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Abstract

We propose translation-enabled memory prefetching

optimizations orTEMPO, a low-overhead hardware mech-

anism to boost memory performance by exploiting the op-

erating system’s (OS’) virtual memory subsystem. We are

the first to make the following observations: (1) a substan-

tial fraction (20-40%) of DRAM references in modern big-

data workloads are devoted to accessing page tables; and

(2) when memory references require page table lookups

in DRAM, the vast majority of them (98%+) also look up

DRAM for the subsequent data access. TEMPO exploits

these observations to enable DRAM row-buffer and on-

chip cache prefetching of the data that page tables point to.

TEMPO requires trivial changes to the memory controller

(under 3% additional area), no OS or application changes,

and improves performance by 10-30% and energy by 1-14%.

CCS Concepts •Computer systems organization →

Pipeline computing; Multicore architectures

Keywords Virtual memory, cache prefetching, DRAM.

1. Introduction

Memory accesses represent a performance bottleneck [1,

4, 5]. Modern systems execute memory-intensive work-

loads with sparse data structures, big key-value stores,

graph analytics, scientific processing algorithms, and multi-

dimensional data sets, all with complex memory access pat-

terns. Consequently, processor vendors and researchers are

investigating DRAM optimizations to improve bandwidth

and latency [6–14], boost row buffer management policies

[15–18], make fairer and faster memory schedulers [19–24],

and improve OS-DRAM interactions [25, 26]. Recent work

has also proposed better on-chip cache replacement and

prefetching to eliminate DRAM lookups for workloads with

input-dependent and irregular memory accesses [27–29].
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Figure 1. Fraction of total application runtime for page table

accesses to DRAM (DRAM-PTW-Access), replayed accesses to

DRAM (DRAM-Replay-Access), and other non-page table DRAM

accesses (DRAM-Other).

While effective, these efforts have mostly ignored a cru-

cial part of the system stack – virtual memory. Virtual mem-

ory automates memory and storage management, and also

provides the benefits of memory protection. Processors sup-

porting virtual memory translate program-visible virtual

memory addresses to physical memory addresses. Virtual-

to-physical translation mappings are maintained, in units of

memory pages, by the OS in a software data structure called

the page table. Like any software data structure, the page

table resides in the on-chip cache hierarchy and DRAM.

Architects implement Translation Lookaside Buffers (TL-

Bs) to cache virtual-to-physical translations. When a trans-

lation is absent in the TLB (a situation called a TLB miss),

a hardware page table walker looks up or “walks” the page

table. Memory references for page table walks are serviced

from on-chip caches or off-chip DRAM. After the page table

walk completes, the TLB is filled and the memory reference

is replayed. The replayed access hits in the TLB and probes

the memory hierarchy with the physical address.

One might expect that since address translation has been

extensively optimized [2, 30–41] and as TLBs have been

growing progressively bigger, virtual-to-physical translation

requests usually hit in TLBs or on-chip caches, and rarely

access DRAM. We find, however, that this is not the case

in big-memory servers. Consider Figure 1, which uses the

simulation-based methodology of Sec. 5 to quantify the frac-

tion of application runtime expended on DRAM lookups.

We model a 32-core Intel Skylake system with 4TBs of

DRAM, running Ubuntu Linux with a v4.4 kernel and trans-



parent support for superpages [42]. We split DRAM over-

heads into three categories: 1© DRAM accesses to the page

table (DRAM-PTW-Access); 2© DRAM accesses for the re-

played memory reference (DRAM-Replay-Access); and 3©

other DRAM accesses (DRAM-Other).
Figure 1 shows that a large fraction of DRAM overheads

arises from page table walk accesses. This is because our

workloads are dominated by irregular memory accesses, fol-

lowing graph edges or non-zero elements in sparse matrices.

These applications access their massive 4TB address spaces

sparsely, frequently triggering TLB misses.

Figure 1 reveals, however, an opportunity to improve

DRAM performance. Past work has focused on reducing a

memory reference’s probability of suffering a TLB miss, or

reducing its page table walk latency. We have, however, ig-

nored the overhead of replaying the memory reference after

the page table walk. Figure 1 shows that DRAM accesses for

replayed data (in green) constitute 10-30% of runtime, al-

most as much as the time taken for the prior DRAM page

table accesses. The intuition for this is as follows. Suppose

a memory reference looks up the TLB for its translation and

misses. This translation points to a physical page hosting the

data ultimately needed. A TLB miss indicates that the trans-

lation is cold. Even further, if the subsequent page table walk

accesses DRAM – because the translation is absent from the

on-chip caches – the translation is likely very cold. Hence,

the data pointed to by the translation is likely even colder,

and most probably resides in DRAM itself. In other words, a

single memory reference generates back-to-back DRAM ac-

cesses, once for the page table lookup, and once for the data.

We observe that this occurs often (see Figure 1) and that for

every workload, over 98% of DRAM page table lookups are

followed by DRAM lookups for replayed accesses.

In response, we propose translation-enabled memory

prefetching optimizations or TEMPO. TEMPO lever-

ages DRAM page table accesses to virtually eliminate the

overheads of replayed accesses to DRAM. TEMPO im-

proves performance with two optimizations. First, TEMPO
performs DRAM row buffer prefetching. We add simple

hardware in the memory controller to identify DRAM ac-

cesses for page tables, and deduce the physical memory ad-

dress the page table entry points to. TEMPO prefetches this

data into the DRAM row buffer. This allows DRAM ac-

cesses for replays to enjoy row buffer hits, boosting perfor-

mance. Second, TEMPO prefetches this data into the last-

level cache (LLC). Together, these approaches improve per-

formance by 10-30%, energy by 1-14%, add negligible area

(only 3% to the memory controller), and require no OS or

application changes. Overall, our contributions are:

• We characterize the impact of address translation on main

memory performance. We discover that DRAM accesses

for post-page table walk replays constitute a significant

fraction of system runtime.

!

"#$#!%&!'(!

!

)#*+,!-%&,!.!

)#*+,!-%&,!/!

0!

)#*+,!-%&,!12!

!

!

'#3,!4#5-,!6'47!

!

8.!!!'.!

8/!!!'/!

8(!!!'(!

0!

!

8/.(2!!!'/.(2!

9:;!

