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E0-243: Computer Architecture 

Instructors:  
Arkaprava Basu 
R. Govindarajan  
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Course Outline 

Ø Processor Architecture, Caches, Instruction-Level 
Parallelism, Superscalar & VLIW architecture 

Ø Multithreading, Multi-core processors, Cache 
Coherence and Memory Consistency; Multi-core 
Cache Organization 

Ø Virtual Memory System 
Ø Memory, DRAM Architecture 
Ø Performance Evaluation 
Ø Data-level Parallelism and Accelerators 
Ø Power management 
Ø Datacenter architecture 
Ø Architecture Support for System Security 
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Other Details: 

§  Lecture Hours:  M W (F) 11.00 –12.30 Hrs. 
§  Text: Hennessy and Patterson, “Computer 

Architecture: A Quantitative Approach”:  
Ø 6th Ed. (Available in Indian Edition!)  
Ø A large part of it would be assumed as reading 

exercise!  
§  Papers:  Announced during the course (Expect 

to have a fair amount of self-reading!) 
§ Webpage:     

  www.csa.iisc.ac.in/~arkapravab/courses/ca_f19.html 
§  Course Interaction: 

Ø www.piazza.com 
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Grading 

§ 1 Mid-Term Test = 20 marks 
Ø  Sept. 2nd/3rd week 

§ 1 Assignment = 10 marks 
Ø Sept. 1st week 

§ 1 Term Project = 30 marks [Group of 2] 
Ø Proposal Due by Sept. 15 
Ø First Review by Oct. 15 
Ø Report and Demo/Presentation : Nov. 30 

§ 1 Final Exam = 40 marks  
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Moore’s Law 

No. of Transistors 
doubles every 18 months 
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Moore’s Law : Other Implications 
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Amdahl’s Law 

Speedup  is limited by the part of the 
program which doesn’t benefit by an 
enhancement   

 

  
  

Sp =                        =         , for large k    
1 

s + (1-s)/k 
1 
s  

Example :  s = 0.5,  k = 100, Sp = 1.81 
        Maximum Speedup is 2! 

Moral : Make the common case faster!  
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Pipelining : Review 
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Pipelining 

IF WB MEM EX ID 
IF WB MEM EX ID 

IF WB MEM EX ID 
IF WB MEM EX ID 

•  Exec. Time of instrn. still 5 cycles, but    
throughput, now is 1 instrn. per cycle. 

•  Initial pipeline fill time (4 cycles), after 
which 1 instrn. completes every cycle 

Time 
0 1 2 3 4 5 

i 

i +1 

i +2 

i +3 
Instrn. 
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Pipelined Processor  Datapath 
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Pipeline Hazards 

§ Hazards prevent next instruction from 
executing during its designated clock cycle 
Structural hazards:  Happen due to simultaneous 

request for the same resource by 2 or more 
instrns. (e.g., IF and MEM both require memory 
port!)  

Data hazards: Instruction depends on result of 
prior instruction still in the pipeline. 

Control hazards:  Due to branch and jump instrns. 
Next PC (target PC) available only after 3 cycles 
(in EX stage) while IF has to take place in the 
next cycle!  
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Structural Hazard 

B B B B 

MEM  and IF req.  
memory port 

IF WB MEM EX ID ld    R3,  8(R2) i 

IF WB MEM EX ID i + 1 

IF WB MEM EX ID i + 2  

IF i + 3  

IF WB MEM EX ID i + 3  

B 

Assume a single memory port 
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Data Dependence 

§  True data dependency (RAW)   
§ Anti dependency -- write-after-read (WAR)  
§ Output dependency -- write-after-write 

(WAW) 
 
Example: 
             r3 <--  r7 
             r8 <--  load (r3) 
             r3 <--  r3 + 4 

RAW 

WAR 
WAW 
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Data  Hazard 

IF WB MEM EX ID add  R3  ß  R1, R2 i 

IF WB MEM EX ID i + 1 sub R4  ß  R3, R8 B B B B 

i + 1 WB MEM EX ID 

i + 1  WB MEM EX ID 

B B B B 
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Data Hazard Solutions 

§ Interlock: Hardware detect data dependency 
and stalls dependent instrns. 

§ Byepassing or Forwarding: Computed data 
forwarded as soon as available (from EX or 
MEM stage)   
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Data Hazard Solutions (contd.) 

