
Scoped Buffered Persistency Model for GPUs
Shweta Pandey∗

shwetapandey@iisc.ac.in
Indian Institute of Science

Bangalore, India

Aditya K Kamath†∗
akkamath@uw.edu

University of Washington
Seattle, USA

Arkaprava Basu
arkapravab@iisc.ac.in

Indian Institute of Science
Bangalore, India

ABSTRACT
While the implications of persistent memory (PM) on CPU hard-
ware and software are well-explored, the same is not true for GPUs
(Graphics Processing Units). A recent work, GPM, demonstrated
how GPU programs can benefit from the fine-grain persistence of
PM. However, in the absence of a persistency model, one cannot
reason about the correctness of PM-aware GPU programs. Persis-
tency models define the order in which writes to PM are persisted.
We explore persistency models for GPUs.

We explore persistency models for GPUs. We demonstrate that
CPU persistency models fall short for GPUs. We qualitatively and
quantitatively argue that GPU persistency models should support
scopes and buffering of writes to PM to leverage parallelism while
adapting to higher NVM latencies. We formally specify a GPU
persistency model that supports both scopes and buffers. We detail
how GPU architecture can efficiently realize such a model. Finally,
we quantitatively demonstrate the usefulness of scopes and buffers
for PM-aware GPU programs.

CCS CONCEPTS
• Computer systems organization→ Processors and memory
architectures.

KEYWORDS
Graphics Processing Unit; Persistent Memory; Crash consistency
ACM Reference Format:
Shweta Pandey, Aditya K Kamath, and Arkaprava Basu. 2023. Scoped
Buffered Persistency Model for GPUs. In Proceedings of the 28th ACM Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2 (ASPLOS ’23), March 25–29, 2023, Vancouver,
BC, Canada. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3575693.3575749

1 INTRODUCTION
Non-volatile memory (NVM) technologies such as Intel’s Optane
DC memory [24] and upcoming CXL-based NVMs [57] blur the
long-held distinction between memory and storage by enabling
∗Both authors contributed equally to this work.
†The author contributed toward this work when he was a research assistant at the
Indian Institute of Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9916-6/23/03. . . $15.00
https://doi.org/10.1145/3575693.3575749

persistent memory (PM). We refer to NVM accessed via loads and
stores at byte granularity as PM. Justifiably, there has been signifi-
cant research on CPU hardware and software for PM over the last
decade [7, 29, 31, 36, 37, 45, 54].

In our previous work,GPM [52], we demonstrated several classes
of applications that can benefit from both GPU’s parallelism and
PM’s fine-grain persistence. Consider a persistent key-value store
(pKVS), such as Meta’s RocksDB-pmem, that forms the backbone
of many reliable web services by enabling recoverability [56]. Prior
works explored how PM can speed up pKVS [25, 38, 56, 62]. Re-
searchers have also demonstrated that GPUs can improve the through-
put of KVS [63].GPM puts both together to create GPU-accelerated
pKVS (gpKVS) by enabling fine-grain persistence to GPU ker-
nels [52]. Consequently, the throughput improves by ∼ 3× over
state-of-art CPU-only pKVS [52]. Other important use cases include
GPU-accelerated persistent databases and GPU-accelerated process-
ing of PM-resident graphs. Further, long-running GPU kernels, such
as DNN training, that checkpoints partial results for recoverability
and early termination also benefit from PM’s fast persistence.

While GPM demonstrated benefits of PM for GPU programs, in
the absence of a specified persistency model, programmers cannot
reason whether a GPU program can correctly recover from a crash
by ensuring consistency of PM-resident data structures (i.e., recov-
erability). Writes to PM-resident data structures can be cached in
volatile caches. These writes can then drain to the PM and, thus,
become durable in an arbitrary order. A crash or a power failure
can then leave PM-resident data structures in an inconsistent state.

Ensuring recoverability of data structures is a fundamental re-
quirement of any PM-aware program – be it for a CPU or a GPU.
Pelley et al. [54] were the first to show the need for specifying a per-
sistency model for programmers to reason about the recoverability
of PM-aware CPU programs. Persistencymodels define the ordering
in which writes to PM (persists) should become persistent (durable).
We refer to this order as persist memory order (PMO). A model
determines how programmers can express PMOs, both within a
thread (intra-thread PMO) and across threads (inter-thread PMO),
as needed for the recoverability of a program. Researchers have ex-
plored various CPU persistency models [10, 13, 29, 36, 37, 45, 54, 55].

We explore persistency models for GPUs in this work. An obvi-
ous question is whether CPU persistency models are good enough
for GPUs. We, thus, first analyze if CPU models suit GPU architec-
ture and the needs of GPU applications.

Unfortunately, CPU persistency models fall short for GPUs due
to multiple reasons. CPU models allow programmers to express
inter-thread PMOs that affect all threads of a program – global
in nature. However, global ordering is ill-suited for hundreds of
thousands of concurrent GPU threads. Further, GPU’s hierarchical
programming model requires one to arrange threads in groups.

688

https://doi.org/10.1145/3575693.3575749
https://doi.org/10.1145/3575693.3575749
https://doi.org/10.1145/3575693.3575749
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575693.3575749&domain=pdf&date_stamp=2023-01-30

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shweta Pandey, Aditya K Kamath, and Arkaprava Basu

Thus, global ordering across different groups is often unnecessary
and can limit parallelism in GPU programs.

We observe that GPU memory consistency models address a
similar challenge in scaling synchronizations with scopes[22, 43,
49]. A scope qualifier allows a programmer to specify the subset
of threads that should participate in synchronization, eschewing
global visibility. We posit that GPU persistency models should
similarly support scopes to specify and enforce inter-thread PMO.

Next, we observe that buffering of persists is crucial for GPUs to
hide their latency. Efficient buffering can help bandwidth-hungry
GPU kernels to adapt to NVM’s limited bandwidth [61]. However,
straightforward extensions of buffered CPU persistency models [29,
37, 45] are impractical for GPUs. In a CPU, persists are typically held
at per-core buffers at L1 caches. Inter-thread PMO among buffered
persists are inferred using cache coherence messages. However, in
GPUs, the hardware is not responsible for keeping its L1 caches
coherent [49]. It is impractical to support coherence for thousands
of concurrent loads/stores in a GPU. Consequently, buffering of
persists that rely on coherence messages is inapplicable to GPUs.

We draw inspiration from GPU memory consistency models in
addressing the challenge. We note that GPU consistency models re-
quire programmers to explicitly demarcate the dependencies across
threads through acquire/release patterns [22, 43, 49]. We posit that
GPU persistency models should also allow acquire/release seman-
tics to declare inter-thread PMO.