<==>,??!4>#&?-#@A&!<5?$>#*@A&! '#3,!4#5-,!BCD-,C,&$#@A&!

8(! EF?,$!

'4!>AA$!!

6)G27!

H9!'4!

I!

I!

H2!'4! I!

H(!'4! I!

H/!'4J!8(!!!'(!

Figure 2. (Left) Page tables maintain virtual to physical page

translations. The post-translation physical page consists of several

cache lines (e.g., 64 cache lines for 4KB x86-64 pages); and (Right)

multi-level radix tree implementations of x86-64 page tables.

• We propose TEMPO to attack replay DRAM accesses,

eliminating their overheads almost entirely by using row

buffer and LLC prefetching.

• We assess TEMPO’s benefits on: a© several state-of-the-

art memory schedulers for performance [43] and fairness

[23, 24]; b© open, closed, and adaptive row buffer man-

agement policies [16,17]; c© alternative row buffer orga-

nizations; and d© recent cache prefetching schemes for

irregular memory access patterns [44]. TEMPO remains

effective – and often boosts performance even more –

when processors employ these optimizations.

Since TEMPO requires modest hardware support, we expect

it to be readily-implementable in upcoming processors.

2. Motivation and Background

We begin this section by detailing OS and hardware support

for address translation, and our goals. Though TEMPO ben-

efits all architectures, we focus on x86-64 systems.

2.1 Address Translation and Data Interactions

Figure 2 shows that all memory references require two steps:

first, a virtual-to-physical translation and second, a post-

translation lookup. We now detail both:

Virtual-to-physical address translation: The diagram on

the left of Figure 2 shows that all virtual addresses are

grouped into virtual pages. Abstractly, a page table maps

each virtual page to a physical page. For example, virtual

page 2 maps to physical page 2. The physical page stores

cache lines. For x86-64 systems using a base page size of

4KB, a page stores 64 distinct 64-byte cache lines.

The diagram on the right of Figure 2 shows an example

page table implementation. x86-64 systems use a multi-level

forward-mapped radix tree to represent the page table. We

refer readers to prior work for details on x86-64 page ta-

bles [30, 45–49], but briefly discuss how page table walkers

traverse them. At a high-level, there are four page table lev-



els, which we refer to as L4-L1 page tables (PTs), similar

to prior work [45, 46]. x86-64 systems use them to support

48-bit virtual addresses today. The first step in a walk is to

concatenate the root physical address of the L4 PT (stored

in the CR3 register) with the upper-most 9 bits of the virtual

page number. Hardware page table walkers look up the L4

PT with this concatenated address, to extract the physical ad-

dress of the base of the L3 PT. This address is concatenated

with the next 9 bits of the virtual page number to look up

the L3 PT. This process repeats until the L1 PT is probed to

identify the desired virtual-to-physical translation. In Figure

2, we thus discover that V2 is mapped to P2 in the L1 PT.

Since page table walks require 4 sequential (and hence

expensive) memory references, CPUs use two types of hard-

ware structures to accelerate translation lookup. The first

is the TLB, which stores virtual-to-physical translations; in

other words, it caches frequently-used entries from the L1

PT. The second is a family of MMU caches, which accelerate

page table walks when TLBs miss [45,46,50]. MMU caches

store frequently-used entries from the L4, L3, and L2 PTs.

They are generally smaller (by 32× in Skylake processors)

than TLBs since L4, L3, and L3 PT entries map much larger

chunks of the address space than L1 PT entries. For the same

reason, despite their smaller size, MMU caches tend to enjoy

better hit rates than TLBs [46].

Overall, a memory reference first probes the TLB. If there

is a TLB hit, the CPU can continue with the post-translation

memory reference. If there is a TLB miss, the CPU invokes

the page table walker, which generates memory references

for L4, L3, L2, and L1 PTs. Each of these references may

hit in the MMU cache. However, if they miss, they are sent

to the on-chip cache hierarchy, made up of L1 caches to the

LLC. LLC misses result in DRAM page table accesses.

Post-translation lookup: Once the translation is found, the

post-translation data is looked up. All post-translation mem-

ory accesses can be classified into: a© replay accesses, which

correspond to memory references after a TLB miss and sub-

sequent page table walk; and b© regular accesses, which cor-

respond to memory references after a TLB hit. Both types of

accesses can be satisfied from the on-chip caches or DRAM.

2.2 Our Goal

TEMPO’s goal is to decrease the latency of DRAM accesses

for replays. Figure 3 illustrates this. The x-axis plots the

latency of the page table access. TEMPO is triggered when

DRAM needs to be accessed for the page table lookup. By

prefetching into the row-buffer alone, TEMPO expedites

the replay access latency since row buffer hits generally

cut DRAM access time by as much as 66% (see Sec. 2.3).

By further prefetching data into the LLC, access times for

replays are reduced to the latency of an LLC hit.

Figure 4 quantifies the fraction of DRAM references

amenable to TEMPO. Figure 4 shows that DRAM page

table accesses (DRAM-PTW-Access) constitute as much
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Figure 3. TEMPO prefetches into the row buffer and LLC to

decrease replay access latency.
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Figure 4. Fraction of total DRAM references devoted to page

table walk accesses to DRAM (DRAM-PTW-access), replay ac-

cesses to DRAM (DRAM-Replay-Access), and other non-page ta-

ble DRAM accesses (DRAM-Other).

as 20-40% of total DRAM references. This means that

TEMPO’s prefetching will be triggered often. Further, Fig-

ure 4 shows that almost an equivalent number of DRAM

references are devoted to replay accesses (DRAM-Replay-
Access). This means that each prefetch will likely be useful.

Now, consider Figure 4 more closely. One might ex-

pect DRAM-PTW-Access to be a bigger fraction of the to-

tal DRAM references than DRAM-Replay-Access. After all,

each page table walk requires four memory references while

the replay data access requires merely one (see Sec. 2.1).

However, we find that leaf PT accesses (e.g., L1 PTs for

4KB pages) suffer much worse reuse than upper-level PT ac-

cesses. Consequently, 96%+ of all DRAM page table walk

accesses (or the striped bars in Figure 4) are for leaf PTs.

And since poor reuse for leaf PTs implies that the physical

pages they point to have poor reuse too, the replay (the green

bars in Figure 4) usually results in a DRAM access too.

