
1

E0-243: Computer Architecture

Instructors:
Arkaprava Basu
R. Govindarajan

2

Course Outline

Ø Processor Architecture, Caches, Instruction-Level
Parallelism, Superscalar & VLIW architecture

Ø Multithreading, Multi-core processors, Cache
Coherence and Memory Consistency; Multi-core
Cache Organization

Ø Virtual Memory System
Ø Memory, DRAM Architecture
Ø Performance Evaluation
Ø Data-level Parallelism and Accelerators
Ø Power management
Ø Datacenter architecture
Ø Architecture Support for System Security

E0-243©RG@IISc

3

Other Details:

§  Lecture Hours: M W (F) 11.00 –12.30 Hrs.
§  Text: Hennessy and Patterson, “Computer

Architecture: A Quantitative Approach”:
Ø 6th Ed. (Available in Indian Edition!)
Ø A large part of it would be assumed as reading

exercise!
§  Papers: Announced during the course (Expect

to have a fair amount of self-reading!)
§ Webpage:

 www.csa.iisc.ac.in/~arkapravab/courses/ca_f19.html
§  Course Interaction:

Ø www.piazza.com
 E0-243©RG@IISc

4

Grading

§ 1 Mid-Term Test = 20 marks
Ø  Sept. 2nd/3rd week

§ 1 Assignment = 10 marks
Ø Sept. 1st week

§ 1 Term Project = 30 marks [Group of 2]
Ø Proposal Due by Sept. 15
Ø First Review by Oct. 15
Ø Report and Demo/Presentation : Nov. 30

§ 1 Final Exam = 40 marks
E0-243©RG@IISc

Source: Univ. of Wisconsin 5

Moore’s Law

No. of Transistors
doubles every 18 months

6

Moore’s Law : Other Implications

7

Amdahl’s Law

Speedup is limited by the part of the
program which doesn’t benefit by an
enhancement

Sp = = , for large k
1

s + (1-s)/k
1
s

Example : s = 0.5, k = 100, Sp = 1.81
 Maximum Speedup is 2!

Moral : Make the common case faster!

E0-243©RG@IISc

8

Pipelining : Review

9

Pipelining

IF WB MEM EX ID
IF WB MEM EX ID

IF WB MEM EX ID
IF WB MEM EX ID

•  Exec. Time of instrn. still 5 cycles, but
throughput, now is 1 instrn. per cycle.

•  Initial pipeline fill time (4 cycles), after
which 1 instrn. completes every cycle

Time
0 1 2 3 4 5

i

i +1

i +2

i +3
Instrn.

E0-243©RG@IISc

10

Pipelined Processor Datapath

Ins.

Mem.

+

PC Reg.
File

sign
extend

Instrn.
Fetch Instrn.

Decode

4

ALU

Zero?

Data

Mem.

Execution Memory WB

IF/ID

ID
/E

X

E
X

/M
E

M

M
E

M
/W

B

E0-243©RG@IISc

11

Pipeline Hazards

§ Hazards prevent next instruction from
executing during its designated clock cycle
Structural hazards: Happen due to simultaneous

request for the same resource by 2 or more
instrns. (e.g., IF and MEM both require memory
port!)

Data hazards: Instruction depends on result of
prior instruction still in the pipeline.

Control hazards: Due to branch and jump instrns.
Next PC (target PC) available only after 3 cycles
(in EX stage) while IF has to take place in the
next cycle!

E0-243©RG@IISc

12

Structural Hazard

B B B B

MEM and IF req.
memory port

IF WB MEM EX ID ld R3, 8(R2) i

IF WB MEM EX ID i + 1

IF WB MEM EX ID i + 2

IF i + 3

IF WB MEM EX ID i + 3

B

Assume a single memory port

E0-243©RG@IISc

13

Data Dependence

§  True data dependency (RAW)
§ Anti dependency -- write-after-read (WAR)
§ Output dependency -- write-after-write

(WAW)

Example:
 r3 <-- r7
 r8 <-- load (r3)
 r3 <-- r3 + 4

RAW

WAR
WAW

E0-243©RG@IISc

14

Data Hazard

IF WB MEM EX ID add R3 ß R1, R2 i

IF WB MEM EX ID i + 1 sub R4 ß R3, R8 B B B B

i + 1 WB MEM EX ID

i + 1 WB MEM EX ID

B B B B

E0-243©RG@IISc

Time
0 1 2 3 4 5

15

Data Hazard Solutions

§ Interlock: Hardware detect data dependency
and stalls dependent instrns.

