLS cutoff does

not decrease when the number of wavefronts assigned to this core

decreases, it takes a higher score per wavefront to push lower scores

above the cutoff as the kernel ends. This results in the system taking

more time to both constrain multithreading when locality is lost and

back off thread limiting when there is no lost locality.

3.3.5. Determining the Lost-Locality Detected Score (LLDS) The

value assigned to a wavefront’s score on a VTA hit (the LLDS) is a

function of the total number of VTA hits across all this compute

unit’s wavefronts ( 18 ) and all the instructions this compute unit has

issued ( 19 ). This value is defined by Equation (1).

LLDS =

V TAHitsTotal

InstIssuedTotal

·KT HROTT LE ·CumLLSCuto f f (1)

Using the fraction of total VTA hits divided by the number of instruc-

tions issued serves as an indication of how much locality is being

lost on this core per instruction issued. A constant (KT HROT T LE ) is

applied to this fraction to tune how much throttling is applied when

locality is lost. A larger constant favors less multithreading by push-

ing wavefronts above the cutoff value more quickly and for a longer

period of time. Finding the optimal value of KT HROTT LE is depen-

dent on several factors including the number threads assigned to a

core, the L1D cache size, relative memory latencies and locality in

the workload. We intend for this constant to be set for a given chip

configuration and not require any programmer or OS support. In our

study, a single value for KT HROTT LE used across all workloads cap-

tures 95.4% to 100% of the performance of any workload’s optimal

KT HROTT LE value. This static value is determined experimentally

and explored in more detail in Section 5.5. Like the LLS cutoff test,

the lost-locality detected score can take several cycles to update and

does not impact the critical path.

4. Experimental Methodology

We model the cache-conscious scheduling mechanisms as described

in Section 3 in GPGPU-Sim [4] (version 3.1.0) using the configura-

tion in Table 1. The Belady-optimal replacement policy [8], which

chooses the line which is re-referenced furthest in the future for evic-

tion, is evaluated using a custom stand alone GPGPU-Sim cache

simulator (SAGCS). SAGCS is a trace based cache simulator that

takes GPGPU-Sim cache access traces as input. Since SAGCS is not

a performance simulator and only provides cache information, we do

not present IPC results for the Belady-optimal replacement policy.

To validate SAGCS, we verified the miss rate for LRU replacement

using SAGCS and found that it was within 0.1% of the LRU miss

rate reported using GPGPU-Sim. This small difference is a result

of variability in the GPGPU-Sim memory system that SAGCS does

not take into account.

We perform our evaluation using the high-performance com-

puting GPU-enabled server workloads listed in Table 2 from Ro-

dinia [9], Hetherington et al. [16] and Bakhoda et al. [4]. While

Table 1: GPGPU-Sim Configuration

# Compute Units 30

Wavefront Size 32

SIMD Pipeline Width 8

Number of Threads / Core 1024

Number of Registers / Core 16384

Shared Memory / Core 16KB

Constant Cache Size / Core 8KB

Texture Cache Size / Core 32KB, 64B line, 16-way assoc.

Number of Memory Channels 8

L1 Data Cache 32KB, 128B line, 8-way assoc. LRU

L2 Unified Cache 128k/Memory Channel, 128B line, 8-way assoc. LRU

Compute Core Clock 1300 MHz

Interconnect Clock 650 MHz

Memory Clock 800 MHz

DRAM request queue capacity 32

Memory Controller out of order (FR-FCFS)

Branch Divergence Method PDOM [12]

GDDR3 Memory Timing tCL=10 tRP=10 tRC=35

tRAS=25 tRCD=12 tRRD=8

Memory Channel BW 8 (Bytes/Cycle)

Table 2: GPU Compute Benchmarks (CUDA and OpenCL)

Highly Cache Sensitive (HCS)

Name Abbr. Name Abbr.