One might also expect superpages to reduce the fre-

quency of DRAM page table accesses, and hence TEMPO’s
benefits. However, Figure 4 is collected on a system where

Linux support for transparent 2MB superpages is enabled

[42]. Our experiments show that the Linux allocates more

than half the memory footprint with 2MB superpages (see

Sec. 6), for every workload. Still, our workloads are so

memory-intensive (using most of the 4TB physical memory)

and look up DRAM with such irregular access patterns and

poor locality, that DRAM page table accesses remain com-



mon. Sec. 6 studies this further, showing TEMPO’s benefits

when 2MB and 1GB superpages are used.

2.3 Anatomy of a Memory Reference

Before presenting TEMPO’s hardware, we describe the

anatomy of a memory reference that requires a DRAM page

table walk. We separately discuss the DRAM page table

lookup and replay.

DRAM page table access: Figure 5 illustrates the events

corresponding to page table walks in blue, and those for the

subsequent data access in green. The events are time-ordered

from the left to right.

a© TLB and cache lookup: The CPU first accesses the TLB

and L1 cache in parallel, as per usual for virtually-indexed

and physically-tagged caches [34, 51]. Suppose that there is

a TLB miss. The page table walker (not shown) responds by

initiating a multi-level page table lookup. The walker injects

memory references for the L4, L3, and L2 page table entries.

Although we omit showing them to simplify Figure 5, let

us assume that these lookups result in MMU cache hits.

Subsequently the page table walker accesses the L1 page

table entry. This looks up the L1 cache and LLC. Assuming

misses in both, DRAM lookup commences.

b© DRAM lookup: The processor accesses off-chip DRAM

via one or more on-chip memory controllers. The controllers

orchestrate DRAM device operation using one or more chan-

nels. DRAM devices are organized as banks of arrays (see

recent work for details [6–18]). Arrays are two-dimensional

structures of bit-cells identified by row and column number.

DRAM array accesses occur at row granularity, using acti-

vation or ACT commands. DRAM hardware reads the ac-

tivated row, in units of 4-16KB, into a row buffer [17, 18].

If the memory controller injects further requests to this row,

they are served promptly from the row buffer (a row buffer

hit), without DRAM array access delays.

Alternately, the memory controller may desire addresses

from a different row. Two situations are possible. In the first

case, the open row buffer contains array contents from a dif-

ferent row. This is called a row buffer conflict. In response,

the memory controller issues a PRECHARGE command to

write the open row back to the DRAM array, and an ACT
command to latch the desired row into the row buffer. This

approach places the expensive PRECHARGE operation on

the critical path of DRAM access. Hence, in the second

case, the DRAM logic pre-emptively closes the open row

contents, taking the PRECHARGE operation off the DRAM

access’ critical path. This is called a row buffer miss. Fi-

nally, the DRAM controller issues READ and WRITE com-

mands to identify the desired column or word from the row

buffer. While their latencies vary with process technology

and several timing parameters, DDR3 DRAM row buffer

hits are generally 10-15ns, while conflicts and misses are 30-

50ns [7,15]. Hence, row buffer hits improve acces latency by

as much as 66%.

Figure 5 shows that the L1 page table lookup first checks

the row buffer. Unfortunately, page table accesses usually

suffer row buffer conflicts or misses. This is because page

table accesses are usually interleaved with more frequent

accesses to non-page table data. Page tables are therefore

unlikely to be open in row buffers. On row buffer conflicts

or misses, DRAM logic reads the array, where the desired

translation (V→P) is found. The translation is relayed to the

CPU, and is filled the caches and TLB.

Replay access to DRAM: On page table walk completion,

the memory reference is replayed.

a© TLB and cache lookup: This time, the translation is found

in the TLB. However, for the reasons described in Sec. 2.2,

the replay data is unlikely to be found in any of the caches.

Hence, DRAM is again accessed.

b© DRAM lookup: Unfortunately, 98%+ of replays suffer

row buffer conflicts or misses. Naturally, if a memory refer-

ence suffers a DRAM access for a page table walk, it is cold

and is unlikely to have been accessed sufficiently recently

to be open in a DRAM row. Therefore, not only are these

replays expensive because they look up DRAM, they also

usually suffer DRAM array lookup latencies.

3. High-Level Approach

We now explain, at a high-level, TEMPO’s mechanism and

how it aids performance.

Mechanism: Figure 6 explains how TEMPO works. The

goal is to convert DRAM accesses for replays to LLC hits or

row buffer hits. Consequently, we add hardware to the mem-

ory controller to identify DRAM page table accesses. We

also add combinational logic to identify the physical page

stored in this translation. This is combined with informa-

tion about the desired cache line – sent to the memory con-

troller by the page table walker – to identify the post-page

table memory address, before the memory replay. Figure 6

shows that this allows two optimizations. First, the 4-16KB

row holding the data needed by the replay is prefetched from

the DRAM array into the row buffer. Second, the cache line

storing this data is prefetched into the LLC.

Benefits: Ideally, TEMPO ensures that replays enjoy LLC

hits, eliminating: a© on-chip network traversal from the LLC

to the memory controller; b© memory controller queueing

delays; c© DRAM row buffer lookup; d© DRAM row buffer

close with PRECHARGE; e© row activation ACT; f© col-

umn READ/WRITE; and g© cache fill activities. This can

translate to a savings of 100-150+ cycles. Naturally, it is pos-

sible (though rare, as we show in Sec. 6) for the LLC line to

be evicted before use; in these cases, row buffer hits may still

occur, eliminating d©- f©.
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Figure 5. Timeline of events for a memory reference that misses in the TLB. Page table walks are shown in blue the memory replay is

shown in green.
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Figure 6. Timeline of events when TEMPO prefetches the data that the replayed instruction will use into the DRAM row buffer and

LLC. Subsequent LLC and row buffer hits improve performance.

Prefetching timeliness: Figure 6 shows that TEMPO’s
prefetches are overlapped within a slack window where the

translation is filled into the caches and TLB, and the re-

play proceeds till LLC lookup. We make two observations.

First, the slack window is usually long enough to perform

row buffer and LLC prefetching. For example, Intel Haswell

and Skylake processors usually take 120+ cycles [52,53] for

these events. In contrast, prefetching from the DRAM array

into the row buffer takes 60-100 cycles, while prefetching

to the LLC adds another 20-30+ cycles. Second, even when

prefetching time exceeds the slack window, prefetching can

be partially overlapped, boosting performance. In practice,

we find that in scenarios with partial overlap, LLC hits occur

less often but DRAM row buffer hits remain prevalent.

