ADDRESS TRANSLATION AWARE
MEMORY CONSISTENCY

COMPUTER SYSTEMS WITH VIRTUAL MEMORY ARE SUSCEPTIBLE TO DESIGN BUGS

AND RUNTIME FAULTS IN THEIR ADDRESS TRANSLATION SYSTEMS. DETECTING BUGS

AND FAULTS REQUIRES A CLEAR SPECIFICATION OF CORRECT BEHAVIOR. A NEW

FRAMEWORK FOR ADDRESS TRANSLATION AWARE MEMORY CONSISTENCY MODELS

ADDRESSES THIS NEED.

eeeoeeoWe €xXpect computers to func-
tion correctly, despite potential problems
like design bugs and physical faults. The con-
sequences of incorrect functionality include
silent data corruptions and crashes. The
goal of dependable computing is to reduce
the probabilities of these events at the lowest
cost in terms of performance loss, hardware,
power consumption, and design and verifica-
tion time. Here, we focus on detecting incor-
rect behavior caused by design bugs or
physical faults before it leads to a data cor-
ruption or crash.

To detect incorrect behavior, we must
first precisely specify what constitutes correct
behavior. For a processor core, the instruc-
tion set architecture (ISA) specifies the exact
semantics of every instruction in the instruc-
tion set. The ISA also specifies the architec-
ture’s memory consistency model," which
defines the legal software-visible orderings
of loads and stores performed by multiple
threads. After Lamport introduced the first
memory consistency model (sequential
consistency”), it became easier to statically
or dynamically verify a memory system.
Lamport’s key contribution to verification
was a precise, microarchitecture-independent
specification of correct memory system
behavior.

0272-1732/11/$26.00 © 2011 IEEE

Nevertheless, modern memory systems
still have many bugs. We identified
21 bugs related to address translation in pub-
lished errata (see Table 1 for a small subset of
these).”> And we believe that one underlying
cause of these bugs is a tendency to oversim-
plify memory consistency. Memory consis-
tency isn’t just one monolithic interface
between the hardware and the software, as
Figure 1 shows. Rather, it’s a set of interfaces
between the hardware and various levels of
software, as in Figure 2. Although Adve
and Gharachorloo explained memory consis-
tency’s multilevel nature,' architects don’t
always adopt this more comprehensive defi-
nition of memory consistency. For example,
when we teach students about memory con-
sistency models, we generally don’t specify
whether that model refers to virtual or phys-
ical addresses.

In this article, we develop a framework for
specifying two critical levels of memory con-
sistency: the physical address memory consis-
tency (PAMC) model and the virtual address
memory consistency (VAMC) model, which
define the behavior of operations (loads,
stores, and memory barriers) on physical
and virtual addresses, respectively. As part
of this specification framework, we discuss
and formalize address translation’s crucial

Published by the IEEE Computer Society

Bogdan F. Romanescu
Alvin R. Lebeck
Daniel J. Sorin

Duke University

Top PICKS

Chip

Table 1. A small sample of published address translation bugs.

Effect

AMD Athlon64/Opteron®

Intel Core Duo”

TLB (translation look-aside buffer) flush filter can

cause coherency problem in multicore systems.

INVLPG instruction with address prefix doesn’t

correctly invalidate the translation requested.

One core updates a page table entry while the
other core uses the same translation entry,
which could lead to unexpected behavior.

Updating a PTE (page table entry) by changing

read/write, U/S or P bits without TLB shootdown
could cause unexpected processor behavior.

Unpredictable system failure (possible use of
stale translations).

Unpredictable system behavior (possible use
of stale translations).

Unexpected processor behavior.

Unexpected processor behavior.

[EEE MICRO

Software

Memory

consistency
model

Hardware

Figure 1. Address translation oblivious
memory consistency. In this simplistic view
of consistency, there is a single interface
between software and hardware.

role in supporting a VAMC model. Without
correct address translation, a system with
virtual memory can’t enforce any VAMC
model. Furthermore, we develop address
translation-aware specifications of memory
consistency not only to benefit design and
verification teams, but also to enable archi-
tects to design runtime checkers that detect
incorrect behaviors.