BFS Graph Traversal [9] BFS Kmeans [9] KMN

Memcached [16] MEMC Garbage Collection [5, 36] GC

Moderately Cache Sensitive (MCS)

Name Abbr. Name Abbr.

Weather Prediction [9] WP Streamcluster [9] STMCL

Single Source Shortest Path [4] SSSP CFD Solver [9] CFD

Cache Insensitive (CI)

Name Abbr. Name Abbr.

Needleman-Wunsch [9] NDL Back Propagation [4] BACKP

Speckle Red. Anisotropic Diff. [9] SRAD LU Decomposition [9] LUD

the regularity of the HPC applications makes them particularly well

suited for the GPU, they represent only one segment of the overall

computing market [18] [17].

In addition to the cache-sensitive benchmarks introduced earlier,

we also evaluate against a number of cache-insensitive (CI) bench-

marks to ensure CCWS does not have a detrimental effect.

To make use of a larger input, the KMN benchmark was slightly

modified to use global memory in place of both texture and constant

memory.

All of our benchmarks run from beginning to end which takes

between 14 million and 1 billion instructions.

4.1. GPU-enabled server workloads

This work uses two GPU-enabled server workloads. These bench-

marks were ported to OpenCL from existing CPU implementations.

They represent highly parallel code with irregular memory access

patterns whose performance could be improved by running on the

GPU.

Memcached-GPU (MEMC) Memcached is a key-value store and

retrieval system. Memcached-GPU is described in detail by

Hetherington et al. [16]. The application is stimulated with a

representative portion of the Wikipedia access trace collected

by Urdaneta et al. [37].

Tracing Garbage Collector (GC) Garbage collection is an impor-

tant aspect of many server applications. Languages such

as Java use system-controlled garbage collection to manage

resources [2]. A version of the tracing mark-and-compact

garbage collector presented in Barabash et al. [5] is created

in OpenCL. The collector is stimulated with benchmarks pro-

vided by Spoonhower et al. [36].

5. Experimental Results

This section is structured as follows, Section 5.1 presents the per-

formance of SWL, CCWS, other related wavefront schedulers and
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Figure 7: Performance of various schedulers and replacement poli-
cies for the highly cache-sensitive benchmarks. Normal-
ized to the GTO scheduler.

the Belady-optimal replacement policy using the system presented

in Section 4. The results for CCWS presented in Section 5.1 repre-

sent a design point that maximizes performance increase over area

increase. The remainder of this section is devoted to exploring the

sensitivity of our design and explaining the behaviour of our bench-

marks.

5.1. Performance

The data in Figures 7, 8, 9 and 10 is collected using GPGPU-Sim for

the following mechanisms:

LRR Loose round-robin scheduling. Wavefronts are prioritized for

scheduling in round-robin order. However, if a wavefront can-

not issue during its turn, the next wavefront in round-robin or-

der is given the chance to issue.

GTO A greedy-then-oldest scheduler. GTO runs a single wavefront

until it stalls then picks the oldest ready wavefront. The age of

a wavefront is determined by the time it is assigned to the core.

For wavefronts that are assigned to a core at the same time (i.e.

they are in the same workgroup), wavefronts with the small-

est threads IDs are prioritized. Other greedy schemes (such

as greedy-then-round-robin and oldest-first) were implemented

and GTO scheduling had the best results.

2LVL-GTO A two-level scheduler similar to that described by

Narasiman et al. [31]. Their scheme subdivides wavefronts

waiting to be scheduled on a core into fetch groups (FG) and

executes from only one fetch group until all wavefronts in that

group are stalled. Narasiman et al. used a fetch group size of

8 and a round-robin scheduling policy to select among wave-

fronts in a fetch group as well as among fetch groups. To

provide a fair comparison against their scheduling technique

in our simulator and on our workloads, all fetch group sizes

were swept. We also explored alternate scheduling policies for

intra-FG and inter-FG selection. We found using GTO for both

of these policies was better than the algorithm they employed.