§ Forwarding or Bypassing : forward the result 
as soon as available (EX or MEM stage) to EX.  

add  R3  ß R1, R2 

IF WB MEM EX ID 

or  R7  ß R3, R6 
IF EX ID 

sub  R5  ß R3, R4 
IF MEM EX ID 
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Data Hazard Solutions 

§ Interlock: Hardware detect data dependency 
and stalls dependent instrns. 

§ Byepassing or Forwarding: Computed data 
forwarded as soon as available (from EX or 
MEM stage)   
Ø For what Ops from MEM stage? 
Ø Can byepassing avoid all stalls?  

§  Instruction Scheduling: Reorder  instrns. such 
that dependent instrns. are 2-3 cycles apart. 
Ø Static Instruction Scheduling 
Ø Dynamic Instruction Scheduling 
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Processor Datapath for Forwarding 

Imm 

NPC 
ALU 

Zero? 

Data 
Mem. 

Execution Memory 

B 

A 

E0-243©RG@IISc 



19 

Forwarding may not always Work! 

ld  R3  ß M(R1) 

IF WB MEM EX ID 

or  R7  ß R3, R6 
IF EX ID 

sub  R5  ß  R3, R4 
IF MEM EX ID 

•  Forwarding not very useful in deep pipelines! 
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Control Hazard  

Fetch  instrn. (i +1)  
or from target? IF MEM EX ID B B B B B 

IF EX ID 
Fetch  instrn. (i +1)  
or from target? 

IF ID Branch resolved Fetch 
appropriate  instrn.  

beqz  R3, out 

IF WB MEM EX ID 

Cond. & target 
resolved here 

B B B B 
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Pipelined MIPS Datapath 
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Control Hazard Solutions 
§  Static Branch prediction policies:  

Static Not-Taken  policy:   
Ø Fetch instrn. from PC + 4 even for a branch 

instrn. 
§  Squash the fetched instrn, and re-fetch from branch 

target address 
Delayed Branching: 
Ø microarchitecture designed such that branch 

(control transfer) takes place after a few 
following instructions. 

  beq   R1, out 
  add   R3 <-- R2, R4 (delay slot instrn.)  
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Delayed Branching 

§  Instrns. that do not affect the branching 
condition can be used in the delay slot. 

§ Where  to get instrns. for filling delay slots?   
Ø Instrns. Before  the branch   
Ø Instrns. from the target address  
Ø Instrns. from fall through 

§  Cancelling delayed branches, which squash the 
instrn. in the delayed when the  branch is 
taken (or not taken) -- facilitate  more slots 
to be filled. 
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Dynamic Branch Prediction 

§ For the same static branch instrn. 
prediction for different instances may 
be different.  

§ Using the history of branches to 
predict the branch outcome (taken or 
not-taken) 
Ø 1-bit predictors 
Ø 2-bit predictors 
Ø 2-level correlated predictors 
Ø path-based predictors, … 
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Simple 1-bit Branch Prediction 

§  Store  previous history of 
a branch -- taken or not-
taken (1-bit) in Branch 
Prediction Buffer 

§  Least Significant bits of 
PC used to index BPB.  

§  Update Predict bit after 
branch is resolved.  

§  Predict branch outcome 
only, not target address. 

§  Influence of other 
(static) branches which 
have same LS bits  (alias)  

PC 

BPB  (2048 entries)   

 0 
O à Not taken  
1  à Taken 

§  1-bit prediction will 
mispredict  twice on 
every loop.  
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2-bit Branch Prediction 

§  State of each static 
branch represented by   
2-bits. 

§  Implement the State 
machine  

§  Implementation using 
saturating counters ?  

§  Gives high prediction 
accuracy 85%  to 95%.  

§  Different state transition 
diagram for diff. 2-bit 
schemes.   

§  What is the benefit of 2-
bit over 1-bit? 

Taken 

 0 

ST WT 

WNT SNT 

Not-Taken 

Taken 

Taken 

Taken 

Not-
Taken 

Not-Taken 

Not-Taken 
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2-bit Prediction 

§  Still no prediction of 
target address!  

§  With a 2-bit prediction 
the no. of mispredictions 
of  branch b1 is lower! 

 L1:   R2 ß 100 
        …  

 
    L2:   R1, ß 100 

   … 
   R1 ß  R1 - 1 
  b1:  bne R1, L2 
   R2 ß R2 - 1 
  b2: bne R2, L1  

 

PC 

BPB  (2048 entries)   

 10 
00, 01 à Not taken  
10, 11  à Taken 
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Branch Target Buffer 
§  Store branch target 

address  (computed  when 
the static branch instrn. is 
encountered first)  along 
with prediction bits -- 
Branch Target Buffer. 

