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Abstract
RISC vs. CISC wars raged in the 1980s when chip area and

processor design complexity were the primary constraints and
desktops and servers exclusively dominated the computing land-
scape. Today, energy and power are the primary design con-
straints and the computing landscape is significantly different:
growth in tablets and smartphones running ARM (a RISC ISA)
is surpassing that of desktops and laptops running x86 (a CISC
ISA). Further, the traditionally low-power ARM ISA is enter-
ing the high-performance server market, while the traditionally
high-performance x86 ISA is entering the mobile low-power de-
vice market. Thus, the question of whether ISA plays an intrinsic
role in performance or energy efficiency is becoming important,
and we seek to answer this question through a detailed mea-
surement based study on real hardware running real applica-
tions. We analyze measurements on the ARM Cortex-A8 and
Cortex-A9 and Intel Atom and Sandybridge i7 microprocessors
over workloads spanning mobile, desktop, and server comput-
ing. Our methodical investigation demonstrates the role of ISA
in modern microprocessors’ performance and energy efficiency.
We find that ARM and x86 processors are simply engineering
design points optimized for different levels of performance, and
there is nothing fundamentally more energy efficient in one ISA
class or the other. The ISA being RISC or CISC seems irrelevant.

1. Introduction

The question of ISA design and specifically RISC vs. CISC
ISA was an important concern in the 1980s and 1990s when
chip area and processor design complexity were the primary
constraints [24, 12, 17, 7]. It is questionable if the debate was
settled in terms of technical issues. Regardless, both flourished
commercially through the 1980s and 1990s. In the past decade,
the ARM ISA (a RISC ISA) has dominated mobile and low-
power embedded computing domains and the x86 ISA (a CISC
ISA) has dominated desktops and servers.

Recent trends raise the question of the role of the ISA and
make a case for revisiting the RISC vs. CISC question. First, the
computing landscape has quite radically changed from when the
previous studies were done. Rather than being exclusively desk-
tops and servers, today’s computing landscape is significantly
shaped by smartphones and tablets. Second, while area and chip

design complexity were previously the primary constraints, en-
ergy and power constraints now dominate. Third, from a com-
mercial standpoint, both ISAs are appearing in new markets:
ARM-based servers for energy efficiency and x86-based mo-
bile and low power devices for higher performance. Thus, the
question of whether ISA plays a role in performance, power, or
energy efficiency is once again important.

Related Work: Early ISA studies are instructive, but miss
key changes in today’s microprocessors and design constraints
that have shifted the ISA’s effect. We review previous com-
parisons in chronological order, and observe that all prior com-
prehensive ISA studies considering commercially implemented
processors focused exclusively on performance.

Bhandarkar and Clark compared the MIPS and VAX ISA by
comparing the M/2000 to the Digital VAX 8700 implementa-
tions [7] and concluded: “RISC as exemplified by MIPS pro-
vides a significant processor performance advantage.” In an-
other study in 1995, Bhandarkar compared the Pentium-Pro to
the Alpha 21164 [6], again focused exclusively on performance
and concluded: “...the Pentium Pro processor achieves 80% to
90% of the performance of the Alpha 21164... It uses an aggres-
sive out-of-order design to overcome the instruction set level
limitations of a CISC architecture. On floating-point intensive
benchmarks, the Alpha 21164 does achieve over twice the per-
formance of the Pentium Pro processor.” Consensus had grown
that RISC and CISC ISAs had fundamental differences that led
to performance gaps that required aggressive microarchitecture
optimization for CISC which only partially bridged the gap.

Isen et al. [22] compared the performance of Power5+ to Intel
Woodcrest considering SPEC benchmarks and concluded x86
matches the POWER ISA. The consensus was that “with ag-
gressive microarchitectural techniques for ILP, CISC and RISC
ISAs can be implemented to yield very similar performance.”

Many informal studies in recent years claim the x86’s
“crufty” CISC ISA incurs many power overheads and attribute
the ARM processor’s power efficiency to the ISA [1, 2]. These
studies suggest that the microarchitecture optimizations from the
past decades have led to RISC and CISC cores with similar per-
formance, but the power overheads of CISC are intractable.

In light of the prior ISA studies from decades past, the signif-
icantly modified computing landscape, and the seemingly vastly
different power consumption of ARM implementations (1-2 W)
to x86 implementations (5 - 36 W), we feel there is need to
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Figure 1. Summary of Approach.

revisit this debate with a rigorous methodology. Specifically,
considering the dominance of ARM and x86 and the multi-
pronged importance of the metrics of power, energy, and perfor-
mance, we need to compare ARM to x86 on those three metrics.
Macro-op cracking and decades of research in high-performance
microarchitecture techniques and compiler optimizations seem-
ingly help overcome x86’s performance and code-effectiveness
bottlenecks, but these approaches are not free. The crux of our
analysis is the following: After decades of research to mitigate
CISC performance overheads, do the new approaches introduce
fundamental energy inefficiencies?

Challenges: Any ISA study faces challenges in separating
out the multiple implementation factors that are orthogonal to
the ISA from the factors that are influenced or driven by the
ISA. ISA-independent factors include chip process technology
node, device optimization (high-performance, low-power, or
low-standby power transistors), memory bandwidth, I/O device
effects, operating system, compiler, and workloads executed.
These issues are exacerbated when considering energy measure-
ments/analysis, since chips implementing an ISA sit on boards
and separating out chip energy from board energy presents addi-
tional challenges. Further, some microarchitecture features may
be required by the ISA, while others may be dictated by perfor-
mance and application domain targets that are ISA-independent.

To separate out the implementation and ISA effects, we con-
sider multiple chips for each ISA with similar microarchitec-
tures, use established technology models to separate out the
technology impact, use the same operating system and com-
piler front-end on all chips, and construct workloads that do not
rely significantly on the operating system. Figure 1 presents an
overview of our approach: the four platforms, 26 workloads,
and set of measures collected for each workload on each plat-
form. We use multiple implementations of the ISAs and specifi-
cally consider the ARM and x86 ISAs representing RISC against
CISC. We present an exhaustive and rigorous analysis using
workloads that span smartphone, desktop, and server applica-
tions. In our study, we are primarily interested in whether and,
if so, how the ISA impacts performance and power. We also
discuss infrastructure and system challenges, missteps, and soft-
ware/hardware bugs we encountered. Limitations are addressed
in Section 3. Since there are many ways to analyze the raw
data, this paper is accompanied by a public release of all data
at www.cs.wisc.edu/vertical/isa-power-struggles.