Specifying address translation aware
memory consistency

A memory consistency specification pro-
vides two important functions: it serves as a
contract between the system and the
programmer, and it provides the formal
framework necessary for verifying correct
memory system operation, either statistically
or dynamically.

Levels of memory consistency
A computer system pl‘CSCl’ltS memory
interfaces (consistency models) at multiple

levels, as Figure 2 shows. We position hard-
ware below all levels, because it provides
mechanisms that we can use to enforce
consistency models at various levels (for ex-
ample, the processor provides in-order in-
struction commit). We consider four levels
relevant to programmers. At each level, the
consistency model defines the legal orderings
of the memory operations available at that
level. These consistency models are necessary
interfaces that are included in the specifica-
tions of the instruction set architecture
(ISA), application binary interface (ABI),
and application programming interface
(API). Here, we discuss these levels, starting
at the lowest level.

e PAMC: Unmapped software, including
the boot code and part of the system
software that manages address transla-
tion, relies on PAMC. Implementing
PAMC is the hardware’s responsibility
and, as such, is specified precisely in
the architectural manual.

e VAMC: All mapped software relies on
VAMC, including mapped system soft-
ware. VAMC builds upon PAMC and
requires support from address transla-
tion software and the hardware.

e User process memory consistency
(UPMC): UPMC could be identical
to VAMGC, or it could differ, as in the
case of software transactional memory
or software distributed shared memory.

e High-level language consistency: User-
level programmers see the consistency

model specified by the high-level

HLL memory
model

Java memory
model

Compiler
User-level Java virtual
binaries machine

User process memory consistency (UPMC)

Mapped virtual memory
system software

Other mapped
system software

Virtual address memory consistency (VAMC)

Considers synonym
sets of virtual
addresses

Unmapped virtual memory
system software

Other unmapped
system software

Unmapped/fixed-map assembly code

Physical address memory consistency (PAMC)

Considers physical
addresses

Hardware

Figure 2. Address translation aware memory consistency. In this richer view of consistency,
there are multiple interfaces for supporting different types of software. This article focuses

on the shaded portions of this figure.

language, such as Java’s consistency
model.® These high-level language con-
sistency models are supported by the
compilers, runtime systems, and lower
level consistency models.

Existing consistency models—such as se-
quential consistency, processor consistency,
weak ordering, and release consistency—
don’t distinguish between virtual and physi-
cal addresses. Lamport’s original definition
of sequential consistency is typical in that it
specifies a total order of operations (loads
and stores). But it doesn’t specify whether
the loads and stores are to virtual or physical
addresses. We refer to these consistency
models as being address translation oblivious.

We specifically focus on PAMC and
VAMC and the hardware and software
involved in supporting them.

Specifying PAMC

We can fairly easily adapt an address
translation oblivious consistency model as
PAMC’s specification. For example, the
PAMC model could be sequential consis-
tency, in which case the interface would spec-
ify that there must exist a total order of all
loads and stores to physical addresses that
respects each thread’s program order, and
that each load’s value is equal to the value
of the most recent store to that physical ad-
dress in the total order.

We specify consistency models using a
table-based scheme like those of Hill et al.’
and Arvind and Maessen.'® The table speci-
fies which program orderings are enforced by
the consistency model. Thus, Tables 2 and 3
define adaptations of sequential consistency
and weak ordering for PAMC, respectively.
Some consistency models have atomicity

JANUARY/FEBRUARY 2011

Top

PICKS

Table 2. Sequential consistency for
physical address memory
consistency (PAMC).

Op 2
Load Store
-
& | Load X X
Store X X

*Loads and stores are to physical addresses.
An “X” denotes an enforced ordering.