§  Associate tag bits to avoid 
other (branch) instrns. 
influence  the prediction.  

§  When to make the 
prediction? 
Ø  Prediction can be made in IF 

stage itself!  no stall on 
correct prediction. 

§  Size of BTB = 2048x52 !  

= 

00 PC 

Target Addr.    Tag 

Pred.
bits 

No:   Don’t 
Predict 

Yes: Predict 

V 
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Branch Prediction (contd.) 

§ What other 
alternative 
prediction scheme 
can be used?  
Ø Correlation 

between 
branches? 

Ø Predicting the 
path rather than 
the branch?  

 

A 

D E 

F 

B C 
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2-Level Branch Prediction 

§  2-bit scheme uses the 
history of the same 
static branch for 
prediction. 

§  In practice, history of 
other branches also 
influence branching.  

  

history 
br1 1 1 0 0 

br2 1 0 1 0 

Pred. br3 1 1 1 ? 

 
  if (aa == 2)  aa = 0;        

 if (bb != 2)  bb = 0;             
 if (aa == 0) || (bb == 0) { … 
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2-Level Prediction (contd.) 

§  Branch history register/table to maintain the 
outcome of previous (dynamic) k branches. 

§  Pattern History table(s)  to record the 
branch behavior (2-bit FSM).  

§  Branch history can be global or local 
§  Pattern history can be global or local. 
§ Other variations (g-share, p-share)  
§  Results upto 98% prediction accuracy.  
§  Reading:  

Ø TseYu Yeh and Yale N Patt, “Alternative 
Implementations of TwoLevel Adaptive 
Branch Prediction”, ISCA 92 
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GAg and  GAp Schemes 

BHR (k-bit) 

Pred. 

PHT (2k entries) 

0/1 

Global branch history register 
& global pattern history table  

BHR (k-bit) 

Pred. 

PPHT (2k  x 2m) 

PC 

Global branch history reg. and 
per addr. pattern history table  
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PAp Scheme 

PPHT (2k x 2n) 

PC 

PBHT (2m  k-bit entries) 
E0-243©RG@IISc 
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Comparison of 2-Level Schemes 

§  In GAg,  1st-level history 
is based on last k dynamic 
branches. 

§  No per-addr. Branch or 
pattern history.   

§  History of all branches 
influence prediction.  

§  In GAp,  correlation of 
other branches, and past 
behavior of this branch 
influence prediction.  

§  In PAg, per-addr. branch 
history  is maintained. 

§  History of a branch 
influence its prediction; 
but same pattern 
behavior for all branches 

§  PAp other branches 
influence is least.  

§  Per-Set schemes  use 
addr., opcode type, etc. 
to determine sets. 

E0-243©RG@IISc 



35 

G-Share and Other Predictors 
§  G-share is similar to GAg, except that BHR 

is XORed with PC to index in PHT.  
Ø Eliminates interference of same branch history 

across different branches. 
§  2-Level predictors have longer warm-up time 

to  build history. Frequent context-switching 
affects building the history.  

§ Hybrid predictors take advantage of 
multiple predictors. 

§  Path-based schemes using history of target 
addresses of branches and not their 
outcomes.  
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Hybrid Predictors 

§ Global predictor: Has 4K entries and is indexed by 
the history of the last 12 branches; each entry in 
the global predictor is a standard 2-bit predictor 

§  Local predictor: Consists of a 2-level predictor:  
Ø Top level a local history table consisting of 1024 10-bit 

entries; each 10-bit entry corresponds to the most recent 
10 branch outcomes for the entry.  

Ø Next level Selected entry from the local history table is 
used to index a table of 1K entries consisting a 3-bit 
saturating counters, which provide the local prediction 

§  4K 2-bit counters to choose between the global 
predictor and  local predictor 

§ Total size: 4K*2 + 4K*2 + 1K*10 + 1K*3 = 29K bits! 
 (~180,000 transistors) 
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Tournament Predictor in 21264 

Pred. 

BHR 
2 

Global
Pred. 

Meta 
Pred. 

PC 
3 

Local 
Pred. 

PBHT PHT 
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Indirect Branches 

§ Branches or jumps whose target addr. 
varies at runtime. 
Ø Function return,  jumps for implementing 

case statements, etc.  
Ø Target address  prediction for function 

returns using a return address stack of 
size 8 to 16.  

E0-243©RG@IISc 


