
1

E0-243: Computer Architecture

Instructors:
Arkaprava Basu
R. Govindarajan

2

Instruction-Level Parallelism :
Review

3

Multi-ALU Organization

§  More realistic pipeline with different ALUs
§  Possible structural hazards at MEM stage & divide
§  Branch Target Addr. calculation and branch condition

resolution in EX stage
§  Branch stall 3 cycles

Int

M1 M2 M3 M4

A1 A2

D i v i d e

IF IS RF
IF ID

WB TC DF DS
MEM WB

E0-243©RG@IISc

4

Data Hazards

§  RAW hazards can result in more than 1 stall cycle,
e.g., betn. Divide and Add

§  Load and Dependent instructions lead to 3 stall
cycles

§  WAR and WAW hazards also possible!
Int

M1 M2 M3 M4

A1 A2

D i v i d e

IF IS RF
IF ID

WB TC DF DS
MEM WB

E0-243©RG@IISc

5

Instruction Reordering
Example: Divd F4, F2, F0

 Subd F8, F6, F4
 Multd F10, F2, F6

MultD could be issued even though Subd is stalled.
§  Instruction reordering to avoid/reduce stalls

Ø Static Instruction Scheduling (compile time)
Ø Dynamic Instruction Scheduling (runtime –

hardware) : Ability to issue and execute instrns.
that follow (in the program order) a stalled instrn.
§  In-order vs. Out-of-order instrn. issue & execution.

–  Scoreboarding (CDC6600), Tomasulo (IBM360)
§  In-order vs. Out-of-order completion

E0-243©RG@IISc

6

Dynamic Scheduling
§ Out-of-order execution divides ID stage:

Ø Decode — decode instructions, check for
structural hazards.
§  Structural hazard detected by check FU status

Ø Issue — wait until data hazards are resolved
(checking Reg. Status info); read oprnds.
§  Instrns. wait in a Issue Queue and Read Register

Operands after they are ready (or)
§  Instrns. wait in Reservation Stations and operands,

as and when they become available, copied in the
reservation stations -- avoids WAR and WAW

E0-243©RG@IISc

Dynamic Instrn. Scheduling

Load
Buffers

FP adders FP multipliers

FP Registers

3
2
1

Reservation
Stations

Instrn.
Buffer

FP Ops.

Common Data Bus (CDB)

Memory

Addr.Unit Store
Buffers

1
2

7 E0-243©RG@IISc

8

Dynamic Scheduling

§  Execute: Execution begins after read operands.
§ Writeback:

Ø Communicate results to waiting instrns. (in
Reservation Stations or Instrn. Queue) through
Common Data Bus

Ø Result write also in to destination register
§  In-order vs. out-of-order completion/commit

E0-243©RG@IISc

9

Why In-order Completion?

§ With out-of-order execution, what happens if
an earlier instrn. raises an exception after a
latter instruction has modified the destination?
Example: Divd F4, F2, F0

 Multd F10, F10, F6
Divd raises an exception after Multd Completes? .

§  Precise exception handling
§ What happens if speculatively executed instrns.

complete (and write result in destination
register), before mis-speculation is detected?
Ø Architectural state should not be affected by

speculative instructions
E0-243©RG@IISc

10

HW support for In-Order Commit
§  Need HW buffer for results

of uncommitted instructions:
Reorder Buffer (ROB)
Ø One location reserved in ROB

for each dispatched instrn.
Ø Write result value in reorder

buffer location when execution
completes

Ø  Instrn. Commit in program order
instruction commits,
result is put into register

Ø  ROB Supplies operands between
execution complete & commit

Ø Helps to avoid WAR and WAW
Ø  Easy to undo speculated

instructions on mispredicted
branches

Reorder
Buffer

FP
Op
Queue

FP Adder FP Adder

Res Stations Res Stations

FP Regs

Adopted from DAP -CS252-
F00@cs.berkeley.edu

E0-243©RG@IISc

11

Static Scheduling: An Example

§  Consider
 for (i=0; i < n; i++)

 a[i] = a[i] + s;
§ Assembly code

L: LD F0, 0(R1) ; 1 stall cycle
 ADDD F4,F2,F0 ; 3 stall cycle

 ST 0(R1), F4
 ADD R1, R1, #8
 Sub R2,R2, #1
 Bneqz R2, L ; 1 branch stall cycle

E0-243©RG@IISc

12

Compiler Techniques to Reduce Stalls

 ld F0, 0(R1)
 Addd F4, F2, F0
 St 0(R1), F4
 Add R1, R1, #8

 Sub R2, R2, #1
 Bnez R2, loop

Instruction Scheduling:

3 stall

1 stall

 ld F0, 0(R1)
 Add R1, R1, #8
 Addd F4, F2, F0
 Sub R2, R2, #1
 St -8(R1), F4
 Beqz R2, loop

1 stall

5 Stalls –
11 cycles/iter

3 Stalls –
9 cycles/iter

2 stall

1 stall

E0-243©RG@IISc

13

 Unroll, Rename, and Schedule

 ld F0, 0(R1)
 ld F6, - 8(R1)

 Addd F4, F2, F0
 Addd F8, F2, F6
 Add R1, R1, #16

 Sub R2, R2, # 2
 St -16(R1), F4
 Beqz R2, loop
 St -8(R1), F8

 0 Stalls --
4.5 cycles/iter.

§  Renaming increases
the reordering
possibilities.

§  Load, FP and branch
stalls avoided by
instrn. scheduling.

§ Unrolling requires
more registers.

§  Scheduling increase
reg. Requirement.

E0-243©RG@IISc

Superscalar Processors

Reading Material for Aug.16-18 Class:
§  J.E. Smith and G.S. Sohi. Microarchitecture

of Superscalar Processors. Proceedings of
the IEEE, 83(12), 1609-1624.

§  K.C. Yeager. The MIPS R10000 Superscalar
Processor. IEEE MICRO, 28-40, April 1996.

14 E0-243©RG@IISc