Driven by these observations, we propose and formally define
a GPU persistency model named Scoped Buffered Release Persis-
tency (SBRP). It supports scopes to express inter-thread PMO using
acquire and release patterns. SBRP also enables GPU-optimized
buffering of persists for hiding latency.

SBRP decouples intra-thread PMO from inter-thread PMO. It
introduces an oFence operation for intra-thread PMO. The oFence
ensures that persists before the fence are made durable before any
later persists from the issuing thread.

SBRP introduces two scoped operations – persist acquire (pAcq)
and release (pRel) – for expressing inter-thread PMO. If a thread
𝑇0 needs its persists to be ordered before persists from another
thread 𝑇𝑛 , then 𝑇0 should execute pRel after its persists, while
𝑇𝑛 should issue pAcq before its persists. The programmer should
choose the narrowest scope (i.e., the smallest subset of threads) that
encompasses both 𝑇0 and 𝑇𝑛 for good performance. We formally
specify SBRP in Section 4. Further, SBRP introduces a durability
fence (dFence) [45] that guarantees immediate durability of persists
from the issuing thread. A dFence is not necessary to reason about
recoverability but enables greater control over the durability of
partial results. Note, all persist operations only affect writes to PM.

A key implementation goal of SBRP is to enforce ordering amongst
the minimum number of persists from different threads as required
by oFence, pAcq, and pRel operations. This is a challenge with
thousands of threads, as many persists that can be in flight at any
time. We carefully design buffers to track persists at the granularity
of individual warps, along with three associated hardware masks
to maximize parallelism among the persist operations.

While GPM did not specify its persistency model, we find that it
implicitly follows a straightforward extension of the CPU epoch per-
sistency model [8, 54]. GPM uses a system-scoped fence (__thread-
fence_sys) that acts as a persist barrier (global) for both intra- and

inter-thread PMO. Barriers divide the execution into epochs where
persists within an epoch can be freely reordered but not those from
different epochs. In short, GPM’s design fails to embody the de-
sirable qualities of a GPU persistency model. We evaluate SBRP
against GPM to quantify the benefits.

To demonstrate broader applicability, we evaluate persistency
models on two possible system designs – PM-far and PM-near.
In the former, the NVM is attached to the CPU and is accessed
by the GPU over PCIe, as in GPM [52]. In PM-near, we project a
future hardware design where the NVM is placed onboard the GPU,
avoiding the need to cross PCIe for accessing NVM.

We quantitatively demonstrate the benefits of SBRP with six
PM-aware GPU applications. We show that applications speed up
by up to 3.45𝑥 with SBRP over GPM, thanks to its ability to express
fine-grain inter-thread PMO using scopes and an innovative persist
buffer design.

In summary, we make the following contributions.

• We demonstrate how CPU-centric persistency models fall
short for GPUs and make a case for scopes and buffering for
GPU persistency models.

• We specify a GPU persistency model, SBRP, that supports
scopes and buffers and leverages acquire/release.

• We detail a GPU architecture to support such a model and
quantitatively show its benefits.

2 BACKGROUND
Persistent memory: Intel’s Optane Persistent Memory [24] is the
first commercially available NVM technology that enabled PM. Op-
tane’s access latencies are 3-10× of DRAM [28]. A key challenge for
applications using PM is ensuring recoverability, i.e., maintaining
consistency of PM-resident data structures in the face of a crash [6].
Persistency alone does not guarantee recoverability. Updates to
PM can be cached in a processor’s volatile caches. Thus, the order
in which data is written to the cache may differ from the order
it reaches the PM. For example, a failure during insertion into a
doubly-linked list could lead to dangling pointers if the pointer
update reaches PM before the data. We will soon discuss how a
well-specified persistency model can help programmers ensure
such scenarios are avoided.

CPUs that support PM enable a feature called Asynchronous
DRAM Refresh (ADR) to hide the higher write latency of NVM. Un-
der ADR, memory controllers buffer writes to NVM in a capacitor-
backed write pending queue (WPQ). On a power failure, WPQ’s
contents are guaranteed to reach NVM. Thus, persistence is guar-
anteed as soon as the memory controller accepts a write to PM.

Recently, Intel announced that it would discontinue Optane
PM [19]. The announcement, likely driven by economics, while dis-
appointing, is unlikely to be the end of persistent memory. Samsung
has started shipping memory-semantic SSDs that can effectively
act as persistent memory [58]. The memory-semantic SSD consists
of an SSD along with a large DRAM cache that caches write to
SSD for high throughput random reads/writes like memory while a
proprietary controller pushes the updates to the SSD. It shows that
the behavior of persistent memory can be conjured with different
memory technologies and techniques. Samsung expects this new
product to be valuable for emerging AI/ML applications. The CXL

689

Scoped Buffered Persistency Model for GPUs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

(Compute Express Link) 2.0 specification incorporated a global per-
sistent flush operation to support manipulation of PM-resident data
structures on future CXL-attached PM devices [9]. In summary,
while Intel’s Optane is the first commercially available PM, it is
unlikely to be the last.
Memory persistency models: For correct recoverability of PM-
resident data structures across crashes or power cycles, program-
mers must dictate the order in which writes to PM become durable
(persist) as per the program’s semantics. A persistency model de-
fines the permitted set of orderings of persists [54]. It also defines
how programmers can express these orderings. Persistency models
are thus a necessity to argue about the correctness of a recover-
able program – be it on a CPU or a GPU. We term the order of
persists enforced by a persistency model as the persist memory
order (PMO). This is analogous to the volatile memory order (VMO)
enforced by memory consistency models that define the order in
which loads/stores become visible to other threads.

Many CPU persistency models have been defined with varied
performance and programmability tradeoffs [13, 29, 36, 37, 45, 54].
These are broadly classified along two axes – (1) strict versus relaxed
and (2) unbuffered versus buffered. In strict models, PMO follows
VMO, whereas they may disagree with relaxed models [54]. The
epoch persistency model is an example of relaxed model. Here, the
epochs are demarcated by epoch barriers. Persists prior to a barrier
are ordered before those following the barrier; writes from within
an epoch may persist in any order. However, persists from different
epochs are ordered. In an unbuffered model, PMOs are enforced
immediately by waiting for earlier persists to complete. Buffered
models allow persists to be held in volatile buffers and later drained
following the PMO. This helps in hiding the latency of persists.
GPU hierarchy: GPU’s hardware resources are organized in a
hierarchy to scale to thousands of concurrent threads. The basic
execution block of a GPU is a Streaming Multiprocessor (SM). Mod-
ern GPUs contain more than a hundred SMs. SMs contain multiple
SIMD units, each with several lanes. All lanes of a SIMD unit ex-
ecute the same instruction on different data items concurrently.
The SIMD units of an SM share an L1 cache. L1 caches are private
to each SM, while all SMs share an L2 cache. The GPU’s global
memory is accessible to all threads and includes the GPU’s onboard
HBM/GDDR. L1 and L2 cache global memory contents.