Table 3. Weak ordering for PAMC.

*Loads and stores are to physical addresses. An “X” denotes an enforced
ordering; an “A” denotes an ordering that’s enforced if the operations are
to the same physical address. Empty entries denote no ordering.

Op 2
» Load Store MemoryBarrier
& | Load A X
Store A A X
MemoryBarrier X X X

[EEE MICRO

constraints that can’t be expressed with just a
table (for example, stores are atomic). We can
specify these models by augmenting the table
with a specification of atomicity require-

. 10
ments, as previous researchers have done.

Specifying VAMC

Although adapting an address translation
oblivious consistency model for PAMC is
straightforward, three challenges arise when
adapting an address translation oblivious
consistency model for VAMC: synonyms,
mapping and permission changes, and load
and store side effects.

Synonyms. Synonyms are multiple virtual
addresses (VAs) that map to the same phys-
ical address (PA). Consider the example in
Figure 3, in which VA1 and VA2 map to
PAl. Sequential consistency requires a
total order in which a load’s value equals
the value of the most recent store to the
same address. Unfortunately, naively apply-
ing sequential consistency at the VAMC
level allows an execution in which x = 2
and y = 1. The programmer expects that
the loads in both threads will be assigned

Thread 1
Store VA1 =1

Thread 2

Store VA2 = 2
Loady =VA1//y =1
Loadx =VA2//x =2

Figure 3. Example of the synonym problem.
Assume sequential consistency. VAT and
VA2 map to PA1, and PA1 is initially zero.

the value of the most recent update to
PA1. However, a definition of VAMC
that didn’t consider address translation
would allow x to receive the most recent
value of VA2 and y to receive the most re-
cent value of VA1, without considering
that they both map to PA1. To overcome
this challenge, we reformulate address trans-
lation oblivious consistency models for
VAMC by applying the model to synonym
sets of (virtual) addresses rather than individ-
ual addresses. For example, we define se-
quential consistency for VAMC as follows:
there must be a total order of all loads
and stores to virtual addresses that respects
program order and in which each load
gets the value of the most recent store to
any virtual addyess in the same virtual addyess
synonym set. We can make similar modifica-
tions to adapt other address translation
oblivious consistency models for VAMC.

Programmers that use synonyms generally
expect ordering to be maintained between
accesses to synonymous virtual addresses.
Incorporating synonyms explicitly in the
consistency model enables programmers to
reason about the ordering of accesses to
virtual addresses.

Explicitly stating the ordering constraints
of synonyms is necessary for verification.
An error in the address translation hardware
could result in a violation of ordering among
synonyms that might not be detected with-
out the formal specification.

Mapping and permission changes. There is a
richer set of memory operations at the
VAMC level than at the PAMC level.
User-level and system-level programmers
at the VAMC interface are provided with
OS software routines to map and remap

Buggy Code Correct Code
Threadl Thread2 Threadl Thread2
MRF {map VAl to PA2; MRF {map VAl to PA2;
tlbie VAl; // invalidate tlbie VAl; // invalidate
// translation // translation
// (VA1—PAL) // (VAL—PAl)
} }
tlbsync // fence for MRF
sync; // memory barrier for sync; // memory barrier for
// regular memory ops // regular memory ops
Store VA2 = B Store VA2 = B
sync while (VA2!=B) sync while (VA2!=B)
{spin} {spin}
sync sync
Store VAl = C Store VAl = C
sync sync
Store VA2 = D Store VA2 = D
while (VA2 != D) {spin} while (VA2 != D) {spin}
sync sync
Load VAl // can get C or A Load VAl // can only get C

Figure 4. Power instruction set architecture (ISA) code snippets illustrate the need to consider the ordering of map/remap
functions (MRF). Initially, VAT maps to PA1, and the value of PA1 is A.

or change permissions on virtual memory
regions, such as the mk_pte () (make
new page table entry) or pte_mkread ()
(make page table entry readable) functions
in Linux 2.6. We call these software rou-
tines map/remap functions (MRFs).