A fetch group size of 2 using GTO for both intra-FG and inter-

FG selection provides the best performance on our workloads

and is what we present in our results. This disparity in optimal

configuration can be explained by the nature of our workloads

and our baseline architecture. Their core pipeline allows only

one instruction from a given wavefront to be executing at a

time. This means that a wavefront must wait for its previously

issued instruction to complete execution before the wavefront

can issue another instruction. This is different from our base-

line which prevents a fetched instruction from issuing if the

scoreboard detects a data hazard.

Best-SWL Static Wavefront Limiting as described in Section 3.2.

All possible limitation values (32 to 1) were run and the best

performing case is picked. The GTO policy is used to select

between wavefronts. The wavefront value used for each bench-

mark is shown in Table 3.

CCWS Cache-Conscious Wavefront Scheduling described in Sec-

tion 3.3 with the configuration parameters listed in Table 3.

GTO wavefront prioritization logic is used.

The data for Belady-optimal replacement misses per thousand in-

structions (MPKI) presented in Figures 8 and 10 is generated with

SAGCS:

<scheduler>-BEL Miss miss rate reported by SAGCS when using

the Belady-optimal replacement policy. SAGCS is stimulated

with L1D access streams generated by using GPGPU-Sim run-

ning the specified <scheduler>. Since SAGCS only reports

misses, MPKI is calculated from the GPGPU-Sim instruction

count.

Figure 7 shows that CCWS achieves a harmonic mean 63% per-

formance improvement over a simple greedy wavefront scheduler

and 72% over the 2LVL-GTO scheduler on HCS benchmarks. The

GTO scheduler performs well because prioritizing older wavefronts

allows them to capture intra-wavefront locality by giving them more

exclusive access to the L1 data cache. The 2LVL-GTO scheduler

performs slightly worse than the GTO scheduler because the 2LVL-

GTO scheduler will not prioritize the oldest wavefronts every cycle.

2LVL-GTO only attempts to schedule the oldest FG intermittently,

once the current FG is completely stalled. This allows loads from

younger wavefronts, which would not have been prioritized in the

GTO scheduler, to be injected into the access stream, causing older

wavefront’s data to be evicted.

CCWS and SWL provide further benefit over the GTO sched-

uler because these programs have a number of uncoalesced loads,

touching many cache lines in relatively few memory instructions.

Therefore, even restricting to just the oldest wavefronts still touches

too much data to be contained by the L1D. The GTO, 2LVL-GTO,

Best-SWL and CCWS schedulers see a greater disparity in the com-

pletion time of workgroups running on the same core compared to

the LRR scheduler. Since all our workloads are homogeneous (at

any given time only workgroups from one kernel launch will be as-

signed to each core) and involve synchronous kernel launches, the

relative completion time of workgroups is not an issue. All that mat-

ters is when the whole kernel finishes. Moreover, the highly cache-

sensitive workloads we study do not use any workgroup or global

synchronization within a kernel launch, therefore older wavefronts

are never stalled waiting for younger ones to complete.

Figure 7 also highlights the importance of scheduler choice even

among simple schedulers like GTO and LRR. The LRR scheduler

suffers from a 64% slowdown compared to GTO. Scheduling wave-

fronts with a lot of intra-wavefront locality in a RR fashion strides

through too much data to be contained in the L1D. Best-SWL is able

to slightly outperform CCWS on all the benchmarks. The CCWS

configuration used here has been optimized to provide the highest

performance per unit area. If the VTA cache is doubled in size,

CCWS is able to slightly outperform Best-SWL on some workloads.