GPU programming languages, e.g., CUDA, require programmers
to arrange threads in a hierarchy that mimics the hardware. The
smallest execution entity is a thread. In CUDA, 32 threads make
up a warp, the smallest hardware scheduled unit of work. Threads
in a warp typically execute in a lock-step fashion. A threadblock
is a collection of warps guaranteed to execute in the same SM,
while the grid is the largest unit of execution, comprising multiple
threadblocks that execute a GPU kernel together.
Scoped synchronization: Global synchronization across thou-
sands of GPU threads is slow. It is also often unnecessary in a GPU’s
hierarchical programming paradigm. GPUs, thus, provide means
to synchronize amongst only the threads at a given level of the
hierarchy, i.e., scope. CUDA provides three scopes – block, device,
and system. The effect of synchronization is guaranteed only for
the threads in its scope. For example, a fence with the block scope
guarantees visibility to threads in the threadblock of the calling
thread. While the device scope affects all threads in a GPU, the

system scope is necessary to synchronize across multiple GPUs
or the CPU. Inter-thread communication in GPU is accomplished
via acquire/release patterns. A release makes earlier writes from a
thread visible to others. An acquire makes earlier writes from other
threads visible to the calling thread. In the absence of explicit ac-
quire/release operations, such as in CUDA, fences with load/stores
can be used to create acquire/release patterns [43, 50]. A load oper-
ation followed by a fence creates an acquire, while a fence followed
by a store creates a release. The scope of an acquire/release pattern
is the narrowest scope of its constituent instructions.

3 SYSTEM DESIGNS FOR GPU AND NVM
We consider two system designs to ensure the generality of the
analysis. 1 NVM is attached to the CPU (host) alongside DRAM
and is accessed across the PCIe interconnect by the GPU (Figure 1a).
We call it PM-far. 2 NVM is placed onboard the GPU alongside
GDDR/HBM (Figure 1b). We call it PM-near.

PM-far mimics the system proposed in GPM [52]. The work
demonstrates that PM-far is realizable with commercial hardware.
However, the PCIe latency (∼ 300ns) is in the critical path of ac-
cesses to PM from the GPU. Also, the PCIe bandwidth (∼ 28 GBps
with PCIe 4.0) can eclipse the PM bandwidth.

Alternatively, future GPUs can place NVM onboard the GPU, i.e.,
PM-near. In PM-near, both DRAM and Optane NVM are connected
to memory controllers, as in today’s Xeon CPUs. We expect an
ADR-enabled WPQ to guarantee persistence when data reaches the
memory controller (MC) as in today’s CPUs. The persistent domain
(marked in black) comprises the MC and NVM.

The write bandwidth of the current Optane DIMM is ∼ 1
8
th

that of DRAM [28, 61]. Extrapolating from GPUs, we expect the
write bandwidth of NVM on GPU to be 1

8
th of GDDR. GDDR uses

similar technology as DDR but with many more channels, buffers,
etc., to achieve higher bandwidth. We posit that similar scaling is
possible for the NVM onboard the GPU. However, note that our
work on persistency models is not contingent on NVM’s bandwidth.
In Figure 10, we quantitatively demonstrate that our proposed
persistency model retains its value even when the NVM bandwidth
is scaled up or down.
Softwaremodel:Both theNVMand volatilememory are accessible
via loads and stores at byte granularity from GPU in the system
designs we consider. Applications choose where to place data as per
their needs. This is akin to Intel’s app direct mode for Optane [23]
where both types of memory are part of the physical address space.

We enable APIs to allocate (de-allocate) memory on PM and
map it onto GPU’s virtual address space using Unified Virtual Ad-
dress (UVA) [46] as in GPM [52]. These mappings should survive
across power-cycles for recoverability. On PM-far, we follow GPM
whereby memory is allocated out of files on PM and are mapped
to GPU’s virtual address space. In PM-near, we avoid higher over-
heads of files. Instead, we maintain a (persistent) namespace table,
mapping the names (address) of allocated contiguous memory re-
gions to respective physical addresses. The table tracks the sizes of
allocated regions along with the names. A name is used to access
persistently stored data after a crash. Upon recovery, previously
allocated data structures are re-mapped using an open routine that
takes a name as a parameter. The GPU driver manages this metadata.

690

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shweta Pandey, Aditya K Kamath, and Arkaprava Basu

CPU

GDDR

GDDR

PCIeMC MC

NVM NVM

MC

MC
CoreCoreSIMD

Core
L1$

SM

GPU

In
te

rc
on

ne
ct

DRAM DRAM

(a) PM-far: GPU accesses NVM across the PCIe.

CPU

DRAM DRAM

PCIe
MC MC

CoreCoreSIMD
Core

L1$

SM

GPU

In
te

rc
on

ne
ct GDDR

NVM
MC

GDDR

NVM
MC

(b) PM-near: GPU accesses on-board NVM.

Figure 1: System designs with GPU and NVM. Memory controllers are ADR enabled.

Programmers must order the writes reaching the NVM (persists)
for recoverability. The persistency models allows programmers to
reason about the orderings that need to explicitly enforced for cor-
rectness and how they can be expressed. Much of the discussion
for the rest of the paper will revolve around this topic.

4 DESIGNING A GPU PERSISTENCY MODEL
We explore GPU persistency models that will enable programmers
to reason about the correctness of recoverable GPU kernels. We
first discuss how CPU persistency models fall short for GPUs and
detail the desirable qualities for GPU models.

A persistency model should enable programmers to order per-
sists within a thread. For example, a GPU thread in gpKVS may
log a key-value pair before inserting a new one in its place for
recoverability. The log entry must persist before the new pair. GPU
programmers may specify intra-thread persist memory order (PMO)
using fences, like CPU models [45]. Persists before the fence should
be made durable before those appearing after.

However, inter-thread PMO in GPUs is challenging. CPU mod-
els are designed for a few threads, and thus, they globally order
persists across threads [37]. However, it is ill-suited for the hun-
dreds of thousands of GPU threads and its execution hierarchy. A
global ordering of persists across many threads inevitably leads
to poor performance and is often unnecessary given the GPU’s
programming hierarchy. However, if a model only allows PMO
within a threadblock, programmers will fail to order persists across
threadblocks when needed by program semantics.