Key Findings: The main findings from our study are:
◦ Large performance gaps exist across the implementations, al-

though average cycle count gaps are ≤ 2.5×.
◦ Instruction count and mix are ISA-independent to first order.
◦ Performance differences are generated by ISA-independent

microarchitecture differences.
◦ The energy consumption is again ISA-independent.
◦ ISA differences have implementation implications, but mod-

ern microarchitecture techniques render them moot; one
ISA is not fundamentally more efficient.

◦ ARM and x86 implementations are simply design points op-
timized for different performance levels.

Implications: Our findings confirm known conventional (or
suspected) wisdom, and add value by quantification. Our results
imply that microarchitectural effects dominate performance,
power, and energy impacts. The overall implication of this work
is that the ISA being RISC or CISC is largely irrelevant for to-
day’s mature microprocessor design world.
Paper organization: Section 2 describes a framework we de-
velop to understand the ISA’s impacts on performance, power,
and energy. Section 3 describes our overall infrastructure and
rationale for the platforms for this study and our limitations,
Section 4 discusses our methodology, and Section 5 presents the
analysis of our data. Section 6 concludes.

2. Framing Key Impacts of the ISA
In this section, we present an intellectual framework in

which to examine the impact of the ISA—assuming a von Neu-
mann model—on performance, power, and energy. We con-
sider the three key textbook ISA features that are central to the
RISC/CISC debate: format, operations, and operands. We do
not consider other textbook features, data types and control, as
they are orthogonal to RISC/CISC design issues and RISC/CISC
approaches are similar. Table 1 presents the three key ISA fea-
tures in three columns and their general RISC and CISC char-
acteristics in the first two rows. We then discuss contrasts for
each feature and how the choice of RISC or CISC potentially
and historically introduced significant trade-offs in performance
and power. In the fourth row, we discuss how modern refine-
ments have led to similarities, marginalizing the choice of RISC
or CISC on performance and power. Finally, the last row raises
empirical questions focused on each feature to quantify or val-
idate this convergence. Overall, our approach is to understand
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Table 1. Summary of RISC and CISC Trends.
Format Operations Operands
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M ◦ Fixed length instructions ◦ Simple, single function operations ◦ Operands: registers, immediates
◦ Relatively simple encoding ◦ Single cycle ◦ Few addressing modes
◦ ARM: 4B, THUMB(2B, optional) ◦ ARM: 16 general purpose registers
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6

◦ Variable length instructions ◦ Complex, multi-cycle instructions ◦ Operands: memory, registers, immediates
◦ Common insts shorter/simpler ◦ Transcendentals ◦Many addressing modes
◦ Special insts longer/complex ◦ Encryption ◦ x86: 8 32b & 6 16b registers
◦ x86: from 1B to 16B long ◦ String manipulation
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ts ◦ CISC decode latency prevents pipelining ◦ Even w/ µcode, pipelining hard ◦ CISC decoder complexity higher
◦ CISC decoders slower/more area ◦ CISC latency may be longer than ◦ CISC has more per inst work, longer cycles
◦ Code density: RISC < CISC compiler’s RISC equivalent ◦ Static code size: RISC > CISC
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◦ µ-op cache minimizes decoding overheads ◦ CISC insts split into RISC-like micro-ops; ◦ x86 decode optimized for common insts
◦ x86 decode optimized for common insts optimizations eliminated inefficiencies ◦ CISC insts split into RISC-like micro-ops;
◦ I-cache minimizes code density impact ◦Modern compilers pick mostly RISC insts; x86 and ARM µ-op latencies similar

µ-op counts similar for ARM and x86 ◦ Number of data cache accesses similar
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◦ How much variance in x86 inst length? ◦ Are macro-op counts similar? ◦ Number of data accesses similar?
Low variance⇒ common insts optimized Similar⇒ RISC-like on both Similar⇒ no data access inefficiencies

◦ Are ARM and x86 code densities similar? ◦ Are complex instructions used by x86 ISA?
Similar density⇒ No ISA effect Few complex⇒ Compiler picks RISC-like

◦What are instruction cache miss rates? ◦ Are µ-op counts similar?
Low⇒ caches hide low code densities Similar⇒ CISC split into RISC-like µ-ops

all performance and power differences by using measured met-
rics to quantify the root cause of differences and whether or not
ISA differences contribute. The remainder of this paper is cen-
tered around these empirical questions framed by the intuition
presented as the convergence trends.

Although whether an ISA is RISC or CISC seems irrelevant,
ISAs are evolving; expressing more semantic information has
led to improved performance (x86 SSE, larger address space),
better security (ARM Trustzone), better virtualization, etc. Ex-
amples in current research include extensions to allow the hard-
ware to balance accuracy with energy efficiency [15, 13] and ex-
tensions to use specialized hardware for energy efficiency [18].
We revisit this issue in our conclusions.

3. Infrastructure
We now describe our infrastructure and tools. The key take-

away is that we pick four platforms, doing our best to keep them
on equal footing, pick representative workloads, and use rigor-
ous methodology and tools for measurement. Readers can skip
ahead to Section 4 if uninterested in the details.
3.1. Implementation Rationale and Challenges

Choosing implementations presents multiple challenges due
to differences in technology (technology node, frequency, high
performance/low power transistors, etc.); ISA-independent mi-
croarchitecture (L2-cache, memory controller, memory size,
etc.); and system effects (operating system, compiler, etc.). Fi-
nally, platforms must be commercially relevant and it is unfair
to compare platforms from vastly different time-frames.

We investigated a wide spectrum of platforms spanning In-
tel Nehalem, Sandybridge, AMD Bobcat, NVIDIA Tegra-2,
NVIDIA Tegra-3, and Qualcomm Snapdragon. However, we

did not find implementations that met all of our criteria: same
technology node across the different ISAs, identical or similar
microarchitecture, development board that supported necessary
measurements, a well-supported operating system, and similar
I/O and memory subsystems. We ultimately picked the Beagle-
board (Cortex-A8), Pandaboard (Cortex-A9), and Atom board,
as they include processors with similar microarchitectural fea-
tures like issue-width, caches, and main-memory and are from
similar technology nodes, as described in Tables 2 and 7. They
are all relevant commercially as shown by the last row in Ta-
ble 2. For a high performance x86 processor, we use an Intel i7
Sandybridge processor; it is significantly more power-efficient
than any 45nm offering, including Nehalem. Importantly, these
choices provided usable software platforms in terms of operat-
ing system, cross-compilation, and driver support. Overall, our
choice of platforms provides a reasonably equal footing, and we
perform detailed analysis to isolate out microarchitecture and
technology effects. We present system details of our platforms
for context, although the focus of our work is the processor core.