CCWS is not able to consistently outperform Best-SWL because

there is a start-up cost associated with detecting the loss of locality

and a cool-down cost to back off the wavefront throttling. Adding

to that, the execution time of these kernels is dominated by the code

section that benefits from wavefront limiting. Therefore, providing

the static scheme with oracle knowledge (through profiling) gives it

an advantage over the adaptive CCWS scheme. Section 5.6 exam-

ines the shortcomings of the SWL under different run-time condi-
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Figure 9: Performance of various schedulers and replacement policies for moderately cache-sensitive (left) and cache-insensitive (right) bench-
marks. Normalized to the GTO scheduler.

tions.

Although not plotted here, it is worth mentioning the performance

of the 2LVL-LRR scheduling configuration evaluated by Narasiman

et al. On the HCS benchmarks the 2LVL-LRR scheduler is a har-

monic mean 43% faster than the LRR scheduler, however this is still

47% slower than the GTO scheduler. Performing intra-FG and inter-

FG scheduling in a round-robin fashion destroys the intra-wavefront

locality of older wavefronts that is captured by the GTO scheduler.

However, in comparison to the LRR scheduler, which cycles through

32 wavefronts in a round-robin fashion, cycling through smaller FG

sized pools (each fetch group has 8 wavefronts in their configuration)

will thrash the L1 data cache less.

Figure 8 illustrates that the reason for the performance advantage

of the wavefront limiting schemes is a sharp decline in the number

of L1D misses. This figure highlights the fact that no cache replace-

ment policy can make up for a poor choice in wavefront scheduler,

as even an oracle Belady-optimal policy on the LRR access stream

is outperformed by all the schedulers. The insight here is that even

optimal replacement cannot compensate for an access stream that

strides through too much data, at least for the relatively low asso-

ciativity L1 data caches we evaluated.. Furthermore, the miss rate

of CCWS outperforms both GTO-BEL and 2LVL-GTO-BEL. This

data suggests L1D cache hit rates are more sensitive to wavefront

scheduling policy than cache replacement policy.

Figures 9 and 10 present the performance and MPKI of our MCS

and CI benchmarks. The harmonic mean performance improvement

of CCWS across both the highly and moderately cache-sensitive

(HCS and MCS) benchmarks is 24%. In the majority of the MCS

and CI workloads, the choice of wavefront scheduler makes little

difference and CCWS does not degrade performance. There is no

degradation because the MPKI for these benchmarks is much lower

than the HCS applications, so there are few VTA hits compared to

instructions issued. As a result the lost-locality detected score as de-

fined by Equation (1) stays low and the thread throttling mechanism

does not take effect.

5.2. Detailed Breakdown of Inter- and Intra-Wavefront Locality

Figure 11 breaks down L1D accesses into misses, inter-wavefront

hits and intra-wavefront hits for all the schedulers evaluated in Sec-

Table 3: Configurations for Best-SWL (wavefronts actively sched-
uled) and CCWS variables used for performance data.

Best-SWL CCWS Config

Benchmark Wavefronts Actively Scheduled Name Value

BFS 5 KT HROTTLE 8

KMN 4 Wavefront Base Score 100

MEMC 7 VTA Tag array 8-way

GC 4 16 entries per wavefront

All Others 32 (512 total entries)

tion 5.1 on our HCS benchmarks. In addition, it quantifies the por-

tion of intra-wavefront hits that are a result of intra-thread locality. It

illustrates that the decrease in cache misses using CCWS and Best-

SWL comes chiefly from an increase in intra-wavefront hits. More-

over, the bulk of these hits are a result of intra-thread locality. The

exception to this rule is BFS, where 30% of intra-wavefront hits

come from inter-thread locality and we see a 23% increase in inter-

wavefront hits. An inspection of the code reveals that inter-thread

sharing (which manifests itself as both intra-wavefront and inter-

wavefront locality) occurs when nodes in the graph share neighbours.

Limiting the number of wavefronts actively scheduled increases the

hit rate of these accesses because it limits the amount of non-shared

data in the cache, increasing the chance that these shared accesses

hit.