Prefetching accuracy: Classical cache prefetching predicts

future memory references and hence speculates on their tar-

get addresses, possibly incorrectly. Incorrect speculations

waste energy, degrade performance, and needlessly pollute

caches. TEMPO suffers from none of these problems be-

cause it is non-speculative. The replay’s memory address is

always calculated correctly by the memory controller.

4. Hardware Design

TEMPO requires hardware enhancements to page table

walkers and the on-chip memory controller. No changes are

needed to the OS or application.

4.1 Hardware Augmentations

We separate our discussion of hardware changes to the page

table walker and the memory controller.

Page table walker: Consider a page table walk. After the

walker finds the upper PT entries, it emits a request for the

leaf (e.g., L1 PT for 4KB pages) PT entry. We modify the

page table walker and tag memory requests for the leaf PT

entry with an identifier bit. This bit identifies DRAM page

table accesses that should trigger prefetches.

Memory controllers need two pieces of information to de-

termine which address to prefetch from: a© the physical page

where the replay’s requested data resides, b© and the target

cache line within the page. The memory controller deduces
a© from the L1 translation entry it reads (with hardware that

we present in the next subsection). However, ordinarily, the

controller only knows about b© when the replay request ar-

rives, which is too late to perform prefetching.

Suppose, for example, that a program using the page table

in Figure 2 accesses virtual address 0x2001. In other words,

the application requests cache line 0 from virtual page 2.

Further, suppose that the mapping V2→P2 is absent from

the TLB. The page table walker accesses the L4-L2 levels,

and discovers the base physical address of the L1 page table.

It then sends this physical address, concatenated with the

least significant 9 bits of the virtual page number (0x02)

to the memory hierarchy. If this access reaches DRAM, the

memory controller can use it to look up the L1 page table

and determine that V2 maps to P2. However, it has no way

to know that the initial memory reference – and hence the

replay – is to 0x2001 and hence accesses cache line 0 within

P2. Without this knowledge, TEMPO cannot prefetch.

In response, we modify the page table walker and append

the replay’s desired cache line to the memory address of

the desired L1 PT entry. In our example, the page table

walker appends information about cache line 0, transmitting

an additional 6 bits with the memory request for the L1 PT.

We discuss these overheads in subsequent sections.

Memory controller: We extend the memory controller to

support two basic functions:

a© Page table access detection and trigger: Figure 7 shows

our modifications of the memory controller. Suppose the
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Figure 7. TEMPO detects page table accesses and prefetches

post-translation replay-data into the row buffer and LLC.

memory controller receives a page table request in 1©. We

add a comparator (indicated by the PT? block) to identify

leaf page table accesses, using the bit identifier set by the

page table walker. When such a memory access is detected,

the controller inserts this message into the transaction queue

(Tx Q). We modify the standard Tx Q to operate as follows.

Non-page table requests are inserted into the queue as per

usual. Page table accesses, however, must be handled differ-

ently as they have a bigger bit-width than Tx Q entries. This

is because we have modified page table walkers to append

information about the replay’s desired cache line to the page

table entry’s address.

One solution may be to widen each Tx Q’s bitwidth.

Unfortunately, this increases the size of the queue by roughly

25%, according to our RTL modeling (see Sec. 5). Instead,

we break the page table access into two Tx Q transactions in
2©. The first one (in striped black) represents the page table

access, while the second one (in solid black) temporarily

buffers information about the replay cache line, to be used

shortly to construct the prefetch target.

Next page table access is scheduled in 3©. The controller

sends ACT commands to read the DRAM array row contain-

ing the desired page table entry into the row buffer 4©. The

requested cache line is filled in the LLC 5a©.

b© Prefetch of replay data: TEMPO prefetches post-translation

replay data in parallel with LLC fill. We add a simple finite

state machine (the Prefetch Engine) to accomplish this in
5b©. The Prefetch Engine identifies the desired 8-byte page

table entry from the requested page table walk access, and

extracts the physical page number residing in it. This corre-

sponds to the physical page number of the replay’s memory

access. The Prefetch Engine logic concatenates this physical

page number with the the replay access’ cache line informa-

tion stored in the Tx Q (the solid black entry in Figure 7).

The result is the replay’s memory reference address. The

controller sends a read request for this address to the DRAM

device. In response 6©, the row containing the prefetch tar-

get is latched into the row buffer. Further, the cache line

containing the prefetch target is sent to the LLC 7©.

Hardware overheads: We have synthesized the additional

page table walker and memory controller hardware (see Sec.

5 for details), and modeled the impact of the page table

walker’s larger message sizes. Overall, we see that page table

walkers become 0.5% bigger, memory controllers become

3% bigger, and there is a negligible increase in on-chip net-

work bandwidth usage from the larger messages. Therefore,

TEMPO’s benefits far outweigh its modest overheads.

4.2 Interactions with Traditional Cache Prefetching

TEMPO operates orthogonally to classical cache prefetch-

ers [3, 27–29, 44]. Some of these studies have focused on

prefetching for pointer-intensive programs [3], which shares

some conceptual similarities to the notion of prefetching the

replay data pointed to by the page table. However, none

of these studies showcase the impact of virtual memory on

cache prefetching techniques.

We have studied TEMPO’s interactions with the IMP

prefetcher [44]. IMP is designed to prefetch irregular mem-

ory accesses from indirect patterns of the form A[B[i]] [44].

We find that TEMPO’s performance benefits become even

more pronounced with IMP for two reasons. First, IMP gen-

erates many DRAM page table accesses as it prefetches

across page boundaries; workloads with irregular memory

accesses therefore easily thrash TLBs. TEMPO mitigates

the post-translation replay access bottlenecks for these work-

loads. Second, IMP successfully prefetches many non-page

table cache lines, leaving DRAM page table accesses and re-

play accesses as performance bottlenecks. Overall, TEMPO
improves the performance of systems using IMP by as much

as 40%, going beyond its 10-30% performance improve-

ments of systems without prefetching.

