Instructors:
Arkaprava Basu
R. Govindarajan

> Processor Architecture, Caches, Instruction-Level
Parallelism, Superscalar & VLIW architecture

» Multithreading, Multi-core processors, Cache
Coherence and Memory Consistency; Multi-core
Cache Organization

» Virtual Memory System

» Memory, DRAM Architecture

» Performance Evaluation

» Data-level Parallelism and Accelerators

> Power management

» Datacenter architecture

> Architecture Support for System Security

= Lecture Hours: M W (F) 11.00 -12.30 Hrs.

" Text: Hennessy and Patterson, "Computer
Architecture: A Quantitative Approach™

> 6'h Ed. (Available in Indian Edition!)

> A large part of it would be assumed as reading
exercisel

" Papers: Announced during the course (Expect
to have a fair amount of self-reading!)

" Webpage:
www.csa.iisc.ac.in/~arkapravab/courses/ca_f19.html

" Course Interaction:
> WWW.piazza.com

" 1 Mid-Term Test = 20 marks
> Sept. 2"d/3rd week

" 1 Assignment = 10 marks
> Sept. 15T week

" 1 Term Project = 30 marks [Group of 2]
»Proposal Due by Sept. 15
»>First Review by Oct. 15
»Report and Demo/Presentation : Nov. 30

" 1 Final Exam = 40 marks

10,000,000,000

1,000,000,000

No. of Transistors
doubles every 18 months

100,000,000

10,000,000 -

Transistors

1,000,000 -

100,000

10,000

1,000 —————7—————— —r— S | R S | —
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Year

100,000

10,000

1,000

Performance

8

10

1 1
1980 1985 1990 1995 2000 2005 2010

Year
© 2007 Elsavier, Inc. Al rights resarved.

Speedup is limited by the part of the
program which doesn't benefit by an
enhancement

1
Sp = - L , for large k
s + (1-s)/k S

Example : s=0.5, k=100, Sp = 1.81
Maximum Speedup is 2!

Make the common case faster!

Pipelining : Review

Pipelining

0 1 2 3 g e
l IF ID
i +1 IF
i+2 ID
v i+3 IF | ID

Instrn.

* Exec. Time of instrn. still 5 cycles, but
throughput, now 1s 1 instrn. per cycle.

 Initial pipeline fill time (4 cycles), after
which 1 instrn. completes every cycle

E0-243©RG@IISc

PC

Ins.

Meme.

Instrn.
Fetch

/A1

e > Zero? J
~

— _—> —> Data
Reg. A ALU —> .

—>(File |—» __,(_> - Meme. = u
SIrU X z
= =
> = >

Tt 2 =

iV Execution Memory WB

Decode

" Hazards prevent next instruction from
executing during its designated clock cycle

Structural hazards: Happen due to simultaneous
request for the same resource by 2 or more
instrns. (e.g., IF and MEM both require memory
portl)

Data hazards: Instruction depends on result of
prior instruction still in the pipeline.

Control hazards: Due to branch and jump instrns.
Next PC (target PC) available only after 3 cycles
(in EX stage) while IF has to take place in the
next cyclel

Structural Hazard

Assume a single memory port

11

DNl Ex LS

11

MEM and IF req.
emory port

v ISR o

‘.
él..l“
lllllll
ks

Id R3, 8(R2)

v [1
TETETETECE

E0-243©RG@IISc

LETHE ex

12

" True data dependency (RAW)
" Anti dependency -- write-after-read (WAR)

" Output dependency -- write-after-write
(WAW)

Example:
r3<- r/ w
WAWS 8 <-- Ioaﬁﬁ)

" Interlock: Hardware detect data dependency
and stalls dependent instrns.

" Byepassing or Forwarding: Computed data
forwarded as soon as available (from EX or
MEM stage)

" Forwarding or Bypassing : forward the result
as soon as available (EX or MEM stage) to EX.

add R3 € RI,R2
Tl T T EX g

sub R5 € R3, R4
IF pPID

or R7 € R3, R6

" Interlock: Hardware detect data dependency
and stalls dependent instrns.

" Byepassing or Forwarding: Computed data
forwarded as soon as available (from EX or
MEM stage)

» For what Ops from MEM stage?
» Can byepassing avoid all stalls?

" Tnstruction Scheduling: Reorder instrns. such

that dependent instrns. are 2-3 cycles apart.
» Static Instruction Scheduling
» Dynamic Instruction Scheduling

|
- » Zero?
| N
L. -]
NPC—— —
A " ALU Data
B Mem.
Imm 43— I
=™
: <
| Execution ~ Memory

Id R3 € M(R1)

IF P ID

sub R5 € R3, R4

11

or R7 € R3, R6

11

* Forwarding not very useful in deep pipelines!

beqz R3, out _

N

IF

1D

O

Fetch instrn. (i HlL
or from target? c 2. X

Fetch instrn. (i +1)
or from target?

Branch resolved Fetch

appropriate instrn.

o

e ~Cond. & target

resolve

ere

WB

O

1D

v

PC

J2ppy

Ins.

Meme.

Instrn.
Fetch

/A1

g'?
J—y Data
: "I ALU =
I Mem. | N
gs = =
S\ &J" s
o =

) =

CataT™ z 3
iV Execution Memory WB

Decode

" Static Branch prediction policies:
Static Not-Taken policy:
» Fetch instrn. from PC + 4 even for a branch

iInstrn.