The code snippet in the left side of
Figure 4 is written for a system implement-
ing the Power ISA. The code snippet illus-
trates the need to consider MRFs and their
ordering. We expect that the load by
Threadl should return the value C written
by Thread2, because that appears to be the
value of the most recent write (in causal
order, according to the Power ISA’s weak-or-
dered memory model). However, this code
snippet doesn’t guarantee when the t1bie
(translation look-aside buffer invalidate
entry) instruction will be observed by
Thread2—thus, Thread2 could continue to
operate with the old translation of VAI to
PA1. Therefore, Thread2’s store to VAl
could modify PA1. When Threadl performs
its load to VAL, it could access PA2 and thus
obtain B’s old value.

The problem with the code is that it
doesn’t guarantee that the invalidation

generated by the t1bie instruction will ex-
ecute on Thread2’s core before Thread2’s
store to VA1 accesses its translation in its
TLB. Understanding only the PAMC
model isn’t sufficient for the programmer
to reason about this code’s behavior. The
programmer must also understand how
MREFs are ordered. We show a corrected ver-
sion of the code on the right side of Figure 4.
In this code, Threadl executes a tlbsync
(translation look-aside buffer synchronize)
instruction that’s effectively a fence for the
MRE. Specifically, the t 1bsync guarantees
that other cores have observed the t1lbie
instruction executed by Threadl.

A runtime hardware error or design bug
could cause a TLB invalidation to be
dropped or delayed, resulting in TLB inco-
herence. A formal specification of MRF
orderings is required to develop proper veri-
fication techniques, and PAMC is insuffi-
cient for this purpose.

Loadjstore side effects. The third challenge
in specifying VAMC is that loads and stores
to virtual addresses have side effects. The
address translation system includes status

JANUARY/FEBRUARY 2011

Top PICKS

114

[EEE MICRO

Store VAl=1;// VAl maps to PAl

Load VA2; // VA2 maps to the page table entry of VAL

Figure 5. Code snippet illustrating the need to consider side effects. The load is used by
the VM system to determine if the page mapped by VA1 needs to be written back to sec-
ondary storage. If reordered, a Dirty bit set by the store could be missed and the page

incorrectly not written back.

Table 4. Sequential consistency for VAMC.

Operation 2

*Loads and stores are to synonym sets of virtual addresses. An “X” denotes an enforced

ordering.

Ld Ld-sb St St-sb MRF

-
§ | Ld X X X X X
% | Ld-sb X X X X X
§. St X X X X X
O | Stsb X X X X X
MRF X X X X X

bits (such as Accessed and Dirty bits) for
each page table entry. These status bits are
part of the architectural state. Thus, the
ordering of updates to those bits must be
specified in VAMC. We add two new oper-
ations to the specification tables: Ld-sb
and St-sb (load and store impact on sta-
tus bits).

Consider the example in Figure 5. With-
out knowing how status updates are ordered,
the operating system can’t be sure what state
will be visible in these bits. It’s possible that
the load of the PTE (page table entry) occurs
before the first store’s Dirty bit update.
The OS could incorrectly determine that a
write-back was unnecessary, resulting in
data loss.

Without a precise specification of status
bit ordering, verification could miss a situa-
tion analogous to the software example
we've discussed (see Figure 5). A physical
fault could lead to an error in the ordering
of setting a status bit, and this error could
be overlooked by dynamic verification hard-
ware and could lead to silent data corruption.

Putting ir all together. Table 4 presents a
VAMC adaptation of sequential consis-
tency. This specification includes MRFs

and status bit updates, and loads and stores
apply to synonym sets of virtual addresses
(not individual virtual addresses). This spec-
ification provides both a contract for pro-
grammers and enables development of
techniques to verify correct memory system
operation.