4.3 Interactions with Memory and Row Buffer

Scheduling

Researchers have recently proposed hardware support for

several memory schedulers [19–24,43] and row buffer man-

agement policies [15, 17, 54] in recent years. TEMPO func-

tions efficiently with any of them. These policies use either

closed or open/adaptive row buffer management.

Closed row buffer management: In this approach, once a

row is opened and read, it is immediately written back to the

DRAM array [17]. Therefore, all row buffer lookups result

in misses. However, by pre-emptively writing back the row

to the DRAM array, the PRECHARGE latency is taken off

the critical path of future memory references. Closed row

policies are beneficial when memory accesses have poor

locality (e.g., in many-core systems when multiple memory

access streams are interleaved in DRAM, destroying intra-

stream locality). TEMPO boosts performance in these cases.

Sec. 6 shows these performance benefits.

Open row buffer management: Instead of immediately

closing a row’s contents, an alternative is to leave the row

open for subsequent DRAM requests. If these DRAM re-

quests access the same row, row buffer hits boost perfor-

mance. Past work has proposed several optimizations to

schedule DRAM requests such that row buffer hits are pro-

moted. For example, the classic FR-FCFS scheduler reorders

DRAM requests to strike a balance between the request age
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Figure 8. Memory scheduling policies in the presence of multiple

page table accesses and replay prefetches.

and its likelihood of enjoying a row buffer hit [43]. Simi-

larly, other schedulers promote row buffer hits for parallel

workloads [20].

Although the TEMPO design presented thus far operates

seamlessly with open row buffer policies, we can further

enhance it to balance row buffer hits for page table accesses,

while also ensuring that the prefetches they trigger occur in

a timely manner. There are two situations of interest:

a© Single page table access queued: Suppose that the Tx
Q holds several memory access requests, but only one of

them is a page table access. Suppose further that the DRAM

scheduler loads the row holding the desired translation into

the row buffer. At this point, TEMPO can immediately ini-

tiate the prefetch, closing the current row buffer contents.

However, we have found that instead of prefetching imme-

diately, it is beneficial to leave the row buffer contents open

for a few cycles. This approach anticipates the arrival of ad-

ditional page table requests; if these requests are to page ta-

ble entries that map to the same 4-16KB row contents, de-

laying the prefetch by a few cycles potentially boosts row

buffer hits. Naturally, the delay ought to be judicious – ex-

cessive waiting times overly delay prefetches, counteract-

ing TEMPO’s benefits. We have found that a 10-cycle delay

boosts performance by 1-4% over baseline TEMPO, across

all applications, but particularly for those that suffer from

frequent DRAM page table accesses (e.g., xsbench).

b© Multiple page table accesses queued: Multiple page table

walk requests – and their associated prefetch requests – may

be present in the Tx Q. Our goal is to schedule the requests to

boost row buffer hits overall. Consider, for example, Figure

8. On the left, we show a page table mapping V0-3 to several

physical pages. Further, we show, using dashed boxes, data

that maps to the same DRAM row. For example, since the

translations for V0-3 are 8 bytes each, they map to one row,

shown in blue. However, the physical pages they point to

map to separate rows. Suppose that row buffers store 8KB

of data. In this case, spatially-adjacent physical pages P0-

1 share a row, while P512-513 share a row. Further, on the

right, Figure 8 shows how requests for these translations are

queued in the Tx Q. Suppose that the page table walker

sends DRAM requests for the translations of V0, V1, V3,

and V2 by requesting their physical addresses (PA). The

memory controller detects that these are page table requests

and hence also queues prefetches (i.e., Pref. P0, etc.). As

usual, these prefetch requests store only the target cache line

from the physical page, until the translation is looked up

from the DRAM array.

A naive scheduling policy schedules transactions in order

from the queue’s head to the tail. However, this needlessly

exacerbates row buffer conflicts. For example, if PA(V0-P0)

is followed by the prefetch of the cache line from P0, the

subsequent PA(V1-P512) request experiences a row con-

flict, even though it maps to the same row as PA(V0-P0).
Instead, TEMPO scans the Tx Q for page table access re-

quests. Since page table requests usually lie on the critical

path of execution, Tx Q entries for translations residing on

the same row are first scheduled. Figure 8 shows this in 1©-
4©.

Once the page table requests are scheduled, TEMPO
schedules the prefetch requests. Again, row buffer hits are

promoted by scheduling groups of prefetches that map to the

same row. Since we assume 8KB rows and 4KB base pages,

prefetch requests to cache lines in P0 and P1 are first handled
5©- 6©, followed by P512 and P513 7©- 8©.

A potential concern is that handling multiple page table

requests before initiating prefetches jeapardizes the latter’s

timeliness. We find that this is not a problem for several rea-

sons. First, the additional page table requests are row buffer

hits and can hence be handled quickly, without excessively

delaying prefetches. Second, page table walks lie on the crit-

ical path of program execution and must hence be handled

fast to enhance overall performance. Third, the slack win-

dow within which to prefetch is usually long enough to tol-

erate some prefetch delay. And finally, even if prefetches

are somewhat delayed, they still provide some performance

boost; in the worst cases, we find that replays may not enjoy

LLC hits, but they still usually enjoy row buffer hits.

Adaptive row buffer management: Adaptive row policies

combine the best of open and closed row policies, boosting

row buffer hit rates and on misses, converting potential row

buffer conflicts to merely misses (where the PRECHARGE
operation sits off the critical path of execution). These poli-

cies use hardware predictors with saturating counters to pre-

dict the length of time a row should be left open for good

performance. TEMPO boosts the performance of adaptive

row policies from prior work [17] in Sec. 6.

Scheduling for fairness: TEMPO also improves the perfor-

mance of memory schedulers that balance application fair-

ness with performance, for workloads made up of multiple

applications. Without loss of generality, we study the black-

listing memory scheduler or BLISS [23,24].