Figure 12 explores the access stream of all the cache-sensitive

benchmarks using SAGCS and an unbounded L1D. It shows that

with the exception of SSSP, the MCS benchmarks have signifi-

cantly less locality in the access stream. The larger amount of intra-

wavefront locality in SSSP is consistent with the significant perfor-

mance improvement we observe for CCWS at smaller cache sizes

when the working set of all the threads does not fit in the L1D cache

(see Figure 14).

5.3. Sensitivity to Victim Tag Array Size

Figure 13 shows the effect of varying the VTA size on performance.

With a larger victim tag array the system is able to detect lost intra-

wavefront locality occurring at further access distances. Increasing

the size of the VTA keeps data with intra-wavefront locality in the

VTA longer and causes wavefront limiting to be appropriately ap-

plied. However, if the VTA size is increased too much, the lost-

locality detector’s time sensitivity is diminished. The VTA will

contain tags from data that was evicted from the L1 data cache so
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long ago that it would have been difficult to capture with changes to

the scheduling policy. For example, at the 512 entry design point,

each wavefront has a VTA that can track as much data as the en-

tire L1D. In this configuration, a wavefront would need exclusive

access to the L1 data cache to prevent all the detected loss of local-

ity. The increase in detected lost-locality results in excessive wave-

front constraining on some workloads. Based on this data, the best-

performing configuration with 16 entries per wavefront is selected.

5.4. Sensitivity to Cache Size

Figure 14 shows the sensitivity of CCWS to the L1D size. As the

cache size decreases, CCWS has a greater performance improve-

ment relative to the GTO scheduler. This is because at small cache

sizes it is even more desirable to limit multithreading to reduce cache

footprint. In fact SSSP, which showed no performance gain at 32k

shows a 35% speedup when the L1 cache is reduced to 8k. This

is because SSSP has significant intra-wavefront locality but its foot-

print is small enough that it is contained by a 32k L1D. As the cache

size increases, the effect of CCWS dwindles relative to the GTO

scheduler because the working set of most wavefronts fit in a larger

cache. At a large enough cache size, the choice of wavefront sched-

uler makes little difference.

At 128k per L1D, CCWS shows little benefit over the GTO sched-

uler. This is because the input to these benchmarks is small enough

that 128k captures most of the intra-wavefront locality. Since we are

collecting results on a performance simulator that runs several or-

ders of magnitude slower than a real device, the input to our bench-

marks is small enough that they finish in a reasonable amount of

time. Figure 15 show the effect of increasing the size of the BFS in-

put graph from the baseline 500k edges to 20M edges. As the input

size increases, the performance of CCWS over the GTO scheduler

also increases even at a 128k L1 cache size. We observe that simply

increasing the capacity of the L1 cache only diminishes the perfor-

mance impact of CCWS with small enough input sets. Hence, we

believe CCWS will have an even greater impact on data sizes used

in real workloads.

5.5. Sensitivity to KT HROTT LE and Tuning for Power

Figure 16 shows the effect of varying KT HROTT LE on L1D misses

and performance. KTHROT T LE is the constant used in Equation (1)

to tune the score assigned to wavefronts when lost locality is de-

tected (LLDS). At smaller KT HROTT LE values, there is less throttling

caused by the point system and more multithreading. At the smallest

values of KT HROT TLE multithreading is not constrained enough and

performance suffers. As KT HROTT LE increases, CCWS has a greater

effect and the number of L1D misses falls across all the HCS bench-

marks. In every HCS benchmark, except GC, performance peaks

then falls as KT HROT T LE increases. However, since a miss in the

L1D cache can incur a significant power cost it may be desirable to

use a higher KT HROTT LE value to reduce L1D misses at the cost of

some performance. For example, at KTHROT T LE = 32 there is an av-

erage 18% reduction in L1D misses over the chosen KTHROT T LE = 8

design point. KT HROT T LE = 32 still achieves a 46% performance im-

provement over the GTO scheduler.