A key challenge in running real workloads was the rela-
tively small memory (512MB) on the Cortex-A8 Beagleboard.
While representative of the typical target (e.g., iPhone 4 has
512MB RAM), it presents a challenge for workloads like SPEC-
CPU2006; execution times are dominated by swapping and OS
overheads, making the core irrelevant. Section 3.3 describes
how we handled this. In the remainder of this section, we discuss
the platforms, applications, and tools for this study in detail.
3.2. Implementation Platforms
Hardware platform: We consider two chip implementations
each for the ARM and x86 ISAs as described in Table 2.
Intent: Keep non-processor features as similar as possible.
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Table 2. Platform Summary.

32/64b x86 ISA ARMv7 ISA

Architecture Sandybridge Atom Cortex-A9 Cortex-A8
Processor Core 2700 N450 OMAP4430 OMAP3530
Cores 4 1 2 1
Frequency 3.4 GHz 1.66 GHz 1 GHz 0.6 GHz
Width 4-way 2-way 2-way 2-way
Issue OoO In Order OoO In Order
L1 Data 32 KB 24 KB 32 KB 16 KB
L1 Inst 32 KB 32 KB 32 KB 16 KB
L2 256 KB/core 512 KB 1 MB/chip 256 KB
L3 8 MB/chip — — —
Memory 16 GB 1 GB 1 GB 256 MB
SIMD AVX SSE NEON NEON
Area 216 mm2 66 mm2 70 mm2 60 mm2

Tech Node 32 nm 45 nm 45 nm 65 nm
Platform Desktop Dev Board Pandaboard Beagleboard
Products Desktop Netbook Galaxy S-III iPhone 4, 3GS

Lava Xolo Galaxy S-II Motorola Droid
Data from TI OMAP3530, TI OMAP4430, Intel Atom N450, and Intel

i7-2700 datasheets, www.beagleboard.org & www.pandaboard.org

Operating system: Across all platforms, we run the same
stable Linux 2.6 LTS kernel with some minor board-specific
patches to obtain accurate results when using the performance
counter subsystem. We use perf’s1 program sampling to find
the fraction of time spent in the kernel while executing the SPEC
benchmarks on all four boards; overheads were less than 5% for
all but GemsFDTD and perlbench (both less than 10%) and the
fraction of time spent in the operating system was virtually iden-
tical across platforms spanning ISAs.
Intent: Keep OS effects as similar as possible across platforms.

Compiler: Our toolchain is based on a validated gcc 4.4 based
cross-compiler configuration. We intentionally chose gcc so
that we can use the same front-end to generate all binaries. All
target independent optimizations are enabled (O3); machine-
specific tuning is disabled so there is a single set of ARM bi-
naries and a single set of x86 binaries. For x86 we target 32-bit
since 64-bit ARM platforms are still under development. For
ARM, we disable THUMB instructions for a more RISC-like
ISA. We ran experiments to determine the impact of machine-
specific optimizations and found that these impacts were less
than 5% for over half of the SPEC suite, and caused performance
variations of ±20% on the remaining with speed-ups and slow-
downs equally likely. None of the benchmarks include SIMD
code, and although we allow auto-vectorization, very few SIMD
instructions are generated for either architecture. Floating point
is done natively on the SSE (x86) and NEON (ARM) units. Ven-
dor compilers may produce better code for a platform, but we
use gcc to eliminate compiler influence. As seen in Table 12 in
Appendix I of an accompanying technical report [10], static code
size is within 8% and average instruction lengths are within 4%
using gcc and icc for SPEC INT, so we expect that compiler
does not make a significant difference.
Intent: Hold compiler effects constant across platforms.

1perf is a Linux utility to access performance counters.

Table 3. Benchmark Summary.
Domain Benchmarks Notes

Mobile CoreMark Set to 4000 iterations
client WebKit Similar to BBench
Desktop SPECCPU2006 10 INT, 10 FP, test inputs
Server lighttpd Represents web-serving

CLucene Represents web-indexing
Database kernels Represents data-streaming and

data-analytics

3.3. Applications
Since both ISAs are touted as candidates for mobile clients,

desktops, and servers, we consider a suite of workloads that span
these. We use prior workload studies to guide our choice, and
where appropriate we pick equivalent workloads that can run on
our evaluation platforms. A detailed description follows and is
summarized in Table 3. All workloads are single-threaded to
ensure our single-core focus.

Mobile client: This category presented challenges as mobile
client chipsets typically include several accelerators and careful
analysis is required to determine the typical workload executed
on the programmable general-purpose core. We used CoreMark
(www.coremark.org), widely used in industry white-papers,
and two WebKit regression tests informed by the BBench
study [19]. BBench, a recently proposed smartphone bench-
mark suite, is a “a web-page rendering benchmark comprising
11 of the most popular sites on the internet today” [19]. To avoid
web-browser differences across the platforms, we use the cross-
platform WebKit with two of its built-in tests that mimic real-
world HTML layout and performance scenarios for our study2.

Desktop: We use the SPECCPU2006 suite (www.spec.org)
as representative of desktop workloads. SPECCPU2006 is a
well understood standard desktop benchmark, providing insights
into core behavior. Due to the large memory footprint of the
train and reference inputs, we found that for many benchmarks
the memory constrained Cortex-A8, in particular, ran of mem-
ory and execution was dominated by system effects. Instead, we
report results using the test inputs, which fit in the Cortex-A8’s
memory footprint for 10 of 12 INT and 10 of 17 FP benchmarks.