§ Byepassing or Forwarding: Computed data
forwarded as soon as available (from EX or
MEM stage)

E0-243©RG@IISc

16

Data Hazard Solutions (contd.)

§ Forwarding or Bypassing : forward the result
as soon as available (EX or MEM stage) to EX.

add R3 ß R1, R2

IF WB MEM EX ID

or R7 ß R3, R6
IF EX ID

sub R5 ß R3, R4
IF MEM EX ID

E0-243©RG@IISc

17

Data Hazard Solutions

§ Interlock: Hardware detect data dependency
and stalls dependent instrns.

§ Byepassing or Forwarding: Computed data
forwarded as soon as available (from EX or
MEM stage)
Ø For what Ops from MEM stage?
Ø Can byepassing avoid all stalls?

§  Instruction Scheduling: Reorder instrns. such
that dependent instrns. are 2-3 cycles apart.
Ø Static Instruction Scheduling
Ø Dynamic Instruction Scheduling

E0-243©RG@IISc

18

Processor Datapath for Forwarding

Imm

NPC
ALU

Zero?

Data
Mem.

Execution Memory

B

A

E0-243©RG@IISc

19

Forwarding may not always Work!

ld R3 ß M(R1)

IF WB MEM EX ID

or R7 ß R3, R6
IF EX ID

sub R5 ß R3, R4
IF MEM EX ID

•  Forwarding not very useful in deep pipelines!

E0-243©RG@IISc

20

Control Hazard

Fetch instrn. (i +1)
or from target? IF MEM EX ID B B B B B

IF EX ID
Fetch instrn. (i +1)
or from target?

IF ID Branch resolved Fetch
appropriate instrn.

beqz R3, out

IF WB MEM EX ID

Cond. & target
resolved here

B B B B

E0-243©RG@IISc

21

Pipelined MIPS Datapath

Ins.

Mem.

+

PC Reg.
File

sign
extend

Instrn.
Fetch Instrn.

Decode

4

ALU
Data

Mem.

Execution Memory WB

IF/ID

ID
/E

X

E
X

/M
E

M

M
E

M
/W

B

Zero?

A
dder

E0-243©RG@IISc

22

Control Hazard Solutions
§  Static Branch prediction policies:

Static Not-Taken policy:
Ø Fetch instrn. from PC + 4 even for a branch

instrn.
§  Squash the fetched instrn, and re-fetch from branch

target address
Delayed Branching:
Ø microarchitecture designed such that branch

(control transfer) takes place after a few
following instructions.

 beq R1, out
 add R3 <-- R2, R4 (delay slot instrn.)

E0-243©RG@IISc

23

Delayed Branching

§  Instrns. that do not affect the branching
condition can be used in the delay slot.

§ Where to get instrns. for filling delay slots?
Ø Instrns. Before the branch
Ø Instrns. from the target address
Ø Instrns. from fall through

§  Cancelling delayed branches, which squash the
instrn. in the delayed when the branch is
taken (or not taken) -- facilitate more slots
to be filled.

E0-243©RG@IISc

24

Dynamic Branch Prediction

§ For the same static branch instrn.
prediction for different instances may
be different.

§ Using the history of branches to
predict the branch outcome (taken or
not-taken)
Ø 1-bit predictors
Ø 2-bit predictors
Ø 2-level correlated predictors
Ø path-based predictors, …

E0-243©RG@IISc

25

Simple 1-bit Branch Prediction

§  Store previous history of
a branch -- taken or not-
taken (1-bit) in Branch
Prediction Buffer

§  Least Significant bits of
PC used to index BPB.

§  Update Predict bit after
branch is resolved.

§  Predict branch outcome
only, not target address.

§  Influence of other
(static) branches which
have same LS bits (alias)

PC

BPB (2048 entries)

 0
O à Not taken
1 à Taken

§  1-bit prediction will
mispredict twice on
every loop.

E0-243©RG@IISc

26

2-bit Branch Prediction

§  State of each static
branch represented by
2-bits.

§  Implement the State
machine

§  Implementation using
saturating counters ?

§  Gives high prediction
accuracy 85% to 95%.

§  Different state transition
diagram for diff. 2-bit
schemes.

§  What is the benefit of 2-
bit over 1-bit?

Taken

 0

ST WT

WNT SNT

Not-Taken

Taken

Taken

Taken

Not-
Taken

Not-Taken

Not-Taken

E0-243©RG@IISc

27

2-bit Prediction

§  Still no prediction of
target address!

§  With a 2-bit prediction
the no. of mispredictions
of branch b1 is lower!