Gap hetween PAMC and VAMC

One of our research areas is dynamic
verification of VAMC (for more informa-
tion, see the “Dynamic verification of
VAMC?” sidebar). Because we haven’t yet
discovered an efficient scheme for direct
dynamic verification of VAMC, we instead
dynamically verify VAMC by dynamically
verifying PAMC (using an existing scheme)
as well as the gap between PAMC and
VAMC. This gap is the address translation
system.

Specification of address translation

We present a framework for specifying
address translation systems.

Address translation assumptions
We restrict our discussion to page-based
address translation systems. A translation is

a tuple <mapping (VP, PP), permissions,

status>, where the mapping converts the vir-
tual page to a physical page. The physical
page, permissions, and status information
are specified by the page table entry (PTE)
defining the translation. The permission
bits include whether the user or kernel
owns the page and whether the page is read-
able, writeable, or executable. The status
bits denote whether the page has been
accessed or is dirty. The status bits are
atomically updated in the TLB and in the
page table in memory. In an architecture
with hardware-managed TLBs, the hard-
ware is responsible for eventually updating
the status bits. If the TLBs are software-
managed, then status bit updates occur in
exception handlers.

To create, modify, or delete a translation
or to modify a translation’s permission bits,
the kernel performs an MRF. An MRF typ-
ically has four activities (see Figure 6). Some
of the activities in an MRF require the soft-
ware or hardware to perform complicated
actions. For example, delivering the TLB
invalidations could require an interprocessor
interrupt or a global TLB invalidation in-
struction that relies on hardware for distrib-
uting the invalidations.

A provably sufficient address translation model

We present a model of an address transla-
tion system that, when combined with
PAMC (see Table 2), is provably sufficient
for providing VAMCsc (see Table 4). This
address translation model, which we call
ATsc, is similar to current Linux platforms.
ATy is restrictive and conservative, but it’s
also realistic.

ATsc: A sequential address translation model.
ATsc is a sequential model of an address
translation system. I¢’s a logical abstraction
that encompasses the behaviors of various
possible physical implementations. This
model has three key aspects:

e MREFs logically occur instantaneously
and are thus totally ordered with respect
to regular loads and stores and other ad-
dress translation operations. (Recent
operating systems, such as Linux
2.4.16-2.6.24, relax this ATgc con-
straint by instead postponing memory

generic MRF{

acquire page table lock(s) ;
create/modify the translation;

send TLB invalidations to other cores;
release page table lock(s) ;

Figure 6. Pseudocode for a generic map/remap function (MRF).

accesses that depend on the translation
modified by the MRF.) Linux enforces
this aspect of the model using locks.

e A load or store logically occurs instanta-
neously and simultaneously with its
corresponding translation access
(accessing the mapping, permissions,
and status) and possible status bit
updates. A core can adhere to this as-
pect of the model in many ways, such
as by snooping TLB invalidations be-
tween when a load or store executes
and when it commits. A snoop hit
forces the load or store to be squashed
and reexecuted.

e A store atomically updates all the values
in the synonym set cached by the core
executing the store, and a coherence in-
validation atomically invalidates all of
the values in the synonym set cached
by the core receiving the invalidation.
To our knowledge, current systems ad-
here to this aspect either by using phys-
ical caches or by using virtual caches
with the same index mapping of syn-
onym set virtual addresses.

We now show that AT is the bridge
between PAMCSC and VAMCSc.

PAM Cgc+A TSC_> VAM CSC' PAMCSC spec-
ifies that all loads and stores using physical
addresses are totally ordered. ATsc specifies
that a translation access occurs instantane-
ously and simultaneously with the load or
store. Under ATgc, all MRFs are totally or-
dered with respect to each other and with re-
spect to loads and stores. ATgc also specifies
that accesses to synonyms are ordered accord-
ing to PAMCsc (for example, via the use of
physical caches). Therefore, all loads and
stores using virtual addresses are totally or-
dered. Finally, ATgc specifies that status bit

JANUARY/FEBRUARY 2011

Dynamic verification of VAMC

One of our primary goals in specifying virtual address memory consis-
tency (VAMC) was to be able to dynamically verify it. Prior work devel-
oped schemes for dynamic verification of PAMC,"% and we initially
attempted to develop an analogous scheme for VAMC. Due to implemen-
tation costs, we changed our approach. Rather than directly verify
VAMC, we factored it into its constituent parts, PAMC and address
translation, and dynamically verified them instead. Because schemes al-
ready exist for PAMC, we focused on dynamic verification of address
translation.