BLISS mitigates inter-application interference by sepa-

rating applications into two groups: first, a group of appli-

cations vulnerable to interference; and second, a group of

applications that cause interference. BLISS counts the num-

ber of consecutive DRAM requests from each application

to classify each application into one of these groups. Ap-

plications with more consecutive requests are classified as

interference-causing. We rethink two design decisions to op-

erate TEMPO efficiently atop BLISS:

a© Counter increments: TEMPO performs two transac-

tions on DRAM page table lookups: one for the translation

lookup, and one for the post-translation prefetch. An im-

portant question is whether prefetches should be included in

BLISS’ per-CPU counter increments. On one hand, if a CPU

performs DRAM page table walks that initiate prefetches,

these prefetches constitute additional memory traffic gen-

erated by that CPU. On the other hand, prefetches are not

technically on-demand, they are performance optimizations

that are used to reduce the latency of future memory refer-

ences. Therefore, it is not clear that they should be counted

as consecutive memory references. Overall, we find that the

best balance is to indeed increment counters on prefetches,

but with a half the weight as a non-prefetch access. In other

words, we increment per-CPU counters by 2 for all non-

prefetch references, and by 1 for prefetches. Sec. 6 shows

that this generally improves performance most consistently.

b© Switching between application reference streams: BLISS

switches between streams of references from different CPUs

to balance good performance and fairness. TEMPO modifies

the process of switching slightly. After a page table access,

its subsequent prefetch is also scheduled before references

from a different application are scheduled. This ensures that

prefetches are handled in a timely manner. Furthermore, we

have found that it is best to wait for a grace period after

performing the prefetch before references from a competing

application are scheduled. Keeping the prefetched row buffer

contents open for longer allows incoming references from

replayed instructions to enjoy row buffer hits. We find that

15-cycle grace periods provide good performance.

4.4 Interactions with Sub-row Buffers

Past work has proposed replacing per-bank row buffers with

multiple smaller sub-row buffers [18]. Sub-row buffers are

useful in many ways. For example, they improve fairness

and performance with Fairness Oriented Allocation (FOA)

and Performance Oriented Allocation (POA) [18]. FOA al-

locates dedicated row buffers to cores that suffer the most

interference. POA takes into account the differing memory

bandwidth requirements of CPUs and allocates row buffers

to cores in line with their demands. TEMPO can be applied

to these approaches with no changes. Also, we find that ded-

icating 2 sub-rows for an architecture with 8 sub-rows im-

proves performance (proposed in prior work [18]) as it per-

mits multiple simultaneous post-translation prefetches.
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Figure 9. Simulated machine. Parameters on row buffer policies,

sub-row buffers, and cache prefetching are detailed in the text.

4.5 System-Level Interactions

Superpages: TEMPO is applicable to any page size (or dis-

tribution of page sizes) that the OS allocates. For example,

for 2MB superpages, the page table walker simply tags the

L2 PT access – now the leaf PT – to trigger the memory con-

troller into initiating row buffer and LLC prefetches. Sec. 6

shows how well TEMPO and superpages operate in tandem.

Page faults: Occasionally, DRAM page table accesses may

refer to a translation with an unallocated virtual page.

TEMPO’s Prefetch Engine identifies these unallocated

translations and ensures that they do not trigger prefetches.

5. Methodology

5.1 Evaluation Workloads

TEMPO is primarily useful for big-memory workloads on

big-memory servers. Therefore, like past work [39, 40, 44,

55], we use several workloads from the machine learning,

graph analytics, and sparse linear algebra domains. These

consist of memory-intensive applications mcf from Spec,

and canneal from Parsec; locality-sensitive hashing from

nearest neighbor workloads in machine learning (lsh); sparse

vector matrix multiplication (spmv); and symmetric gauss-

siedel smoother (sgms), an important high-performance

computing application which performs a forward and back

triangular solve. We also use graph500, xsbench, a Monte

Carlo neutron transport [55], and the illustris cosmoglical

framework [56], a popular state-of-art simulation of the

physics of the universe. All use 3-4TB of memory.

We have also evaluated TEMPO on all the remaining

Spec and Parsec workloads. We expect TEMPO to be mod-

estly useful for workloads with smaller memory footprint;

nevertheless, we evaluate them to ensure that TEMPO does

not harm performance or energy if DRAM page table ac-

cesses are rare.

5.2 Simulation Infrastructure

Our simulation approach is a two-step process. First, to cap-

ture accurate real-system virtual memory behavior, we use

a modified version of Pin (logging both virtual and physi-

cal memory addresses) to generate memory traces of pro-

gram behavior [34, 35]. Our test system has an Intel Sky-

lake processor with 4TBs of memory, running stock Linux.
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Figure 10. (Left) Improvements in performance (blue) and energy

(green) using TEMPO as a fraction of baseline execution; and

(right) fraction of memory footprint devoted to 2MB superpages.

We then feed these traces to an in-house simulation frame-

work modeling Intel’s Skylake-style processors with the pa-

rameters shown in Figure 9. Our detailed out-of-order core

models are allied with a DRAM timing simulator inspired

by prior work [57, 58]. Note that we assume a system with a

large 4TB physical memory. Further, our memory controller

supports different scheduling policies including closed-row,

open-row, and adaptive policies. Like prior work [17], our

adaptive open-row policy uses a cache structure to predict

the length of time that a row should be left open. We use

2048-set, 4-way prediction caches [17]. Further, we study

the impact of 8 sub-row buffers – since the large row buffer

in Figure 9 is 8KB, each sub-row buffer is 1KB – with the

default FOA and POA designs from prior work [18]. Finally,

we implement IMP prefetchers, using the default configura-

tion from prior work [44]. We assume a 16-entry prefetch

table, 4 entry indirect pattern detector, with a 2 maximum

indirect ways and levels, and 16 as the maximum prefetch

distance [44].

We implement TEMPO in Verilog and synthesize, place,

and route using Synopsis 32-nm generic libraries. We assess

area, energy, and timing implications.

6. Evaluation

We begin by assuming a design with a single 8KB row

buffer, and FR-FCFS scheduling with an adaptive-row pol-

icy from prior work [18]. Subsequent sections detail TEMP-
O’s performance with different schedulers and row buffer

organizations.

6.1 Performance and Energy Improvements

The graph on the left of Figure 10 summarizes the perfor-

mance (blue) and energy (green) benefits of TEMPO. Our

results are measured as a fraction of the baseline execution

without TEMPO, with higher numbers being better. A 0

fraction benefit implies no change in execution time over the

baseline. In tandem, the graph on the right shows the fraction

of memory footprint devoted to 2MB superpages, measured

on the real system from which we collect traces.
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Figure 11. (Left) Fraction of replays serviced from the LLC and

row buffer; and (right) energy/performance graphs comparing big-

data workloads with Spec/Parsec workloads with small memory

footprints.