Server: We chose server workloads informed by the Cloud-
Suite workloads recently proposed by Ferdman et al. [16]. Their
study characterizes server/cloud workloads into data analytics,
data streaming, media streaming, software testing, web search,
and web serving. The actual software implementations they
provide are targeted for large memory-footprint machines and
their intent is to benchmark the entire system and server clus-
ter. This is unsuitable for our study since we want to iso-
late processor effects. Hence, we pick implementations with
small memory footprints and single-node behavior. To represent
data-streaming and data-analytics, we use three database ker-
nels commonly used in database evaluation work [26, 23] that
capture the core computation in Bayes classification and data-

2Specifically coreLayout and DOMPerformance.
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Table 4. Infrastructure Limitations.
Limitation Implications

C
or

es

Multicore effects: coherence, locking... 2nd order for core design
No platform uniformity across ISAs Best effort
No platform diversity within ISAs Best effort
Design teams are different µarch effect, not ISA
“Pure” RISC, CISC implementations Out of scope

D
om

ai
n Ultra low power microcontrollers Out of scope

Server style platforms See server benchmarks
Why SPEC on mobile platforms? Tracks emerging uses
Why not SPEC JBB or TPC-C? CloudSuite more relevant

To
ol

s

Proprietary compilers are optimized gcc optimizations uniform
Arch. specific compiler tuning <10%
No direct decoder power measure Results show 2nd order
Power includes non-core factors 4-17%
Performance counters may have errors Validated use (Table 5)
Simulations have errors Validated use (Table 5)

Sc
al

in
g Memory rate effects cycles nonlinearly Second-order

Vmin limit effects frequency scaling Second-order
ITRS scaling numbers are not exact Best effort; extant nodes

store3. To represent web search, we use CLucene (clucene.
sourceforge.net), an efficient, cross-platform indexing im-
plementation similar to CloudSuite’s Nutch. To represent web-
serving (CloudSuite uses Apache), we use the lighttpd server
(www.lighttpd.net) which is designed for “security, speed,
compliance, and flexibility”4. We do not evaluate the media-
streaming CloudSuite benchmark as it primarily stresses the I/O
subsystem. CloudSuite’s Software Testing benchmark is a batch
coarse-grained parallel symbolic execution application; for our
purposes, the SPEC suite’s Perl parser, combinational optimiza-
tion, and linear programming benchmarks are similar.
3.4. Tools

The four main tools we use in our work are described below
and Table 5 in Section 4 describes how we use them.
Native execution time and microarchitectural events: We
use wall-clock time and performance-counter-based clock-cycle
measurements to determine execution time of programs. We
also use performance counters to understand microarchitecture
influences on the execution time. Each of the processors has
different counters available, and we examined them to find com-
parable measures. Ultimately three counters explain much of
the program behavior: branch mis-prediction rate, Level-1 data-
cache miss rate, and Level-1 instruction-cache miss rate (all
measured as misses per kilo-instructions). We use the perf tool
for performance counter measurement.
Power: For power measurements, we connect a Wattsup
(www.wattsupmeters.com) meter to the board (or desktop)
power supply. This gives us system power. We run the bench-
mark repeatedly to find consistent average power as explained in
Table 5. We use a control run to determine the board power alone
when the processor is halted and subtract away this board power
to determine chip power. Some recent power studies [14, 21, 9]

3CloudSuite uses Hadoop+Mahout plus additional software infrastructure,
ultimately running Bayes classification and data-store; we feel this kernel ap-
proach is better suited for our study while capturing the domain’s essence.

4Real users of lighttpd include YouTube.

accurately isolate the processor power alone by measuring the
current supply line of the processor. This is not possible for
the SoC-based ARM development boards, and hence we deter-
mine and then subtract out the board-power. This methodology
allows us to eliminate the main memory and I/O power and ex-
amine only processor power. We validated our strategy for the
i7 system using the exposed energy counters (the only platform
we consider that includes isolated power measures). Across all
three benchmark suites, our WattsUp methodology compared to
the processor energy counter reports ranged from 4% to 17%
less, averaging 12%. Our approach tends to under-estimate core
power, so our results for power and energy are optimistic. We
saw average power of 800mW, 1.2W, 5.5W, and 24W for A8,
A9, Atom, and i7 (respectively) and these fall within the typical
vendor-reported power numbers.
Technology scaling and projections: Since the i7 processor
is 32nm and the Cortex-A8 is 65nm, we use technology node
characteristics from the 2007 ITRS tables to normalize to the
45nm technology node in two results where we factor out tech-
nology; we do not account for device type (LOP, HP, LSTP).
For our 45nm projections, the A8’s power is scaled by 0.8× and
the i7’s power by 1.3×. In some results, we scale frequency
to 1 GHz, accounting for DVFS impact on voltage using the
mappings disclosed for Intel SCC [5]. When frequency scal-
ing, we assume that 20% of the i7’s power is static and does
not scale with frequency; all other cores are assumed to have
negligible static power. When frequency scaling, A8’s power is
scaled by 1.2×, Atom’s power by 0.8×, and i7’s power by 0.6×.
We acknowledge that this scaling introduces some error to our
technology-scaled power comparison, but feel it is a reasonable
strategy and doesn’t affect our primary findings (see Table 4).
Emulated instruction mix measurement: For the x86 ISA,
we use DynamoRIO [11] to measure instruction mix. For the
ARM ISA, we leverage the gem5 [8] simulator’s functional em-
ulator to derive instruction mixes (no ARM binary emulation
available). Our server and mobile-client benchmarks use many
system calls that do not work in the gem5 functional mode.
We do not present detailed instruction-mix analysis for these,
but instead present high-level mix determined from performance
counters. We use the MICA tool to find the available ILP [20].
3.5. Limitations or Concerns

Our study’s limitations are classified into core diversity, do-
main, tool, and scaling effects. The full list appears in Table 4.
Throughout our work, we focus on what we believe to be the
first order effects for performance, power, and energy and feel
our analysis and methodology is rigorous. Other more detailed
methods may exist, and we have made the data publicly available
at www.cs.wisc.edu/vertical/isa-power-struggles to
allow interested readers to pursue their own detailed analysis.

4. Methodology
In this section, we describe how we use our tools and the

overall flow of our analysis. Section 5 presents our data and
analysis. Table 5 describes how we employ the aforementioned
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Table 5. Methodology Summary.
(a) Native Execution on Real Hardware

Measures Methodology

Execution time, ◦ Approach: Use perf tool to sample cycle performance counters; sampling avoids potential counter overflow.
Cycle counts ◦ Analysis: 5 - 20 trials (dependent on variance and benchmark runtime); report minimum from trials that complete normally.

◦ Validation: Compare against wall clock time.

Inst. count (ARM) ◦ Approach: Use perf tool to collect macro-ops from performance counters
◦ Analysis: At least 3 trials; report minimum from trials that complete normally.
◦ Validation: Performance counters within 10% of gem5 ARM simulation. Table 9 elaborates on challenges.

Inst. count (x86) ◦ Approach: Use perf to collect macro-ops and micro-ops from performance counters.
◦ Analysis: At least 3 trials; report minimum from trials that complete normally.
◦ Validation: Counters within 2% of DynamoRIO trace count (macro-ops only). Table 9 elaborates on challenges.

Inst. mix (Coarse) ◦ Approach: SIMD + FP + load/store performance counters.