To dynamically verify ATsc (a sequential model of an address trans-
lation system)—which we call DVATsc—we must dynamically verify
both ATsgc invariants: page table integrity and translation mapping
coherence.

e (hecking page table integrity. PT-Sublnv1 is an invariant that's
maintained by software. Fundamentally, no hardware solution
can completely check this invariant, because the hardware doesn't
have semantic knowledge of the software’s goal. One existing so-
lution to this problem is self-checking code;® we defer further re-
search in this area to future work. To check that PT-Sublnv2 is
maintained, we can adopt any previously proposed dynamic veri-
fication scheme for PAMC.

e Checking translation coherence. DVATsc aims to dynamically ver-
ify the three translation coherence subinvariants. Because we've
specified these subinvariants in terms of tokens, we can dynam-
ically verify them by adapting the TCSC scheme,* which was pre-
viously used to dynamically verify token-based cache coherence.
TCSC's key insight is that cache coherence states can be logically

represented with token counts that can be periodically checked;
this same insight applies to translation coherence. In a correctly
operating ATsc system, the exchanges of logical tokens will
obey ATsc's three coherence subinvariants. DVATgc therefore
checks these three subinvariants at runtime.

We've implemented and experimentally evaluated DVATsc. Error in-
jection results show that DVATsc detects the errors that mimic all 21 pub-
lished address translation bugs. Performance results show that the
performance impact of DVATsc is less than 2 percent.

References

1. K. Chen, S. Malik, and P. Patra, “Runtime Validation of Mem-
ory Ordering Using Constraint Graph Checking,”” Proc. 13th
Int’l Symp. High-Performance Computer Architecture, IEEE
Press, 2008, pp. 415-426.

2. A. Meixner and D.J. Sorin, ""Dynamic Verification of Memory
Consistency in Cache-Coherent Multithreaded Computer
Architectures,” Proc. Int’l Conf. Dependable Systems and
Networks, |IEEE Press, 2006, pp. 73-82.

3. M. Blum and S. Kannan, ""Designing Programs that Check
Their Work,"" Proc. 21st Ann. ACM Symp. Theory of Comput-
ing, ACM Press, 1989, pp. 86-97.

4. A. Meixner and D.J. Sorin, “Error Detection via Online
Checking of Cache Coherence with Token Coherence Signa-
tures,"” Proc. 12th Int’l Symp. High-Performance Computer
Architecture, |IEEE Press, 2007, pp. 145-156.

[EEE MICRO

updates are performed simultaneously with
the corresponding load or store, and thus
status bit updates are totally ordered with
respect to all other operations. Thus,
PAMCSC plus ATSC results in VAMCSc,
where ordering is enforced between all
operations.

A framework for specifying address
translation models

ATgc is just one possible model for ad-
dress translation and thus one possible
bridge from a PAMC model to a VAMC
model. We present a framework for specify-
ing address translation models. A precisely
specified address translation model helps
verify the address translation system and,
in turn, VAMC. We haven’t yet proved
the sufficiency of address translation mod-
els other than ATgsc (that is, that they
bridge any particular gap between PAMC

and VAMC); we leave such proofs for fu-
ture work. Our framework consists of two
invariants that are enforced by a combina-
tion of hardware and privileged software:
the page table is correct, and translations
are coherent.