Consider a reduction kernel that is repeatedly invoked by ap-
plications like MapReduce [20] to find the sum of an input array.
The array is divided among threadblocks, where each finds the
sum of its subarray. In the last iteration, one threadblock computes
the final sum from all threadblocks’ partial sums. Figure 2 shows
the operations performed by a threadblock. Each thread (Ti) is re-
sponsible for a single element (i) in the subarray. The threads of a
threadblock add the value of an element in the second half of the
array to those in the first half. The problem then reduces to finding
the sum of elements in the first half and repeats itself until a single
sum is obtained.

The input array resides on the GDDR, while the partial sums
and output arrays are on the NVM. Since reduction may operate
on a large dataset, persisting the output allows for recovery. While
persisting the partial sums allows computation to resume instead of
restarting after a crash. The values obtained in each iteration depend
on the sums from the previous iterations of the same threadblock.
Ordering these persists allows a program to resume from the last
unfinished iteration. A programmer needs to order persists from
different threads of the same threadblock (inter-thread PMO) but

arr (0) (1) (3) (4) (5) (6) (7)

(0, 4) (1, 5) (2, 6) (3, 7) (4) (5) (6) (7)

(0, 2, 4, 6) (1, 3, 5, 7) (2, 6) (3, 7) (4) (5) (6) (7)

+ +

+

(0...7) (1, 3, 5, 7) (2, 6) (3, 7) (4) (5) (6) (7)

T0 T1 T2 T3 T4 T5 T6 T7Iter
0

1

2

3

+ + + +
(2)

Figure 2: Reduction operation

persists from different threadblocks can proceed concurrently. In the
last iteration, however, ordering across all threadblocks is needed.
In short, for all iterations but the last, programmers should be able
to ordered persists only within each threadblock blocks but for
the last iteration ordering across threadblocks is needed. A GPU
persistency model should, thus, allow the flexibility of choosing the
subset of threads (here, within or across threadblocks) that should
observe a given inter-thread PMO.

Next, we posit that buffering of persists is necessary for bandwidth-
sensitive GPU kernels to hide the long latency of persists. However,
traditional CPU persist buffers do not scale well to GPUs. For exam-
ple, naively sharing a single buffer in an SM by up to 1024 threads
of a threadblock results in artificial serialization among persists,
e.g., those due to intra-thread PMO. Alternatively, a per-thread
buffer would incur massive hardware overheads due to hundreds
of thousands of concurrent GPU threads. It would also make it
impossible to detect and enforce inter-thread PMO efficiently. In
summary, straightforward extensions of buffers proposed in CPU
persistency models are ill-suited for GPUs.

This brings the next challenge of designing a GPU persistency
model: how to detect inter-thread PMO? CPU models typically
snoop on cache coherence messages to infer inter-thread ordering.
However, GPU’s L1 caches are not kept coherent by the hardware.
Thus, CPU persistency models cannot be extended to detect inter-
thread PMO for GPUs.

In summary, CPU persistency models are not suitable for GPUs
because: 1 Global communication of persists across threads, does
not scale well for GPUs. It is expensive and often unnecessary. 2
Naive extensions of CPU persist buffers are impractical for GPUs.
3 In the absence of coherent L1 caches, GPU models cannot easily
communicate inter-thread PMO.

We take cues from GPU’s scoped synchronization operations to
address these challenges. We posit that GPU persistency models
should enable programmers to order persists within a chosen subset
of threads in its execution hierarchy. Programmers should be able
to express intra-thread, intra-, and inter-threadblock PMO. Such

691

Scoped Buffered Persistency Model for GPUs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

a scope-aware model could allow one to write both correctly, re-
coverable and efficient kernels. Since scopes are already ubiquitous
in GPU consistency models, a scope-aware persistency model will
also be programmer-friendly.

We find that persist buffers are also necessary for realizing
scoped persistency models. This is because the NVM resides af-
ter the globally shared L2 cache. SMs do not have private NVMs.
Without buffers, threads would end up writing to the NVM even
for intra -thread or -threadblock PMO. Instead, volatile buffers in
SMs could independently track writes to PM and their PMO. This
buffer could be appropriately drained to PM at a later point to
enforce PMO. Hence, buffering persists at the L1 cache is needed
for a scope-aware persistency model. In Section 6, we detail our
GPU-optimized buffer design where PMOs are tracked per warp
instead of per thread or per threadblock.

Finally, to detect inter-thread PMO in GPUs, we again take a cue
from GPU consistency models that rely on acquire/release patterns
for inter-thread ordering. We posit that a GPU persistency model
should also rely on acquire/release semantics for inter-thread (intra-
and inter-threadblock) PMO.
GPM’s persistency model: Although GPM [52] did not specify its
persistency model, it follows a scope-agnostic, unbuffered epoch
persistency model. It employs system-scope fences to order per-
sists that acts as an epoch barrier. The model is scope-agnostic; all
PMOs are communicated globally as persists are flushed to order
them. It is unbuffered since the fence stalls execution by waiting
for persists to become durable. In short, GPM’s model lacks the
desirable properties of a GPU persistency model.
Summary: Specifying a GPU persistency model is a prerequisite to
reason about the recoverability of kernels. We argue that a scoped
and buffered persistency model can enable GPU programmers to
harness PM.

5 SCOPED BUFFERED RELEASE MODEL
Wepropose a scope-aware buffered persistencymodel named Scoped
Buffered Release Persistency (SBRP). SBRP introduces operations
that dictate persist memory order (PMO). Box 1 defines the or-
derings that we consider. We first discuss how a programmer can
specify intra- and inter-thread PMO before formalizing the model.

Box 1. Ordering definitions

Program order (−→𝑝𝑜): An operation (𝑜𝑝1) precedes another
operation (𝑜𝑝2) in program order iff they are both executed
by the same thread, and a sequential processor would execute
𝑜𝑝1 before 𝑜𝑝2 (𝑜𝑝1 −→

𝑝𝑜 𝑜𝑝2).
Volatile memory order (−−→𝑣𝑚𝑜): A memory operation (𝑀1)
is said to precede another memory operation (𝑀2) in volatile
memory order iff the underlying memory model guarantees
such an order (𝑀1 −−→𝑣𝑚𝑜 𝑀2).
Persist memory order (−−−→𝑝𝑚𝑜): A write to PM (𝑊 1) is said to
precede another write to PM (𝑊 2) in persist memory order
iff the persistency model guarantees that if𝑊 2 is durable,
then𝑊 1 must be durable (𝑊 1 −−−→

𝑝𝑚𝑜 𝑊 2).
Transitivity: VMO and PMO are transitive in nature.