Performance benefits: Figure 10 shows that TEMPO con-

sistently boosts all our big-data workloads. Workloads with

frequent DRAM page table accesses (e.g., see xsbench) en-

joy close to 30% performance boosts. In general, the poorer

the access locality of the workload, the more useful TEMPO
is. Note that TEMPO is beneficial because DRAM page ta-

ble accesses remain frequent despite the fact that most work-

loads back more than 50% of their memory footprint with

superpages (the graph on the right of Figure 10).

Energy benefits: Figure 10 shows that TEMPO saves en-

ergy, despite its area overheads, by speeding up execution

and hence reducing static energy. We see 1-14% energy sav-

ings, trending similarly with performance improvements.

Breakdown of benefits: The graph on the left of Figure 11

distinguishes the benefits of row buffer and LLC prefetch-

ing. For each workload, we separate the fraction of replays

that hit in the LLC (blue) or the row buffer (green) due to

prefetching. Note the tiny presence of a third category where

TEMPO cannot aid replay accesses – these typically occur

only during pathological cases when there are just too many

page table accesses queued at the memory controller for the

prefetches at the Tx Q tail to complete in a timely fashion.

The bulk of the replays’ accesses (75% and higher) see LLC

hits, and most LLC misses become row buffer hits.

Workloads with small memory footprints: Our results

thus far have focused on big-data workloads with poor local-

ity of memory access. This is because, by design, TEMPO
initates prefetches only when workloads use memory suf-

ficiently aggressively to initiate many DRAM page table

accesses. We also, however, need to ensure that TEMPO’s
overheads do no harm workloads with smaller memory foot-

prints (i.e., that the additional hardware doesn’t significantly

compromise system energy, etc.). The graph on the right of

Figure 11 presents the results of this study, where we sepa-

rate the energy and performance characteristics of the big-

data workloads (blue) with those of the remaining smaller-

footprint Spec and Parsec workloads. Naturally, the big-data

workloads benefit most from TEMPO. However, not a sin-
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Figure 12. Comparison of TEMPO’s performance and energy

benefits with and without IMP prefetchers.
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Figure 13. The effect of superpages on TEMPO performance.

The x-axis shows the fraction of the memory footprint covered

by 4KB pages only (triangles), 4KB and 2MB pages (circles),

or 4KB and 1GB pages (boxes). The y-axis shows the fraction

of improved performance versus the baseline without TEMPO,

where 0 represents no change in runtime, and higher numbers mean

runtime improvements. The red circle represents the configuration

we have been using.

gle smaller-footprint workload becomes becomes slower or

consumes more energy. Instead, performance improves by

1-2% and energy by roughly 1%.

Interactions with cache prefetching: Figure 12 quanti-

fies TEMPO’s benefits in the presence of recently-proposed

IMP prefetchers, which prefetch into the L1 cache. The blue

bars represent performance, and the green represent energy

savings. Striped bars represent TEMPO in the presence of

prefetching. In every case, TEMPO is even more useful in

the presence of prefetching. Workloads with especially poor

memory access locality (e.g., xsbench and smpv) are partic-

ularly aided, seeing almost a 10% performance improvement

from the no-prefetching case. Energy savings track these

performance benefits too; since application runtime is fur-

ther reduced, static energy is mitigated.

6.2 Interactions with Superpages

Thus far, our results have focused on a system where our

target applications run on Linux with transparent hugepage

support. Therefore, as the right graph of Figure 10 shows,

the OS generates 2MB superpages when possible. In our ex-

periments, the OS can usually back more than 50% of the

memory footprint with superpages. We also, however, as-

sess the benefits of TEMPO as a function of page size distri-

bution. Naturally, the more the DRAM page table accesses,

the more the benefits from TEMPO. Superpages, which cut

down TLB misses and the page table size [36, 59], reduce

the incidence of DRAM page table accesses.

We assess TEMPO’s relationship with superpages. We

first turn off transparent hugepage support, allowing only

4KB pages. We expect TEMPO’s benefits to be highest for

this configuration. Then, we turn on transparent hugepages

to create 2MB superpages [42], but modulate its effective-

ness by introducing memory fragmentation via the use of

a memory-thrashing application, memhog. Like prior work

[2, 34, 36], we configure memhog to randomly allocate 0%,

25%, 50%, and 75% of system memory. We expect that as

memhog’s footpring increases, physical memory becomes

increasingly fragmented, making it harder to create 2MB

superpages. In addition, we consider alternatives to transpar-

ent hugepage support; specifically, Linux also supports 2MB

pages using libhugetlbfs. Unlike transparent hugepages, lib-
hugetlbfs requires the developer to link his/her application

to the library; however, it is also likelier to back application

footprint with superpages, as they are demanded explicitly

[38]. We therefore use libhugetlbfs to generate 2MB pages.

Finally, we also consider x86-64 1GB superpages (note that

Linux currently supports 1GB pages only with libhugetlbfs).
For each study, we collect memory traces as per Sec. 5.

Figure 13 shows the results of our experiments. For each

workload, we plot TEMPO’s performance improvements on

the y-axis as a function of the fraction of total memory foot-

print backed by superpages (the x-axis). The green triangle

corresponds to the case where only 4KB pages are allowed;

hence, 0% of the memory footprint (on the x-axis) is cov-

ered with superpages. The circles correspond to cases where

either transparent hugepage support or libhugetlbfs gener-

ates 2MB superpages, with differing memhog configura-

tions. The red circle, in particular, corresponds to the results

assumed for the rest of the paper (i.e., transparent hugepage

support with memhog at 0%). Finally, libhugetlbfs for 1GB

pages is shown with boxes with the x-axis indicating the

fraction of memory covered by 1GB superpages.

As expected, the more frequent the superpages (higher x-

axis values), the less the performance impact of TEMPO.

Nevertheless, even when 2MB superpages are prevalent

(e.g., libhugetlbfs with 2MB pages), we still consistenly en-

joy performance benefits of 8-25%. In fact, reasonable frag-

mentation levels that might exist in cloud settings [36] (i.e.,

transparent hugepage support with memhog of 25-50%) see

performance benefits ranging from 10-30%. Furthermore,

even when using 1GB pages – which one might imag-

ine would mostly eliminate DRAM page table accesses –

TEMPO provides 5%+ performance benefits in many cases.