Inst. length (x86) ◦ Approach: Wrote Pin tool to find length of each instruction and keep running average.

Microarch events ◦ Approach: Branch mispredictions, cache misses, and other uarch events measured using perf performance counters.
◦ Analysis: At least 3 trials; additional if a particular counter varies by > 5%. Report minimum from normal trials.

Full system power ◦ Set-up: Use Wattsup meter connected to board or desktop
(no network connection, peripherals on separate supply, kernel DVFS disabled, cores at peak frequency, single-user mode).

◦ Approach: Run benchmarks in loop to guarantee 3 minutes of samples (180 samples at maximum sampling rate).
◦ Analysis: If outliers occur, rerun experiment; present average power across run without outliers.

Board power ◦ Set-up: Use Wattsup meter connected to board or desktop
(no network connection, peripherals on separate supply, kernel DVFS disabled, cores at peak frequency, single-user mode).

◦ Approach: Run with kernel power saving enabled; force to lowest frequency. Issue halt; report power when it stabilizes.
◦ Analysis: Report minimum observed power.

Processor power ◦ Approach: Subtracting above two gives processor power.
◦ Validation: compare core power against energy performance counters and/or reported TDP and power draw.

(b) Emulated Execution

Measures Methodology

Inst. mix (Detailed) ◦ Approach (ARM): Use gem5 instruction trace and analyze using python script.
◦ Approach (x86): Use DynamoRIO instruction trace and analyze using python script.
◦ Validation: Compare against coarse mix from SIMD + FP + load/store performance counters.

ILP ◦ Approach: Pin based MICA tool which reports ILP with window size 32, 64, 128, 256.

tools and obtain the measures we are interested in, namely, ex-
ecution time, execution cycles, instruction-mix, microarchitec-
ture events, power, and energy.

Our overall approach is to understand all performance and
power differences and use the measured metrics to quantify the
root cause of differences and whether or not ISA differences
contribute, answering empirical questions from Section 2. Un-
less otherwise explicitly stated, all data is measured on real hard-
ware. The flow of the next section is outlined below.
4.1. Performance Analysis Flow
Step 1: Present execution time for each benchmark.
Step 2: Normalize frequency’s impact using cycle counts.
Step 3: To understand differences in cycle count and the influ-
ence of the ISA, present the dynamic instruction count measures,
measured in both macro-ops and micro-ops.
Step 4: Use instruction mix, code binary size, and average dy-
namic instruction length to understand ISA’s influence.
Step 5: To understand performance differences not attributable
to ISA, look at detailed microarchitecture events.
Step 6: Attribute performance gaps to frequency, ISA, or ISA-
independent microarchitecture features. Qualitatively reason

about whether the ISA forces microarchitecture features.
4.2. Power and Energy Analysis Flow
Step 1: Present per benchmark raw power measurements.
Step 2: To factor out the impact of technology, present
technology-independent power by scaling all processors to
45nm and normalizing the frequency to 1 GHz.
Step 3: To understand the interplay between power and perfor-
mance, examine raw energy.
Step 4: Qualitatively reason about the ISA influence on microar-
chitecture in terms of energy.
4.3. Trade-off Analysis Flow
Step 1: Combining the performance and power measures, com-
pare the processor implementations using Pareto-frontiers.
Step 2: Compare measured and synthetic processor implemen-
tations using Energy-Performance Pareto-frontiers.

5. Measured Data Analysis and Findings
We now present our measurements and analysis of perfor-

mance, power, energy, and the trade-offs between them. We
conclude the section with sensitivity studies projecting perfor-
mance of additional implementations of the ARM and x86 ISA
using a simple performance and power model.
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We present our data for all four platforms, often comparing
A8 to Atom (both dual-issue in-order) and A9 to i7 (both OOO)
since their implementations are pair-wise similar. For each step,
we present the average measured data, average in-order and OoO
ratios if applicable, and then our main findings. When our analy-
sis suggests that some benchmarks are outliers, we give averages
with the outliers included in parentheses.
5.1. Performance Analysis
Step 1: Execution Time Comparison

Data: Figure 2 shows execution time normalized to i7; av-
erages including outliers are given using parentheses. Average
ratios are in the table below. Per benchmark data is in Figure 16
of Appendix I in an accompanying technical report [10].
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Figure 2. Execution Time Normalized to i7.

Ratio Mobile SPEC INT SPEC FP Server
A8 to Atom 3.4 (34) 3.5 4.2 (7.4) 3.7 (103)
A9 to i7 5.8 8.4 7.2 (23) 7.4

Outliers: A8 performs particularly poorly on WebKit tests
and lighttpd, skewing A8/Atom differences in the mobile and
server data, respectively; see details in Step 2. Five SPEC FP
benchmarks are also considered outliers; see Table 8. Where
outliers are listed, they are in this set.

Finding P1: Large performance gaps are platform and bench-
mark dependent: A9 to i7 performance gaps range from 5× to
102× and A8 to Atom gaps range from 2× to 997×.
Key Finding 1: Large performance gaps exist across the four
platforms studied, as expected, since frequency ranges from 600
MHz to 3.4 GHz and microarchitectures are very different.

Step 2: Cycle-Count Comparison
Data: Figure 3 shows cycle counts normalized to i7. Per

benchmark data is in Figure 7.
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Figure 3. Cycle Count Normalized to i7.

Finding P2: Per suite cycle count gaps between out-of-order
implementations A9 and i7 are less than 2.5× (no outliers).

Ratio Mobile SPEC INT SPEC FP Server
A8 to Atom 1.2 (12) 1.2 1.5 (2.7) 1.3 (23)
A9 to i7 1.7 2.5 2.1 (7.0) 2.2

Finding P3: Per suite cycle count gaps between in-order im-
plementations A8 and Atom are less than 1.5× (no outliers).
Key Finding 2: Performance gaps, when normalized to cycle
counts, are less than 2.5× when comparing in-order cores to
each other and out-of-order cores to each other.

Step 3: Instruction Count Comparison
Data: Figure 4a shows dynamic instruction (macro) counts on

A8 and Atom normalized to Atom x86 macro-instructions. Per
benchmark data is in Figure 17a and derived CPIs are in Table
11 in Appendix I of [10].

Data: Figure 4b shows dynamic micro-op counts for Atom
and i7 normalized to Atom macro-instructions5. Per benchmark
data is in Figure 17b in Appendix I of [10].
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Figure 4. Instructions Normalized to i7 macro-ops.