(𝑀1 −−→𝑣𝑚𝑜 𝑀2) ∧ (𝑀2 −−→𝑣𝑚𝑜 𝑀3) =⇒ 𝑀1 −−→𝑣𝑚𝑜 𝑀3
(𝑊 1 −−−→

𝑝𝑚𝑜 𝑊 2) ∧ (𝑊 2 −−−→
𝑝𝑚𝑜 𝑊 3) =⇒ 𝑊 1 −−−→

𝑝𝑚𝑜 𝑊 3

Intra-thread PMO: We introduce an ordering fence instruction
(oFence) to indicate intra-thread PMO. An oFence guarantees that
any persists before the oFence are ordered before later persists in
program order. Box 2 formally specifies the behavior of oFence.

Box 2. SBRP definitions and guarantees

•𝑊 𝑡
𝑖
: A write by thread t to location i in NVM.

• 𝑂𝐹 𝑡 : A persistent ordering fence by thread t.
• 𝑝𝐴𝑐𝑞𝑡

𝑖,𝑠
: An acquire by thread t on location i of scope s.

• 𝑝𝑅𝑒𝑙𝑡
𝑖,𝑠
: A release by thread t on location i of scope s.

• 𝐷𝐹 𝑡 : A persistent durability fence by thread t.

Intra-thread PMO: Writes from a thread separated by an
oFence ensures they are ordered by intra-thread PMO.

𝑊 𝑡
𝑖
−→
𝑝𝑜 𝑂𝐹 𝑡

−→
𝑝𝑜 𝑊 𝑡

𝑗
=⇒ 𝑊 𝑡

𝑖
−−−→
𝑝𝑚𝑜𝑊 𝑡

𝑗

Inter-thread PMO: If a thread performs a persist then ex-
ecutes a release operation, following which another thread
acquires, then performs a persist, the two writes are ordered
by inter-thread PMO. All operations should be of a sufficient
scope that include both threads.
𝑊 𝑡1

𝑖
−→
𝑝𝑜 𝑝𝑅𝑒𝑙𝑡1

𝑋,𝑆
−−→𝑣𝑚𝑜 𝑝𝐴𝑐𝑞𝑡2

𝑋,𝑆

−→
𝑝𝑜 𝑊 𝑡2

𝑗
=⇒ 𝑊 𝑡1

𝑖
−−−→
𝑝𝑚𝑜 𝑊 𝑡2

𝑗

Durability fence: A durability fence provides the same guar-
antees as an ordering fence, but also guarantees that all prior
persists by the thread are durable on completion.

Inter-thread PMO:We introduce scoped persist acquire and re-
lease operations (pAcq_scope and pRel_scope). The block- and device-
scope acquire/release operations, pAcq_block()/pRel_block() and
pAcq_dev()/pRel_dev(), enable intra- and inter-threadblock PMO,
respectively. pRel accepts two parameters, a variable and a value.
It sets the variable to the given value and makes it visible in the
specified scope (e.g., threads in a threadblock) after all persists be-
fore pRel are made durable. pAcq accepts a variable as a parameter,
and ensures that the latest value of the variable is read from the
specified scope. A pRel on a variable followed by pAcq to the same
variable ensures that persists before pRel are ordered before the per-
sists after pAcq (see Box 2). Note that the variable is an identifier for
matching pRel to pAcq and can be volatile. The scope of pAcq and
pRel determines if the enforced PMO is intra- or inter-threadblock.

Let us assume that a thread𝑇0 wishes to order its persists before
another thread 𝑇32 from the same threadblock. 𝑇0 should issue a
pRel_block() after the persists that it wishes to order. Thread 𝑇32
can then issue a block-scoped pAcq. This guarantees writes from
𝑇0 before pRel are persisted before writes from 𝑇32 after pAcq.
Durability: PMO does not guarantee immediate durability. While
it is not a necessity to reason about recoverability, SBRP also in-
troduces a dFence (durability fence) [45] instruction to enable the
flexibility of guaranteeing immediate durability of writes to PM. A
dFence ensures that all persists from the issuing thread are durable
before the thread’s execution proceeds. The completion of a dFence
guarantees that the writes from the issuing thread have persisted.
Since the NVM is shared by all threads on a GPU, dFence ensures
visibility of the writes across all threads on a GPU. Thus, dFence can

692

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shweta Pandey, Aditya K Kamath, and Arkaprava Basu

1 __global__ void reduction(...){
2 // For recovery
3 if (pArr[tid] != EMPTY)
4 return;
5 ... // Finish iter 0
6 if (tid < 4) {
7 // Iter 1, compute local sum
8 sum += pArr[tid + 4];
9 if(tid > 2) {
10 pArr[tid] = sum;
11 // Persistent release
12 pRel_block(&flag[tid], 1);
13 }
14 }
15 // Wait for iter 1
16 if (tid < 2) {
17 // Persistent acquire, spin
18 while (pAcq_block(
19 &flag[tid + 2]) == 0) {}
20 }
21 ... // Finish all compute
22 if(tid == 0)
23 //Persistency bug if blk scope
24 pRel_dev(outSum[blkId], sum);
25 }

Figure 3: Reduction kernel.

1 __global__ void
2 insert(...){
3 insert_into_log(...);
4 ofence();
5 insert_pair(...);
6 ofence();
7 commit_log();
8 }
9 __global__ void
10 recover(...){
11 read_from_log();
12 restore_pair();
13 dfence();
14 remove_log();
15 }

Figure 4: gpKVS kernels.

also be used for inter-thread durability by forming acquire/release
patterns with dFence (Section 2).
SBRP in action: We demonstrate inter-thread PMO using the
reduction kernel (Figure 2). Recall that the partial sum and output
reside on NVM for recovery after a crash.

Figure 3 shows how the reduction kernel is written under SBRP.
All elements of pArr are initially EMPTY. First, each thread (say𝑇0)
reads the element kept by the thread 4 indices to its right (𝑇0 reads
𝑝𝐴𝑟𝑟 [4]), and adds that to its current sum (𝑠𝑢𝑚 + 𝑝𝐴𝑟𝑟 [4]) kept
in local memory (line 8). If the threads have finished computing
their sum (e.g.,𝑇2,𝑇3) and are not a part of iteration 2, (line 9), they
will persist 𝑝𝐴𝑟𝑟 [𝑡𝑖𝑑] with value sum (line 10). The threads (𝑇2, 𝑇3)
then release a flag (lines 12) indicating completion of iteration 1.
Meanwhile, the threads participating in the next iteration (e.g., 𝑇0,
𝑇1, line 16) will spin on the flag using an acquire operation (lines
18-19). The flag having a value ‘1’ indicates that a release operation
was performed on it. This guarantees that persists from the next
iteration are always ordered after persists from the prior iteration.