This is because our big-data workloads with 3-4TB memory

footprints still require several 1GB pages to cover the en-

tire memory footprint. Furthermore, TEMPO is effective in

pernicious cases when address translation is a huge problem
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Figure 14. Performance improvements for TEMPO assuming

adaptive, open, and closed-row-policies.

(i.e., when superpages are scarce), with benefits consistently

exceeding 25%.

6.3 Memory Scheduler Interactions

Row buffer policies: Figure 14 quantifies TEMPO’s perfor-

mance benefits for different row management policies. Re-

sults are normalized to a baseline with the particular policy;

i.e., the adaptive row results show TEMPO’s performance

benefits versus a baseline with adaptive row management.

Figure 14 show that TEMPO consistently improves all

row management strategies. The exact benefits vary depend-

ing on the relationship between the policy and workload.

For example, consider canneal, where TEMPO is actually

most useful (18% benefits) using open-row policies. This

is because canneal’s multiple threads occassionally share

spatially-adjacent data; an open-row policy improves row

buffer hit rates (more than adaptive policies) for multiple

threads simultaneously. As another example, xsbench is

best aided by adaptive row management, followed by open,

and then closed-row management; even the least-performant

case of the closed-row policy is boosted by 25%.

Consider also applications like illustris, which have such

poor locality of memory accesses that adaptive and open-

row policies are outperformed by closed-row policies. TEM-
PO generates more row buffer hits, boosting performance.

Anticipating page table accesses: Sec. 4.3 detailed the ben-

efits of adopting a 10-cycle wait time before closing rows

with page table contents. We now present experimental data

to show this design point, varying the wait time from 5 to

15 cycles. Figure 15 shows our results. Note that in order to

showcase the performance differences, we zoom in on the

y-axis, changing its scale from prior graphs.

Figure 15 shows that waiting even 5 additional cycles

before closing an open row with page table contents boosts

performance by 1-3%. This is because the row buffer is 8KB

and can hence hold information about spatially-adjacent

translations (the exact number depends on how the OS maps

and interleaves data across DRAM banks and channels) in

the page table. Whenever the LLC suffers a miss for some

of these adjacent translations, the row buffer improves per-

formance. Waiting 10 cycles further boosts performance, but
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Figure 15. Performance improvements for TEMPO as the num-

ber of cycles we wait anticipating future page table accesses varies.
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Figure 16. (Left) Fractional improvements versus the baseline,

using TEMPO, in weighted speedup and maximum slowdown of

any application as a function of the post-page table prefetch weight

versus other memory reference; and (right) as a function of the grace

period after the replay’s data is prefetched into the row buffer.

beyond this (15 cycles), performance may be compromised

as prefetches are delayed.

Memory schedulers for fairness: TEMPO also aids fairness-

based memory schedulers like BLISS [23, 24]. Like previ-

ous work, we create 80 multiprogrammed workloads with

32 applications each. Our workloads are constructed using

the Spec and Parsec applications with a range of memory

intensities. Furthermore, like past work [23, 24], we mea-

sure weighted speedup for performance, and the maximum

slowdown experienced by any application, for fairness.

Figure 16 shows the results of our experiments. We quan-

tify the fractional improvement in weighted speedup and

maximum slowdown. The higher the improvement, the bet-

ter, with 0 indicating no change versus the baseline without

TEMPO. Note also that an improvement in the maximum

slowdown plots the fraction with which the slowest applica-

tion has been improved. The graph on the left shows these

metrics (averaged over all multiprogrammed worloads to

save space) as a function of how prefetches are weighed ver-

sus other DRAM accesses by the BLISS counters. Not only

is the weighted speedup consistenly higher for every single

case, the slowest application is also made faster by 10%+ in

all configurations. Further, we find that treating prefetches

as half the weight of other memory references provides the

best gains.

The graph on the right of Figure 16 shows the same met-

rics but as a function of the grace period discussed in Sec.
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Figure 17. (Left) Fractional improvements versus the baseline for

FOA, in terms of weighted speedup and maximum slowdown of any

application as a function of the number sub-row buffers dedicated

for post-page table prefetches; and (right) the same for POA

4.3. Recall that we need a grace period to keep a row’s

prefetched contents open for a few cycles before switch-

ing to another application’s memory stream, to ensure that

prefetches are not wasted. Waiting for too short a time wastes

prefetch effort, while waiting for too long slows down the

application next serviced by the memory controller. We find

while the weighted speedup remains largely unchanged,

the grace period affects the slowest application’s runtime.

This makes sense – applications that see relatively less ser-

vice rates at the memory controller are particularly sensi-

tive prefetching. Wasting prefetching resources because the

grace period is too small curtails the potential benefits. So

does waiting too long for the slow application’s references to

be serviced. Figure 16 shows that while every configuration

does benefit from TEMPO, a grace period of 15 cycles is

the best choice.

6.4 Sub-Row Buffers

We show that TEMPO aids sub-row buffers too. We replace

the per-bank 8KB row buffers with 8 separate 1KB sub-row

buffers, and use FOA and POA from prior work [18]

Figure 17 quantifies the performance benefits, as a frac-

tion of the baseline FOA (left) and POA (right) schemes,

that TEMPO provides. We show the results as a function

of the number of sub-rows that we dedicate to post-page ta-

ble prefetches. TEMPO’s ability to improve performance is

highly dependent upon the number of sub-row buffers al-

located to prefetches. In general, dedicating 2 out of the

8 rows ensures that prefetch data (but also other spatially-

adjacent accesses) enjoys row buffer hits; however, ded-

icating too many sub-rows degrades performance by de-

prioritizing other memory accesses. Overall, dedicating 2

sub-rows provides roughly 15% and 20% boosts in weighted

speedups and the performance of the slowest application in

our multiprogrammed workloads.

7. Conclusion

This work introduces TEMPO, a low-overhead, hardware-

only augmentation of the page table walker and memory

controller to remove DRAM accesses from replayed instruc-

tions off the critical path of execution. TEMPO prefetches

the data into the row buffer and the LLC. We show that

this approach improves performance and energy consider-

ably for workloads with sparse memory access patterns,

without compromising smaller-data workloads. Overall, we

believe that TEMPO is readily-implementable in upcoming

systems.
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