Figure 16 also demonstrates that each benchmark has a differ-

ent optimal KT HROT T LE value. However, the difference in har-

monic mean performance between choosing each benchmark’s opti-

mal KT HROT TLE value and using a constant KT HROT TLE = 8 is< 4%.

For this reason, we do not pursue an online mechanism for determin-

ing the value of KTHROT T LE . If other HCS benchmarks have more

variance in their intra-wavefront locality then such a system should

be considered.

The value of KT HROTT LE makes no difference in the CI bench-

marks since there is little locality to lose and few VTA Hits are re-

ported. In the MCS benchmarks there are relatively few L1D MPKI,

which keeps the product of KT HROTT LE and VTAHitsTotal

InstIssuedTotal
low. In the

MCS benchmarks, CCWS performance matches GTO scheduler per-

formance until KT HROTT LE = 128. At this point there is a harmonic

mean 4% performance degradation due to excessive throttling. Since

their performance is largely unchanged by the value of KT HROT TLE ,

we do not graph the MCS or CI benchmarks in Figure 16.

5.6. Static Wavefront Limiting Sensitivity

In Section 3 we noted that the optimal SWL limiting number was

different for different benchmarks. We also indicated that this value
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changes when running the same benchmark with different input sets.

Figure 17 illustrates that peak performance for each of the HCS

benchmarks occurs with different multithreading limits. This hap-

pens because each workload has a different working set and access

stream characteristics. Furthermore, Figure 18 shows that for differ-

ent input graphs on BFS, the values of the peak performance point

are different. This variation happens because the working set size is

input data dependent. Finding the optimal wavefront limiting num-

ber in SWL would require profiling of each instance of a particular

workload, making the adaptive CCWS more practical.

SWL also suffers in programs that have phased execution. The

larger and more diverse the application is, the less likely a single

wavefront limiting value will capture peak performance. This type

of phased behaviour is not abundant in the HCS workloads we study,

but as the amount and type of code running on the GPU continues to

grow so too will the importance of adaptive multithreading.

SWL is also sub-optimal in a multi-programmed GPU. If wave-

fronts from more than one type of kernel are assigned to the same

compute unit, a per-kernel limiting number makes little sense. Even

if there was no cache thrashing in either workload individually their

combination may cause it to occur. CCWS will adapt to suit the

needs of whatever wavefront combination is running on a compute

unit and preserve their intra-wavefront locality. Since there will

be no inter-wavefront locality among multi-programmed wavefronts,

preservation of intra-wavefront locality becomes even more impor-

tant.

5.7. Area Estimation

The major source of area overhead to support CCWS comes from

the victim tag array. For the configuration used in Table 3 and a 48-

bit virtual address space, we require 40 bits for each tag entry in our

VTA. Using CACTI 5.3 [38], we estimate that this tag array would

consume 0.026 mm2 per core at 55nm or 0.78 mm2 for the entire

30 core system. This represents 0.17% of GeForce GTX 285 area,

which our system closely models with the exception that we also

model data caches. There are a variety of smaller costs associated

with our design that are difficult to quantify and as a result are not

included in the above estimation. Adding an additional 5-bits to

each L1D cache line for the WID costs 160 bytes per core. There

are 32 lost-locality score values, each represented in 10 bits which

are stored in a max heap. Also, there are two counter registers, one

for the number of instructions issued and another for the total VTA

hit signals. In addition, there is logic associated with the scoring

system. Compared to the other logic in a compute unit, we do not

expect this additional logic to be significant.

6. Related Work

This section summarizes and contrasts CCWS against prior schedul-

ing and cache management work.