Once all threadblocks have completed their reduction, the first
thread of each threadblock writes the sum using a device-scoped
release (line 22-24). Afterward, a single threadblock performs the
final reduction (not shown). It does a device-scope acquire to obtain
each threadblock’s partial sum. This ensures that persists during
the final reduction are ordered after all previous persists.

5.1 Recovery under SBRP
The recovery mechanism depends on the program semantics, as
is the case for Optane’s [12] and GPM’s [52] programming model.
The role of the persistency model is to enable programmers to
effectively express the PMOs needed for recovery and enable one
to reason about its correctness. For example, in gpKVS, recovery
is achieved through write-ahead undo logging to PM. Top half of
Figure 4 shows how oFence is used (lines 4 and 6) to ensure that old
key-value pair is persisted before the new pair overwrites it and the
new pair is persisted before the log is committed. The bottom half
of Figure 4 shows the recovery kernel that reads the PM-resident
log and inserts the logged pairs into the KVS after a crash. The

dFence in line 13 ensures that the restored KVS is persisted before
the log is discarded.

For kernels such as reduction, no separate recovery kernel is
needed as the recovery logic is embedded within itself (i.e., native)
as detailed previously (Figure 3). Here, the execution can simply
resume from the last unfinished (persisted) iteration and will return
immediately if the thread’s index in the intermediate array is non-
empty (line 3). For example, assume a crash happens during the
second iteration, and the output of iteration 1 has persisted. Then
threads responsible for iteration 1 will simply return after checking
line 3. We list the recovery method for each application in Table 2
of Section 7.

5.2 Interaction between VMO and PMO
In SBRP, conventional scoped fences (e.g., __threadfence in CUDA)
affect both volatile and persistent writes. This is to ensure PMO
follows the VMO. However, pAcq, pRel, and oFence operations only
impact writes to PM and thus, allows one to specify the desired
PMO without impacting writes to the volatile memory.

To avoid the possibility of a cyclic order between VMO and PMO
between a set of persists, we ensure that any ordering guaranteed in
PMO is reflected in VMO too. For example, a persist to a location A
separated from a persist to location B by an oFence ensures that the
write to A persists before B. It also ensures the write to A is ordered
in VMO before the write to B. However, if A or B are volatile, the
oFence has no effect. As the PMO agrees with VMO, SBRP is a strict
persistency model (Section 2).

5.3 Possibility of Scoped Persistency Bugs
A persistency model cannot guarantee correct recovery by itself. It
enables the framework to reason about the correctness of a recov-
erable GPU kernel. Inadequate use of oFence pAcq, pRel can lead
to bugs. For example, under SBRP, if programmers use narrower
scope than needed by program semantics in pAcq/pRel operations
for inter-thread PMO, it can lead to persistency bugs. That is, PM-
resident data structures may not be recoverable to a consistent state
after a crash. We call such programming errors scoped persistency
bugs. Such bugs, in spirit, are similar to scoped synchronization
bugs for VMO [32, 33]. To observe how such persistency bugs can
lead to incorrect recovery, let us refer to the example of the reduc-
tion kernel (Figure 3). On line 24, a device-scoped pRel is used to
order persists across threadblocks. Instead, if this was block-scoped,
a persistency bug could manifest. During the final reduction by the
chosen threadblock, it could acquire incorrect values when comput-
ing the final sum. After a crash, threads could see incorrect values
(neither EMPTY nor correct partial sum) in the array (line 3). This
will result in incorrect final computation. However, note that since
pAcq/pRel affects only writes to PM, the correctness of programs
that deal with only volatile memory is unaffected.
Summary:We propose a scope-aware buffered GPU persistency
model SBRP which relies on acquire/release semantics for specify-
ing inter-thread PMO. We shall next demonstrate how the model
can be efficiently realized in GPU architecture.

693

Scoped Buffered Persistency Model for GPUs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

CoreCoreSIMD
Core

L1$

1 2 3 4

1

2

3

4

Type $ index Warp BM

ODM

EDM

FSM

ACTR In
te

rc
on

ne
ct

To persistence
domain

PB

SM

Figure 5: Design of scoped buffered persistency model.

6 IMPLEMENTATION
We first discuss hardware modifications, detailing fundamental
challenges in designing GPU buffers for persists. Afterward, we
discuss how the operations in SBRP are implemented and highlight
opportunities for optimizations.
Hardware modifications: Figure 5 shows the new hardware com-
ponents added to each SM of the GPU. First, we add a FIFO per-
sist buffer (PB), which is itself volatile. Three ‘Type’ bits indicate
whether an entry corresponds to a persist or an ordering point
(oFence/dFence/pAcq/pRel). If the entry is a persist, it holds the in-
dex of the dirty L1 cache line containing the data. A 32-bit bitmask
(Warp BM) is maintained to track which warps issued the store or
fence operation. The typical size of an entry is 44 bits.

We add three more bitmasks to each SM – the order delay mask
(ODM), the eviction delay mask (EDM) and the flush status mask
(FSM). The number of bits in each mask is equal to the maximum
resident warps in an SM (here, 32). Threads may stall when enforc-
ing ordering (e.g., dFence) or when eviction of a cache line violates
ordering constraints. The ODM tracks warps that are stalled due
to the former, while the EDM tracks warps that are stalled due to
the latter. The FSM tracks the warps whose persists are currently
being flushed. We shall later see the role of these structures. Each L1
cache line is extended with a bit to indicate whether the data is for
PM (marked in orange). Eight bits are added per cache line to index
into the corresponding PB entry. A hardware acknowledgement
counter (ACTR), tracks pending persists. ACTR is initially zero and
is incremented on eviction of a persist from the L1 cache. When
the write reaches the persistence domain, an acknowledgement is
sent to the SM to decrement ACTR.

The PB’s design plays a key role in the models’ implementa-
tion. The PB should enable efficient enforcement of intra-thread,
intra- and inter-threadblock PMO. Simultaneously, it should maxi-
mize concurrency of persists and coalescing to benefit from GPU
parallelism and minimize writes to PM.