Page table integrity. The page table must
contain the correct translations. The page
table is simply a data structure in memory
that we can reason about in two parts.
One part is the page table’s root (or lowest
level table). The page table’s root is at a
fixed physical address and uses a fixed map-
ping from the virtual to physical address.
The second part is dynamically mapped
and thus relies on address translation.

To clearly distinguish how
hardware and software collaborate in the

more

address translation system, we divide page
table integrity into two subinvariants.

PT-SubInvl requires that the page table
data structure correctly defines the transla-
tions. This subinvariant is enforced by the
privileged code that maintains the page
table. PT-SubInv2 requires that the
page table’s root is correct. This subinvar-
iant is enforced by hardware (as specified
by PAMC) because the root has a fixed
physical address.

Translation coberence. Translation coher-
ence is similar but not identical to cache co-
herence for regular memory. All cached
copies of a translation (in TLBs) should be
coherent with respect to the page table.
The notion of TLB coherence isn’t new,"'
although it hasn’t yet been defined
precisely.

We choose to specify the translation co-
herence invariants in a way that’s similar to
how Martin et al. specified cache coherence
invariants for Token Coherence.'? (The ab-
stract tokens that we consider here are inde-
pendent of any tokens used for the purposes
of implementing either regular cache coher-
ence or translation coherence.) We consider
each translation to logically have a fixed num-
ber of tokens, 7, associated with it. 7 must
be at least as great as the number of TLBs
in the system. Tokens can reside in TLBs
or in main memory. The following three
subinvariants are required:

e Coherence-SubInvl: At any
point in logical time, exactly 7 tokens
exist for each translation. This conser-
vation law doesn’t permit a token to
be created, destroyed, or converted
into a token for another translation.

e Coherence-SubInv2: A core that
accesses a translation (to perform a
load or store) must have at least one
token for that translation.

e Coherence-SubInv3: A core that
performs an MRF to a translation
must have all 7 tokens for that trans-
lation before completing the MRF
(that is, before releasing the lock)
and making it visible. This invariant
ensures that there’s a single point in
time at which the old (pre-modified)
translation is no longer visible to
any cores.

The first two subinvariants are almost
identical to those of Token Coherence.'?
The third subinvariant (which is analogous
to Token Coherence’s invariant that a core
needs all tokens to perform a store) is subtly
different from Token Coherence, because
an MRF usually isn’t an atomic write. In
Token Coherence, a core must hold all
tokens throughout the entire lifetime of
the store, but an MRF only requires the
core to hold all tokens before releasing the

lock.

H aving a thorough, multilevel specifi-
cation of consistency enables pro-
grammers, designers, and design verifiers to
more easily reason about the memory
system’s correctness. Furthermore, it facil-
itates the development of comprehensive
dynamic verification techniques that can, at
runtime, detect errors due to design bugs
and physical faults.

This work represents an initial explora-
tion of this research area. We foresee further
research into VAMC models and address
translation systems, as well into relationships
between them. One future avenue of research
is to explore address translation models that
are more relaxed than ATgc, yet sdill prov-
ably sufficient for bridging gaps between
specific PAMC and VAMC models. We an-
ticipate that address translation can be made
more scalable if it’s less conservative,
but more relaxed designs are viable only
if designers and verifiers can convince
themselves that they’re correct. Our frame-
work for specifying VAMC enables these
explorations. IICRD

Acknowledgments

This work was supported in part by Semi-
conductor Research Corporation contract
2009-HJ-1881 and the National Science
Foundation grant CCR-0444516. For their
helpful feedback on this work, we thank
Anne Bracy, Dave Christie, Landon Cox,
Stephan Diestelhorst, Anita Lungu, Milo
Martin, and Albert Meixner. We thank
Trey Cain and Cathy May for help in under-
standing issues specific to the Power ISA. An

carlier version of this paper was published at
ASPLOS 2010."

JANUARY/FEBRUARY 2011

Top PICKS

[EEE MICRO

References

1. S.V. Adve and K. Gharachorloo, 'Shared
Memory Consistency Models: A Tutorial,”
Computer, vol. 29, no. 12, 1996, pp. 66-76.