6.1. Thread Throttling to Improve Performance

Bakhoda et al. [4] present data for several GPU configurations, each

with a different maximum number of workgroups (or CTAs) that

can be concurrently assigned to a core. They observed that some

workloads performed better when less workgroups were scheduled

concurrently. The data they present is for a GPU without an L1 data

cache, running a round-robin wavefront scheduling algorithm. They

conclude that this increase in performance occurs because schedul-

ing less concurrent workgroups on the GPU reduces contention for

the interconnection network and DRAM memory system. In con-

trast, the goal of CCWS is use L1 data cache feedback to preserve

locality by focusing on fine-grained, issue level wavefront schedul-

ing, not coarse-grained workgroup assignment.

Guz et al. [15] use an analytical model to quantify the "perfor-

mance valley" that exists when the number of threads sharing a
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cache is increased. They show that increasing the thread count in-

creases performance until the aggregate working set no longer fits in

cache. Increasing threads beyond this point degrades performance

until enough threads are present to hide the system’s memory la-

tency. In effect, CCWS dynamically detects when a workload has

entered the machine’s performance valley and scales down the num-

ber of threads sharing the cache to compensate.

Cheng et al. [10] introduce a thread throttling scheme to reduce

memory latency in multi-threaded CPU systems. They propose an

analytical model and memory task limit throttling mechanism to

limit thread interference in the memory stage. Their model relies

on a stream programming language which decomposes applications

into separate tasks for computation and memory and their technique

schedules tasks at this granularity.

6.2. Wavefront Scheduling Techniques

Lakshminarayana and Kim [25] explore numerous warp scheduling

policies in the context of a GPU without hardware managed caches

and show that, for applications that execute symmetric (balanced)

dynamic instruction counts per warp, a fairness based warp and

DRAM access scheduling policy improves performance. In contrast

to our work, their study did not explore scheduling policies that im-

prove performance by improving cache hit rates.

Fung et al. [12] explore the impact of wavefront scheduling policy

on the effectiveness of their Dynamic Warp Formation (DWF) tech-

nique. DWF attempts to mitigate control flow divergence by dynam-

ically creating new warps when scalar threads in the same wavefront

take different paths on a branch instruction. They propose five sched-

ulers and evaluate their effect on DWF. Fung and Aamodt [13] also

propose three thread block prioritization schemes to compliment

their Thread Block Compaction (TBC) technique. The prioritization

schemes attempt to schedule threads within the same thread block

(or workgroup) together. Their approach is similar to the two-level

technique proposed by Narasiman et al. [31], except thread blocks

are scheduled together instead of fetch groups. In contrast to both

these works, CCWS explores the impact of scheduling on cache lo-

cality using existing control flow divergence mitigation techniques.

Gebhart and Johnson et al. [14] introduce the use of a two-level

scheduler to improve energy efficiency. Experiments we run using

their exact specification yielded mixed results. They note that the

performance of their workloads increases less than 10% if a perfect

cache is used instead of no cache at all. For this reason, they run all

their simulations with a constant 400 cycle latency to global mem-

ory. As a result their scheme switches wavefronts out of the active

pool whenever a compiler identified global or texture memory de-

pendency is encountered. We find that obeying this constraint causes

performance degradation because it does not take cache hits into ac-

count. However, if this demotion to the inactive pool is changed to

just those operations causing a stall (i.e. those missing in cache) it’s

operation is similar to Narasiman’s two level scheduler we evaluated

in Section 5.

Meng et al. [29] introduce Dynamic Warp Subdivision (DWS)

which splits wavefronts when some lanes hit in cache and some lanes

do not. This scheme allows individual scalar threads that hit in cache

to make progress even if some of their wavefront peers miss. DWS

improves performance by allowing run-ahead threads to initiate their

misses earlier and creates a pre-fetching effect for those left behind.

DWS attempts to improve intra-wavefront locality by increasing the

rate data is loaded into the cache. In contrast, CCWS attempts to

load data from less threads at the same time to reduce thrashing.