= Squash the fetched instrn, and re-fetch from branch
target address

Delayed Branching:

» microarchitecture designed such that branch
gcon‘rr'ol transfer) takes place after a few
ollowing instructions.

beq R1, out
add R3<--R2, R4 (delay slot instrn.)

" Tnstrns. that do not affect the branching
condition can be used in the delay slot.

" Where to get instrns. for filling delay slots?
» Instrns. Before the branch

» Instrns. from the target address
» Instrns. from fall through

" Cancelling delayed branches, which squash the
instrn. in the delayed when the branch is
taken (or not taken) -- facilitate more slots
to be filled.

" For the same static branch instrn.
prediction for different instances may
be different.

" Using the history of branches to
predict the branch outcome (taken or
not-taken)
> 1-bit predictors
»>2-bit predictors
»2-level correlated predictors
»path-based predictors, ...

Store previous history of
a branch -- taken or not-
taken (1-bit) in Branch
Prediction Buffer

Least Significant bits of
PC used to index BPB.

Update Predict bit after
branch is resolved.

Predict branch outcome
only, not target address.

Influence of other
(static) branches which
have same LS bits (alias)

O - Not taken
PC 1 - Taken

BPB (2048 entries)

= 1-bit prediction will
mispredict fwice on
every loop.

State of each static
branch represented by
2-bits.

Implement the State
machine

Implementation using
saturating counters ?
Gives high prediction
accuracy 85% to 95%.
Different state transition

diagram for diff. 2-bit
schemes.

What is the benefit of 2-
bit over 1-bit?

Not-Taken

WT
Taken Not-
Taken Taken
Not-Take
SNT
Taken
Not-Taken

L1: R2 < 100

00, 01 - Not taken

PC 10 10, 11 - Taken L2: R1, < 100
Rl < R1-1
. bl: bneR1, L2
BPB (2048 entries) R2 € R?2 -1
" Still no prediction of b2: bne RZ, L1

target address!

" With a 2-bit prediction
the no. of mispredictions
of branch bl is lower!

Store branch target
address (computed when
the static branch instrn. is
encountered first) along
with prediction bits --
Branch Target Buffer.

Associate tag bits to avoid
other (branch) instrns.
influence the prediction.
When to make the
prediction?

» Prediction can be made in IF

stage itself! no stall on
correct prediction.

Size of BTB = 2048x52 |

oo| PC

Pred.
bits

Tag

Target Addr.

!

!

Yes: Predict

No: Don’t
Predict

" What other
alternative
prediction scheme
can be used?

>Correlation
between
branches?

»Predicting the
path rather than
the branch?

® 2-bit scheme uses the

history of the same if (aa == 2) aa = O;
static branch for if (bb!=2) bb=0;
prediction. if (aa==0) || (bb==0){..

" Tn practice, history of
other branches also
influence branching.

brl] 1 |1 |0 |0

history
br2| 1 | O] 1 |0

Pred. [br3| 1 1 1 ?

" Branch history register/table to maintain the
outcome of previous (dynamic) k branches.

" Pattern History table(s) to record the
branch behavior (2-bit FSM).

" Branch history can be global or local
" Pattern history can be global or local.
" Other variations (g-share, p-share)
" Results upto 98¢ prediction accuracy.
" Reading:
> TseYu Yeh and Yale N Patt, "Alternative

Implementations of Twolevel Adaptive
Branch Prediction”, ISCA 92

Global branch history register | global branch history reg. and
& global pattern history table | pen qddr. pattern history table

BHR (k-bit) l&— 0/1 BHR (k-bit) }\ PC
p

>
Pred. Pred.

PHT (2¥ entries) PPHT (2k x 2m)

PC

& n-bits
X m-bits

—=_

PBHT (2™ k-bit entries) PPHT (2K x 2")

In GAg, 1st-level history
is based on last k dynamic
branches.

No per-addr. Branch or
pattern history.

History of all branches
influence prediction.

In GAp, correlation of
other branches, and past
behavior of this branch
influence prediction.

In PAg, per-addr. branch
history is maintained.

History of a branch
influence its prediction;
but same pattern
behavior for all branches

PAp other branches
influence is least.

Per-Set schemes use
addr., opcode type, etc.
to determine sets.

" G-share is similar to GAg, except that BHR
is XORed with PC to index in PHT.

» Eliminates interference of same branch history
across different branches.
= 2-Level predictors have longer warm-up time
to build history. Frequent context-switching
affects building the history.

" Hybrid predictors take advantage of
multiple predictors.

" Path-based schemes using history of target
addresses of branches and not their
outcomes.

" Global predictor: Has 4K entries and is indexed by
the history of the last 12 branches; each entry in
the global predictor is a standard 2-bit predictor

" Local predictor: Consists of a 2-level predictor:

» Top level a local history table consisting of 1024 10-bit
entries; each 10-bit entry corresponds to the most recent
10 branch outcomes for the entry.

»Next level Selected entry from the local history table is
used to index a table of 1K entries consisting a 3-bit
saturating counters, which provide the local prediction

" 4K 2-bit counters to choose between the global
predictor and local predictor

" Total size: 4K*2 + 4K*2 + 1K*10 + 1K*3 = 29K bitsl!
(~180,000 transistors)

BHR SoEl PC

2 g UTE
—_— — ¢
—— —
Global
Pred.

T
@PHT """""""""""" Meta
Pred.
Pred.

" Branches or jumps whose target addr.
varies at runtime.

»Function return, jumps for implementing
case statements, etc.

» Target address prediction for function

returns using a return address stack of
size 8 to 16.