Outliers: For wkperf and lighttpd, A8 executes more than
twice as many instructions as A96. We report A9 instruction
counts for these two benchmarks. For CLucene, x86 machines
execute 1.7× more instructions than ARM machines; this ap-
pears to be a pathological case of x86 code generation ineffi-
ciencies. For cactusADM, Atom executes 2.7× more micro-ops
than macro-ops; this extreme is not seen for other benchmarks.

Finding P4: Instruction count similar across ISAs. Implies
gcc picks the RISC-like instructions from the x86 ISA.

Finding P5: All ARM outliers in SPEC FP due to transcen-
dental FP operations supported only by x86.

Finding P6: x86 micro-op to macro-op ratio is often less than
1.3×, again suggesting gcc picks the RISC-like instructions.
Key Finding 3: Instruction and cycle counts imply CPI is less
on x86 implementations: geometric mean CPI is 3.4 for A8, 2.2
for A9, 2.1 for Atom, and 0.7 for i7 across all suites. x86 ISA
overheads, if any, are overcome by microarchitecture.

Step 4: Instruction Format and Mix
Data: Table 6a shows average ARM and x86 static binary

sizes, measuring only the binary’s code sections. Per benchmark
data is in Table 12a in Appendix I of [10].

Data: Table 6b shows average dynamic ARM and x86 in-
struction lengths. Per benchmark data is in Table 12b in Ap-
pendix I of [10].

5For i7, we use issued micro-ops instead of retired micro-ops; we found that
on average, this does not impact the micro-op/macro-op ratio.

6A8 spins for IO, event-loops, and timeouts.
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Table 6. Instruction Size Summary.
(a) Binary Size (MB) (b) Instruction Length (B)

ARM x86 ARM x86

M
ob

ile Minimum 0.02 0.02 4.0 2.4
Average 0.95 0.87 4.0 3.3
Maximum 1.30 1.42 4.0 3.7

D
es

kt
op

IN
T Minimum 0.53 0.65 4.0 2.7

Average 1.47 1.46 4.0 3.1
Maximum 3.88 4.05 4.0 3.5

D
es

kt
op

FP

Minimum 0.66 0.74 4.0 2.6
Average 1.70 1.73 4.0 3.4
Maximum 4.75 5.24 4.0 6.4

Se
rv

er Minimum 0.12 0.18 4.0 2.5
Average 0.39 0.59 4.0 3.2
Maximum 0.47 1.00 4.0 3.7

Outliers: CLucene binary (from server suite) is almost 2×
larger for x86 than ARM; the server suite thus has the largest
span in binary sizes. ARM executes correspondingly few in-
structions; see outliers discussion in Step 3.

Finding P7: Average ARM and x86 binary sizes are simi-
lar for SPEC INT, SPEC FP, and Mobile workloads, suggesting
similar code densities.

Finding P8: Executed x86 instructions are on average up to
25% shorter than ARM instructions: short, simple x86 instruc-
tions are typical.

Finding P9: x86 FP benchmarks, which tend to have more
complex instructions, have instructions with longer encodings
(e.g., cactusADM with 6.4 Bytes/inst on average).

Data: Figure 5 shows average coarse-grained ARM and x86
instruction mixes for each benchmark suite7.
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Data: Figure 6 shows fine-grained ARM and x86 instruction
mixes normalized to x86 for a subset of SPEC benchmarks7.
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Figure 6. Selected Instruction Counts (Emulated).
7x86 instructions with memory operands are cracked into a memory opera-

tion and the original operation.

Finding P10: Fraction of loads and stores similar across ISA
for all suites, suggesting that the ISA does not lead to significant
differences in data accesses.

Finding P11: Large instruction counts for ARM are due
to absence of FP instructions like fsincon, fyl2xpl, (e.g.,
tonto in Figure 6’s many special x86 instructions correspond
to ALU/logical/multiply ARM instructions).

Key Finding 4: Combining the instruction-count and mix-
findings, we conclude that ISA effects are indistinguishable be-
tween x86 and ARM implementations.

Step 5: Microarchitecture

Data: Figure 7 shows the per-benchmark cycle counts for
more detailed analysis where performance gaps are large.

Data: Table 7 compares the A8 microarchitecture to Atom,
and A9 to i7, focusing on the primary structures. These details
are from five Microprocessor Report articles8 and the A9 num-
bers are estimates derived from publicly disclosed information
on A15 and A9/A15 comparisons.

Table 7. Processor Microarchitecture Features.
(a) In-Order Cores

Pipeline Issue ALU/FP Br. Pred.
Depth Width Threads Units BTB Entries

A8 13 2 1 2/2 + NEON 512
Atom 16+2 2 2 2/2 + IMul 128

(b) Out-of-Order Cores
Issue Threads ROB Entries for
width Size LD/ST Rename Scheduler BTB

A9 4 1 - 9 -/4 56 20 512
i7 4(6) 2 64/36 160 168 54 8K - 16K

Finding P12: A9 and i7’s different issue widths (2 versus
4, respectively)10 explain performance differences up to 2×, as-
suming sufficient ILP, a sufficient instruction window and a well
balanced processor pipeline. We use MICA to confirm that our
benchmarks all have limit ILP greater than 4 [20].

Finding P13: Even with different ISAs and significant differ-
ences in microarchitecture, for 12 benchmarks, the A9 is within
2× the cycle count of i7 and can be explained by the difference
in issue width.

Data: Figures 8, 9, and 10 show branch mispredictions & L1
data and instruction cache misses per 1000 ARM instructions.

Finding P14: Observe large microarchitectural event count
differences (e.g., A9 branch misses are more common than i7
branch misses). These differences are not because of the ISA,
but rather due to microarchitectural design choices (e.g., A9’s
BTB has 512 entries versus i7’s 16K entries).

8“Cortex-A8 High speed, low power” (Nov 2005), “More applications for
OMAP4” (Nov 2009), “ Sandybridge spans generations” (Sept 2010), “Intel’s
Tiny Atom” (April 2008), “Cortex A-15 Eagle Flies the Coop” (Nov 2010).

960 for A15.
10We assume the conventional wisdom that A9 is dual issue, although its

pipeline diagrams indicate it is quad-issue.
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Figure 10. Instruction Misses per 1000 ARM Instructions.

wk lay: webkit layout, wk perf: webkit perf, libq: libquantum, perl: perlbench, omnt: omnetpp, Gems: GemsFDTD, cactus: cactusADM, db: database, light: lighttpd

Finding P15: Per benchmark, we can attribute the largest gaps
in i7 to A9 performance (and in Atom to A8 performance) to
specific microachitectural events. In the interest of space, we
present example analyses for benchmarks with gaps greater than
3× in Table 8; bwaves details are in Appendix II of [10].