Narasiman et al. [31] detail a two-level wavefront scheduler simi-

lar to that proposed in [14]. Their work focuses on improving perfor-

mance by allowing groups of threads to reach the same long latency

operation at different times. This helps ensure cache and row-buffer

locality within a fetch group is maintained and the system is able to

hide long latency operations by switching between fetch groups. In

contrast, our work focuses on improving performance by adaptively

limiting the amount of multithreading the system can maintain based

on how much intra-wavefront locality is being lost.

6.3. Improving Cache Efficiency

There is a body of work attempting to increase cache hit rate by im-

proving the replacement policy (e.g., [21] [34] among many others).

All these attempt to exploit different heuristics of program behav-

ior to predict a block’s re-reference interval and mirror the Belady-

optimal [8] policy as closely as possible. While CCWS also at-
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tempts to maximize cache efficiency, it does so by shortening the re-

reference interval rather than by predicting it. CCWS has to balance

the shortening of the re-reference interval by limiting the number

of eligible wavefronts while still maintaining sufficient multithread-

ing to cover most of the memory and operation latencies. Other

schemes attempt to manage interference among heterogeneous work-

loads [35, 19] but each thread in our workload has roughly similar

characteristics. Recent work has explored the use of prefetching

on GPUs [26]. However, prefetching cannot improve performance

when an application is bandwidth limited whereas CCWS can help

in such cases by reducing off-chip traffic.

Beckmann et al. [7] use victim tag information to detect locality

lost due to excessive replication in the cache hierarchy and adapt the

replication level accordingly. The LLD in CCWS differs from their

technique in that it subdivides the victim tag array by wavefront ID

and makes use of the this information to influence thread scheduling.

Concurrent to our work, Jaleel et al. [20] propose the CRUISE

scheme which uses LLC utility information to make high level

scheduling decisions in multi-programmed CMPs. Our work fo-

cuses on the first level cache in a massively multi-threaded environ-

ment and is applied at a much finer grain. Scheduling decisions

made by CRUISE tie programs to cores, where CCWS makes issue

level decisions on which bundle of threads should enter the execu-

tion pipeline next.

Agrawal et el. [3] present theoretical cache miss limits when

scheduling streaming applications represented as directed graphs on

uniprocessors. Their work shows that scheduling the graph by select-

ing partitions comes within a constant factor of the optimal scheduler

when heuristics such as working set and data usage rates are known

in advance.

Jia et al. [22] characterize GPU L1 cache locality in a current

NVIDIA Tesla GPU and present a compile time algorithm to deter-

mine which loads should be cached by the L1D. In contrast to our

work, which focuses on locality between different dynamic load in-

structions, their algorithm and taxonomy focus on locality across

different threads in a single static instruction. Moreover, since their

analysis is done at compile time they are unable to capture any local-

ity with input data dependence.

7. Conclusion

This work introduces a new classification of locality for GPUs. We

quantify the caching and performance effects of both intra- and inter-

wavefront locality for workloads in massively multi-threaded envi-

ronments.

To exploit the observation that intra-wavefront locality is of great-

est importance on highly cache-sensitive workloads, this work intro-

duces Cache-Conscious Wavefront Scheduling. CCWS is a novel

technique to capitalize on the performance benefit of limiting the

number of actively-scheduled wavefronts, thereby limiting L1 data

cache thrashing and preserving intra-wavefront locality. Our sim-

ulated evaluation shows this technique results in a harmonic mean

63% improvement in throughput on highly cache-sensitive bench-

marks, without impacting the performance of cache-insensitive

workloads.

We demonstrate that on massively multi-threaded systems, opti-

mizing the low level thread scheduler is of more importance than at-

tempting to improve the cache replacement policy. Furthermore, any

work evaluating cache replacement on massively multi-threaded sys-

tems should do so in the presence of an intelligent wavefront sched-

uler.

As more diverse applications are created to exploit irregular par-

allelism and the number of threads sharing a cache continues to in-

crease on both GPUs and CMPs, so too will the importance of intel-

ligent HW thread scheduling policies, like CCWS.
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