The first challenge is deciding the granularity at which the PB
should track persists. One option is to track persists from each
thread separately, as is done in CPUs. This would add a large hard-
ware overhead, given the number of GPU threads. Alternatively,
one may track only the cache lines updated, without noting the
threads updating it. However, this leads to false ordering. Consider
threads 𝑇0 and 𝑇32 belong to a threadblock. Thread 𝑇0 writes to 𝑝𝑋 ,
after which thread 𝑇32 executes an oFence and writes to 𝑝𝑌 , where
𝑝𝑋 and 𝑝𝑌 are on PM. If we track just the updates to cache lines by
any thread in a threadblock, the PB will have the following entries:
𝑝𝑋 → oFence → 𝑝𝑌 . It would then unnecessarily order 𝑝𝑌 after
𝑝𝑋 , although they were issued by different threads and could have
persisted concurrently.

We find that tracking persists, and PMOs per warp provide a
sweet spot. We use the Warp BM in PB entries for this purpose.
The storage overhead of per-warp tracking is 32× lesser than per-
thread. Also, threads in a warp typically execute in lock-step. The
writes from a warp often fall in the same cache line, allowing the
hardware to coalesce them into a single write [49]. Consequently,
it introduces minimal false ordering for GPU kernels.

We do not maintain a persist buffer at the L2 cache. Instead, we
let the persists write through the L2. A buffer shared across all SMs
in a GPU is not scalable as modern GPUs have up to 108 SMs. If
we track persists and PMO at a warp level in an L2 buffer, one will
need ∼ 3400 bits per buffer entry for the Warp BM. If we instead
track persists and PMO per threadblock, we again end up with false
ordering. Further, the L2 caches in GPUs are in several MBs. To
maintain a cache coverage similar to L1 PB, the L2 buffer must
be hundreds of times bigger than the L1 PB. Maintaining such a
large, centralized buffer is infeasible. Note that most buffered CPU
persistencymodels also do not use buffers at the shared LLC [37, 45].
Storage overheads: Each entry in the PB needs 44 bits. The Warp
BM occupies 32 bits; the cache line index needs 9 bits. Type infor-
mation is 3 bits long. Each L1 cache line is extended with a bit to
indicate whether it contains PM data and 8 bits to index into the
PB. Ninety-six bits are maintained per SM for the ODM, EDM, and
FSM combined and 8 bits for the ACTR. If we maintain half the
number of PB entries as there are L1 cache lines, the additional
storage requirement is ∼ 2 KB per-SM. The overhead is ∼ 3.1% for
a 64 KB L1 cache. This overhead is less (∼ 1%) if we include the L2
cache. Section 7.3, shows that reducing the PB entries does not lead
to a significant performance loss.

6.1 Operation of SBRP
Persist operation: We now discuss how the PB is designed to
maximize coalescing of persists, while also guaranteeing correct
ordering between them. When a persist is issued, the data may
not be in the L1 cache. On a miss, a PB entry is allocated along
with a cache line. The PB entry contains the index of the cache line.
The Warp BM is set to the warp issuing the persist. The cache line
is set to point to the PB entry. On a cache hit, however, we find
the corresponding PB entry (say, 𝑃𝐵𝑘) from the index stored in the
cache line. We check the PB for any ordering operations issued after
𝑃𝐵𝑘 by the same warp(s). If there are none, the write is performed
to the cache line and the warp’s bit is set in the Warp BM for the
PB entry. This coalesces unordered writes to the same cache line.

If there is an ordering entry after 𝑃𝐵𝑘 , the store is not allowed
to proceed as it will violate the required PMO. The issuing warp is
stalled and marked in the EDM until 𝑃𝐵𝑘 is persisted. Only after
that the persist is allowed to proceed. For example, assume a thread:
1 sets 𝑝𝑋 = 𝑎, 2 sets 𝑝𝑌 = 𝑏, 3 issues an oFence, then 4
sets 𝑝𝑋 = 𝑐 . This creates a PMO between 𝑝𝑌 = 𝑏 and 𝑝𝑋 = 𝑐 . To
guarantee this order, the second persist on 𝑝𝑋 (operation 4) is
neither allowed to modify the current cache line nor can it insert
a new entry into the PB until the first persist on 𝑝𝑋 (operation
1) is durable. A persist at the head of the PB is removed and the
corresponding cache line is evicted. Simultaneously, the ACTR is
incremented to track if it has been made durable.

694

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shweta Pandey, Aditya K Kamath, and Arkaprava Basu

Intra-thread PMO: The oFence operation creates intra-thread
PMO. While oFence was proposed for CPUs [45], it is new for
GPUs. Buffered implementation of oFence on GPU presents unique
challenges. The per-thread tracking of PMO as proposed for CPUs
is impractical for GPU’s thousands of threads. Hence, the PB tracks
these ordering requirements at the granularity of a warp.We discuss
the GPU-specific implementation of ofence below.

When oFence is issued, we add an entry into the PB and mark its
‘Type’. We allow oFence entries to coalesce by setting the respective
Warp BM bits in the entry for each warp issuing the oFence. If an
oFence is issued by Warp0 followed by another by Warp1 without
intervening any operations, we maintain a single PB entry with
bits 0 and 1 set in the Warp BM for Warp0 and Warp1.

When the oFence entry reaches the head of the PB, the FSM bits
are set corresponding to the Warp BM of the PB entry (bitwise OR)
and the entry is removed from the PB. Later, when a persist (say
𝑝𝑋) reaches the PB head or is evicted, its Warp BM is compared
with the FSM bits (bitwise AND). If there are any common bits, it
indicates that an unacknowledged, flushed cache line is ordered
before 𝑝𝑋 . Flushing 𝑝𝑋 is delayed to preserve the PMO. Once all
outstanding persists are acknowledged, i.e., ACTR reaches zero, the
FSM bits are reset and 𝑝𝑋 can be flushed. In the absence of FSM,
warps that issued an oFence can not be distinguished from warps
that did not. We will have to assume that all warps issued oFence,
introducing false ordering amongst persists from different warps.
Intra-threadblock PMO: The intra-threadblock PMO is expressed
through pAcq_block() and pRel_block(). For pAcq and pRel, a PB
entry is added with ‘Type’ set as block-scope acquire or release
along with the warp issuing it. Persists after pAcq can be made
durable only after pAcq exits PB and those before pRel must bemade
durable before pRel reaches the PB head. When the pAcq and pRel
entries reach the PB head, FSM is set for associated warps. Note,
pAcq cannot complete until pRel finishes. Hence, warps waiting
for pAcq to complete can only persist their writes after writes from
warps performing pRel persists. This is how the FSM avoids stalling
unrelated warps.
Inter-threadblock PMO: The inter-threadblock PMO is expressed
using device-scoped pAcq and pRel. On a device-scoped pAcq/pRel,
we add a new entry in the PB with the appropriate ‘Type’ and
note the warps that issued it in the Warp BM. In current GPUs,
device-scoped threadfences force writes from L1 cache to be flushed
to the shared L2 cache. This makes the writes visible to all the
threadblocks. For inter-threadblock PMO, we do the same, in the
absence of an L2 buffer. Unlike block-scoped, the device-scoped
pAcq invalidates the cache line to avoid reading stale data.