Key Finding 5: The microarchitecture has significant impact on
performance. The ARM and x86 architectures have similar in-
struction counts. The highly accurate branch predictor and large
caches, in particular, effectively allow x86 architectures to sus-
tain high performance. x86 performance inefficiencies, if any,
are not observed. The microarchitecture, not the ISA, is respon-
sible for performance differences.

Step 6: ISA influence on microarchitecture

Key Finding 6: As shown in Table 7, there are significant dif-
ferences in microarchitectures. Drawing upon instruction mix
and instruction count analysis, we feel that the only case where
the ISA forces larger structures is on the ROB size, physical
rename file size, and scheduler size since there are almost the
same number of x86 micro-ops in flight compared to ARM in-

structions. The difference is small enough that we argue it is not
necessary to quantify further. Beyond the translation to micro-
ops, pipelined implementation of an x86 ISA introduces no addi-
tional overheads over an ARM ISA for these performance levels.
5.2. Power and Energy Analysis

In this section, we normalize to A8 as it uses the least power.
Per benchmark data corresponding to Figures 11, 12, and 13 is
in Figures 18, 19, and 20 in Appendix I of [10].
Step 1: Average Power

Data: Figure 11 shows average power normalized to the A8.
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Figure 11. Raw Average Power Normalized to A8.
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Table 8. Detailed Analysis for Benchmarks with A9 to i7 Gap Greater Than 3×.
Benchmark Gap Analysis

omnetpp 3.4 Branch MPKI: 59 for A9 versus only 2.0 for i7; I-Cache MPKI: 33 for A9 versus only 2.2 for i7.
db kernels 3.8 1.6× more instructions, 5× more branch MPKI for A9 than i7.
tonto 6.2 Instructions: 4× more for ARM than x86.
cactusADM 6.6 Instructions: 2.8× more for ARM than x86.
milc 8.0 A9 and i7 both experience more than 50 data cache MPKI. i7’s microarchitecture hides these misses more effectively.
leslie3D 8.4 4× as many L2 cache misses using the A8 than using the Atom explains the 2× A8 to Atom gap. On the A9, the data cache

MPKI is 55, compared to only 30 for the i7.
bwaves 30 324× more branch MPKI, 17.5× more instructions, 4.6× more instruction MPKI, and 6× more L2 cache misses on A8 than

Atom. A9 has similar trends, including 1000× more branch MPKI than the i7.

Ratio Mobile SPEC INT SPEC FP Server
Atom to A8 3.0 3.1 3.1 3.0
i7 to A9 20 17 20 21

Key Finding 7: Overall x86 implementations consume signifi-
cantly more power than ARM implementations.

Step 2: Average Technology Independent Power
Data: Figure 12 shows technology-independent average

power–cores are scaled to 1 GHz at 45nm (normalized to A8).
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Figure 12. Tech. Independent Avg. Power Normalized to A8.

Ratio Mobile SPEC INT SPEC FP Server
Atom to A8 0.6 0.6 0.6 0.6
i7 to A9 7.0 6.1 7.4 7.6

Finding E1: With frequency and technology scaling, ISA ap-
pears irrelevant for power optimized cores: A8, A9, and Atom
are all within 0.6× of each other (A8 consumes 29% more power
than A9). Atom is actually lower power than A8 and A9.

Finding E2: i7 is performance, not power, optimized. Per
suite power costs are 6.1× to 7.6× higher for i7 than A9 with
1.7× to 7.0× higher frequency-independent performance (Fig-
ure 3 cycle count performance).
Key Finding 8: The choice of power or performance optimized
core designs impacts core power use more than ISA.
Step 3: Average Energy

Data: Figure 13 shows energy (product of power and time).
Finding E3: Despite power differences, Atom consumes less

energy than A8 and i7 uses only slightly more energy than A9
due primarily to faster execution times, not ISA.

Finding E4: For “hard” benchmarks with high cache miss
rates that leave the core poorly utilized (e.g., many in SPEC
FP), fixed energy costs from structures provided for high-
performance make i7’s energy 2× to 3× worse than A9.
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Figure 13. Raw Average Energy Normalized to A8.
Ratio Mobile SPEC INT SPEC FP Server
A8 to Atom 0.8(0.1) 0.9 0.8 (0.6) 0.8(0.2)
i7 to A9 3.3 1.7 1.7 (1.0) 1.8

Key Finding 9: Since power and performance are both primar-
ily design choices, energy use is also primarily impacted by de-
sign choice. ISA’s impact on energy is insignificant.

Step 4: ISA impact on microarchitecture.
Data: Table 7 outlined microarchitecture features.
Finding E5: The energy impact of the ISA is that it requires

micro-ops translation and an additional micro-ops cache. Fur-
ther, since the number of micro-ops is not significantly higher,
the energy impact of x86 support is small.

Finding E6: Other power-hungry structures like a large L2-
cache, highly associative TLB, aggressive prefetcher, and large
branch predictor seem dictated primarily by the performance
level and application domain targeted by the Atom and i7 pro-
cessors and are not necessitated by x86 ISA features.
5.3. Trade-off Analysis
Step 1: Power- Performance Trade-offs

Data: Figure 14 shows the geometric mean power-
performance trade-off for all benchmarks using technology node
scaled power. We generate a cubic curve for the power-
performance trade-off curve. Given our small sample set, a
core’s location on the frontier does not imply that it is optimal.
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Finding T1: A9 provides 3.5× better performance using 1.8×
the power of A8.

Finding T2: i7 provides 6.2× better performance using 10.9×
the power of Atom.

Finding T3: i7’s microarchitecture has high energy cost when
performance is low: benchmarks with the smallest performance
gap between i7 and A9 (star in Figure 14) 11 have only 6× better
performance than A9 but use more than 10× more power.
Key Finding 10: Regardless of ISA or energy-efficiency,
high-performance processors require more power than lower-
performance processors. They follow well established cubic
power/performance trade-offs.
Step 2: Energy-Performance Trade-offs

Data: Figure 15 shows the geometric mean energy-
performance trade-off using technology node scaled energy. We
generate a quadratic energy-performance trade-off curve. Again,
a core’s location on the frontier does not imply optimality. Syn-
thetic processor points beyond the four processors studied are
shown using hollow points; we consider a performance targeted
ARM core (A15) and frequency scaled A9, Atom, and i7 cores.
A15 BIPS are from reported CoreMark scores; details on syn-
thetic points are in Appendix III of [10].
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Figure 15. Energy Performance Trade-offs.
Finding T4: Regardless of ISA, power-only or performance-

only optimized cores have high energy overheads (see A8 & i7).
Finding T5: Balancing power and performance leads to

energy-efficient cores, regardless of the ISA: A9 and Atom pro-
cessor energy requirements are within 24% of each other and
use up to 50% less energy than other cores.