 L1: R2 ß 100
 …

 L2: R1, ß 100

 …
 R1 ß R1 - 1
 b1: bne R1, L2
 R2 ß R2 - 1
 b2: bne R2, L1

PC

BPB (2048 entries)

 10
00, 01 à Not taken
10, 11 à Taken

E0-243©RG@IISc

28

Branch Target Buffer
§  Store branch target

address (computed when
the static branch instrn. is
encountered first) along
with prediction bits --
Branch Target Buffer.

§  Associate tag bits to avoid
other (branch) instrns.
influence the prediction.

§  When to make the
prediction?
Ø  Prediction can be made in IF

stage itself! no stall on
correct prediction.

§  Size of BTB = 2048x52 !

=

00 PC

Target Addr. Tag

Pred.
bits

No: Don’t
Predict

Yes: Predict

V

E0-243©RG@IISc

29

Branch Prediction (contd.)

§ What other
alternative
prediction scheme
can be used?
Ø Correlation

between
branches?

Ø Predicting the
path rather than
the branch?

A

D E

F

B C

E0-243©RG@IISc

30

2-Level Branch Prediction

§  2-bit scheme uses the
history of the same
static branch for
prediction.

§  In practice, history of
other branches also
influence branching.

history
br1 1 1 0 0

br2 1 0 1 0

Pred. br3 1 1 1 ?

 if (aa == 2) aa = 0;

 if (bb != 2) bb = 0;
 if (aa == 0) || (bb == 0) { …

E0-243©RG@IISc

31

2-Level Prediction (contd.)

§  Branch history register/table to maintain the
outcome of previous (dynamic) k branches.

§  Pattern History table(s) to record the
branch behavior (2-bit FSM).

§  Branch history can be global or local
§  Pattern history can be global or local.
§ Other variations (g-share, p-share)
§  Results upto 98% prediction accuracy.
§  Reading:

Ø TseYu Yeh and Yale N Patt, “Alternative
Implementations of TwoLevel Adaptive
Branch Prediction”, ISCA 92

E0-243©RG@IISc

32

GAg and GAp Schemes

BHR (k-bit)

Pred.

PHT (2k entries)

0/1

Global branch history register
& global pattern history table

BHR (k-bit)

Pred.

PPHT (2k x 2m)

PC

Global branch history reg. and
per addr. pattern history table

E0-243©RG@IISc

33

PAp Scheme

PPHT (2k x 2n)

PC

PBHT (2m k-bit entries)
E0-243©RG@IISc

n-bits
m-bits

34

Comparison of 2-Level Schemes

§  In GAg, 1st-level history
is based on last k dynamic
branches.

§  No per-addr. Branch or
pattern history.

§  History of all branches
influence prediction.

§  In GAp, correlation of
other branches, and past
behavior of this branch
influence prediction.

§  In PAg, per-addr. branch
history is maintained.

§  History of a branch
influence its prediction;
but same pattern
behavior for all branches

§  PAp other branches
influence is least.

§  Per-Set schemes use
addr., opcode type, etc.
to determine sets.

E0-243©RG@IISc

35

G-Share and Other Predictors
§  G-share is similar to GAg, except that BHR

is XORed with PC to index in PHT.
Ø Eliminates interference of same branch history

across different branches.
§  2-Level predictors have longer warm-up time

to build history. Frequent context-switching
affects building the history.

§ Hybrid predictors take advantage of
multiple predictors.

§  Path-based schemes using history of target
addresses of branches and not their
outcomes.

E0-243©RG@IISc

36

Hybrid Predictors

§ Global predictor: Has 4K entries and is indexed by
the history of the last 12 branches; each entry in
the global predictor is a standard 2-bit predictor

§  Local predictor: Consists of a 2-level predictor:
Ø Top level a local history table consisting of 1024 10-bit

entries; each 10-bit entry corresponds to the most recent
10 branch outcomes for the entry.

Ø Next level Selected entry from the local history table is
used to index a table of 1K entries consisting a 3-bit
saturating counters, which provide the local prediction

§  4K 2-bit counters to choose between the global
predictor and local predictor

§ Total size: 4K*2 + 4K*2 + 1K*10 + 1K*3 = 29K bits!
 (~180,000 transistors)

E0-243©RG@IISc

37

Tournament Predictor in 21264

Pred.

BHR
2

Global
Pred.

Meta
Pred.

PC
3

Local
Pred.

PBHT PHT

E0-243©RG@IISc

38

Indirect Branches

§ Branches or jumps whose target addr.
varies at runtime.
Ø Function return, jumps for implementing

case statements, etc.
Ø Target address prediction for function

returns using a return address stack of
size 8 to 16.

E0-243©RG@IISc