2. L. Lamport, “"How to Make a Multiprocessor
Computer that Correctly Executes Multi-
process Programs,"" |[EEE Trans. Computers,
vol. 28, no. 9, 1979, pp. 690-691.

3. "Revision Guide for AMD Family 10h Pro-
cessors,”’ tech. report 41322, Advanced
Micro Devices, 2008.

4. IBM, "IBM PowerPC 750FX and 750FL
RISC Microprocessor Errata List DD2.X,
version 1.3, Feb. 2006.

5. "Intel Core2 Extreme Quad-Core Processor
QX6000 Sequence and Intel Core2 Quad
Processor Q6000 Sequence Specification
Update,”" tech. report 315593-021, Intel,
2008.

6. Advanced Micro Devices, ""Revision Guide
for AMD Athlon64 and AMD Opteron Pro-
cessors,” Publication 25759, rev. 3.59, 2006.

7. "Intel Core Duo Processor and Intel Core
Solo Processor on 65nm Process Specifica-
tion Update,” tech. report 309222-016,
Intel, 2007.

8. J. Manson, W. Pugh, and S.V. Adve, “The
Java Memory Model,"”" Proc. 32nd ACM
Sigplan-Sigact Symp. Principles of Program-
ming, ACM Press, 2005, pp. 378-391.

9. M.D. Hill et al., ""A System-Level Specifica-
tion Framework for 1/O Architectures,"
Proc. 11th Ann. ACM Symp. Parallel Algo-
rithms and Architectures, ACM Press,
1999, pp. 138-147.

10. A. Arvind and J.-W. Maessen, ""Memory
Model = Instruction Reordering + Store

Proc. 33rd Ann. Int'l Symp.
Computer Architecture, IEEE CS Press,
2006, pp. 29-40.

11. P.J. Teller, “Translation-Lookaside Buffer

Atomicity,"”

Consistency,”” Computer, vol. 23, no. 6,
1990, pp. 26-36.

12. M.M.K. Martin, M.D. Hill, and D.A. Wood,
“Token Coherence: Decoupling Perfor-

mance and Correctness,’’ Proc. 30th Ann.

Int’l Symp. Computer Architecture, ACM
Press, 2003, pp. 182-193.

13. B.F. Romanescu, A.R. Lebeck, and D.J.
Sorin, ""Specifying and Dynamically Verify-
ing Address Translation-Aware Memory
Consistency,"" Proc. 15th Int’l Conf. Archi-
tectural Support for Programming Lan-
guages and Operating Systems, ACM
Press, 2010, pp. 323-334.

Bogdan F. Romanescu is a member of the
Online Services Division at Microsoft. His
research interests include memory consis-
tency, memory coherence, and scalable
communication protocols in large-scale
systems. He has a PhD in electrical and
computer engineering from Duke University.

Alvin R. Lebeck is a professor in the
Departments of Electrical and Computer
Engineering and of Computer Science at
Duke University. His interests include
architectures for emerging nanotechnologies,
multicore processors, memory systems, and
energy-efficient computing. He has a PhD in
computer science from the University of
Wisconsin, Madison. He’s a senior member

of IEEE and a member of the ACM.

Daniel J. Sorin is an associate professor in
the Departments of Electrical and Computer
Engineering and of Computer Science at
Duke University. His research interests
include computer architecture, fault toler-
ance, memory systems, and design for
verifiability. He has a PhD in electrical
engineering from the University of Wiscon-
sin, Madison. He’s a senior member of IEEE

and the ACM.

Direct questions and comments to Daniel
J. Sorin, Duke Univ., Box 90291, Durham,
NC 27708-0291; sorin@ee.duke.edu.

. Selected CS articles and columns are also
Cn available for free at hitp,//ComputingNow.

computer.org.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.002400
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