Finding T6: DVFS and microarchitectural techniques can
provide high energy-efficiency to performance-optimized cores,
regardless of the ISA: i7 at 2 GHz provides 6× performance at
the same energy level as an A9.

Finding T7: We consider the energy-delay metric (ED) to
capture both performance and power. Cores designed balancing
power and performance constraints show the best energy-delay
product: A15 is 46% lower than any other design we considered.

Finding T8: When weighting the importance of performance
only slightly more than power, high-performance cores seem
best suited. Considering ED1.4, i7–a performance optimized
core–is best (lowest product, and 6× higher performance). Con-
sidering ED2, i7 is more than 2× better than the next best design.
See Appendix IV in [10] for more details.
Key Finding 11: It is the microarchitecture and design method-
ologies that really matter.

11Seven SPEC, all mobile, and the non-database server benchmarks.

Table 9. Summary of Challenges.
Challenge Description

Board Cooling (ARM) No active cooling leading to failures
Fix: use a fan-based laptop cooling pad

Networking (ARM) ssh connection used up to 20% of CPU
Fix: use a serial terminal

Networking (Atom) USB networking not supported
Fix: use as standalone terminal

Perf Counters (ARM) PMU poorly supported on selected boards
Fix: backport over 150 TI patches

Compilation (ARM) Failures due to dependences on > 100 packages
Fix 1: pick portable equivalent (lighttpd)
Fix 2: work through errors (CLucene & WebKit)

Tracing (ARM) No dynamic binary emulation
Fix: Use gem5 to generate instruction traces

Table 10. Summary of Findings.
# Finding Support Representative

Data: A8/Atom

Pe
rf

or
m

an
ce

1 Large performance gaps exist Fig-2 2× to 997×

2 Cycle-count gaps are less than 2.5× Fig-3 ≤ 2.5×(A8 to Atom, A9 to i7)

3 x86 CPI < ARM CPI: Fig-3 & 4 A8: 3.4
x86 ISA overheads hidden by µarch Atom: 2.2

4 ISA performance effects indistinguishable Table-6 inst. mix same
between x86 and ARM Fig-5 & 6 short x86 insts

5 µarchitecture, not the ISA, responsible Table-8 324× Br MPKI
for performance differences 4× L2-misses

6 Beyond micro-op translation, x86 ISA Table-7introduces no overheads over ARM ISA

Po
w

er

1 x86 implementations draw more power Fig-11 Atom/A8 raw
than ARM implementations power: 3×

2 Choice of power or perf. optimization Fig-12 Atom/A8 power
impacts power use more than ISA @1 GHz: 0.6×

3 Energy use primarily a design choice; Fig-13 Atom/A8 raw
ISA’s impact insignificant energy: 0.8×

Tr
ad

e-
of

fs 1 High-perf processors require more power Fig-14 A8/A9: 1.8×
than lower-performance processors i7/Atom: 10.9×

2 It is the µ-architecture and design Fig-15
ED: i7@2GHz<A9

methodology that really matters A15 best for ED
i7 best for ED1.4

6. Conclusions
In this work, we revisit the RISC vs. CISC debate consid-

ering contemporary ARM and x86 processors running modern
workloads to understand the role of ISA on performance, power,
and energy. During this study, we encountered infrastructure
and system challenges, missteps, and software/hardware bugs.
Table 9 outlines these issues as a potentially useful guide for
similar studies. Our study suggests that whether the ISA is RISC
or CISC is irrelevant, as summarized in Table 10, which includes
a key representative quantitative measure for each analysis step.
We reflect on whether there are certain metrics for which RISC
or CISC matters, and place our findings in the context of past
ISA evolution and future ISA and microarchitecture evolution.

Considering area normalized to the 45nm technology node,
we observe that A8’s area is 4.3mm2, AMD’s Bobcat’s area
is 5.8mm2, A9’s area is 8.5 mm2, and Intel’s Atom is 9.7
mm2 [4, 25, 27]. The smallest, the A8, is smaller than Bob-
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cat by 25%. We feel much of this is explained by simpler core
design (in-order vs OOO), and smaller caches, predictors, and
TLBs. We also observe that the A9’s area is in-between Bobcat
and Atom and is close to Atom’s. Further detailed analysis is
required to determine how much the ISA and the microarchitec-
ture structures for performance contribute to these differences.

A related issue is the performance level for which our re-
sults hold. Considering very low performance processors, like
the RISC ATmega324PA microcontroller with operating fre-
quencies from 1 to 20 MHz and power consumption between
2 and 50mW [3], the overheads of a CISC ISA (specifically the
complete x86 ISA) are clearly untenable. In similar domains,
even ARM’s full ISA is too rich; the Cortex-M0, meant for low
power embedded markets, includes only a 56 instruction subset
of Thumb-2. Our study suggests that at performance levels in
the range of A8 and higher, RISC/CISC is irrelevant for perfor-
mance, power, and energy. Determining the lowest performance
level at which the RISC/CISC ISA effects are irrelevant for all
metrics is interesting future work.

While our study shows that RISC and CISC ISA traits are
irrelevant to power and performance characteristics of mod-
ern cores, ISAs continue to evolve to better support exposing
workload-specific semantic information to the execution sub-
strate. On x86, such changes include the transition to Intel64
(larger word sizes, optimized calling conventions and shared
code support), wider vector extensions like AVX, integer crypto
and security extensions (NX), hardware virtualization exten-
sions and, more recently, architectural support for transactions
in the form of HLE. Similarly, the ARM ISA has introduced
shorter fixed length instructions for low power targets (Thumb),
vector extensions (NEON), DSP and bytecode execution exten-
sions (Jazelle DBX), Trustzone security, and hardware virtual-
ization support. Thus, while ISA evolution has been continuous,
it has focused on enabling specialization and has been largely
agnostic of RISC or CISC. Other examples from recent research
include extensions to allow the hardware to balance accuracy
and reliability with energy efficiency [15, 13] and extensions to
use specialized hardware for energy efficiency [18].

It appears decades of hardware and compiler research has
enabled efficient handling of both RISC and CISC ISAs and
both are equally positioned for the coming years of energy-
constrained innovation.
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