The ODM bits are set to track warps that issued the operations.
The warps executing pRel are delayed, while others not marked in
the ODM continue execution. Once the bitmask is set, we flush the
persists. The ACTR keeps a count of the flushed, unacknowledged
persists. When the pRel entry reaches the buffer head its ODM bits
are reset, and the same bits are set in the EDM. Once all persists
are acknowledged (ACTR hits zero), EDM bits are reset and the
participating warps can resume. This ensures that only the warps
whose persists have been made durable resume execution. Similar
to FSM, ODM also helps to avoid false ordering.
Durability: The dFence forces all writes to PM from a thread to
be durable before later writes from that thread. The issuing thread

Table 1: Simulated Hardware configuration

of SMs 30 Window size 6
Clock speed 1365 MHz Threads/block 1024
L1 cache 64 KB/SM L2 cache 3 MB
GDDR BW 336 GBPS GDDR latency 100 ns

NVM BW 84 GBPS read, 42
GBPS write NVM latency 300 ns

PCIe BW 28 GBPS PCIe latency 300 ns

stalls until the dFence completes. We add an entry into the PB
marking the warps that issued the dFence. While executing the
dFence, we set the bits in the ODM for all the warps that issued
it. The persists from those warps are flushed and counted by the
ACTR. These warps are not allowed to proceed until the ACTR
hits zero, indicating the dFence operation completed. The use of
ODM allows unrelated warps to continue execution. We note that
dFence was proposed for CPUs [45]. Although its implementation
for GPUs is new, including tracking at warp granularity, it is not
our key contribution.
Eviction: If a read/write attempts to evict a dirty PM cache line
(say 𝑝𝑋), we consult its PB entry using the PB index kept with 𝑝𝑋 .
We check if evicting 𝑝𝑋 violates PMO by looking for an ordering
entry in the PB before 𝑝𝑋 ’s. If none exist, 𝑝𝑋 is evicted. Otherwise,
the warp causing the eviction is stalled by setting its bit in the EDM.
Once the outstanding flushes are complete (ACTR is zero), the warp
can retry eviction.

6.2 Hardware Optimization
A key performance consideration while designing the buffers is
deciding when to flush dirty PM cache lines. Prior CPU models [37]
typically perform this eagerly by flushing as soon as ordering
constraints allow. While this ensures that the NVM bandwidth
is utilised well, it reduces the coalescing opportunities in the cache.
For example, a thread may perform two consecutive stores to a
cache line without intervening ordering. In an eager policy, this
would create two persists. However, a single persist after the second
store would have been sufficient.

One can also lazily flush data only at ordering operations. This
allows unordered stores to the same cache line to coalesce. How-
ever, it leads to poor utilization of NVM bandwidth. If ordering is
infrequent, it induces long periods with no persists followed by a
burst, creating contention. Instead, we propose a window-based
policy to get best of both worlds. Each SM tries to maintain a fixed
number of outstanding persists at a time. This creates a stream of
persists, while allowing coalescing opportunity. In Section 7.3 we
quantitatively compare these different policies.

7 EVALUATION
We evaluated SBRP by extending GPGPU-Sim 4.0 [35] running
CUDA 11.4 [48]. Table 1 lists the simulated configuration. We eval-
uate memory persistency models on both system designs discussed
in Section 3 – PM-far and PM-near. The PCIe latency and the attain-
able bandwidth were set to mimic that of PCIe 4.0 [44]. In PM-near,
PCIe does not play a role since the NVM placed on board the GPU.

We evaluated SBRP against GPM [52], which implicitly assumes
the epoch persistency model (Section 4) (‘GPM’ in figures). GPM
was implemented on real hardware. We implemented and validated

695

Scoped Buffered Persistency Model for GPUs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 2: Applications used in evaluation

Applications Params Scoped PMO Recovery
gpKVS ∼ 64K pairs Intrathread Logging

Hashmap (HM) ∼ 50K entries Intrathread Logging
SRAD 512 sq. matrix Intrathread Native

Reduction (Red) ∼ 4M ints Blk/dev-
interthread Native

Multiqueue (MQ) 2K batches Intra/blk-
interthread Logging

Scan ∼ 120K ints Blk-interthread Native

0

0.5

1

1.5

2

2.5

3

gpKVS HM SRAD Red MQ Scan Mean

Sp
e

ed
u

p

GPM Epoch-far SBRP-far Epoch-near SBRP-near

Figure 6: Speedup over epoch-far of different models.

GPM on the simulator for it to be compared with our proposed
persistency model – SBRP. Since SBRP needs modifications to the
GPU hardware, it cannot be evaluated on current hardware. The
original implementation of GPM used a system-scoped fence as
an epoch barrier to avoid modifications to GPU hardware. Such
fence flushes writes to both PM and volatile memory. We thus
also simulated an enhanced version of GPM’s implementation of
the epoch persistency model where an epoch barrier only impacts
writes to PM (‘Epoch’ in figures).

If a model is evaluated on PM-far (PM-near), the name of the
persistency model is appended with ‘-far’ (‘-near’). For example,
SBRP-near represents SBRP model on a PM-near system.

7.1 Applications
Table 2 lists the GPU-accelerated applications used in the evaluation.
Each of these applications places its key data structures in the PM
for recoverability. These applications have different types of PMO
– intra-thread, intra-, and inter-threadblock and different crash
recovery models.
GPU-accelerated Persistent key-value store (gpKVS): A batch
of key-value pairs are inserted into a PM-resident KVS in parallel.
The application uses PM-resident write-ahead undo log for recovery.
Section 5.1 and Figure 4 detail the recovery for gpKVS.
Hashmap (HM): Cuckoo hashing is used to insert batches of values
into a hashmap in parallel. Before inserting a new value, the old
value is logged to PM, necessitating an intra-thread PMO. As in
gpKVS, upon recovering from a crash, a recovery kernel would
read from the log restoring the hashmap to a consistent state [1].
SRAD (SRAD): This application is used to remove noise from an
input image to produce an output image. Each thread is responsible
for processing a pixel of the input image. The processing for each
pixel happens in two steps. After the first step, the intermediate
noise values and the image (pixels) are persisted for one to resume
processing even if a system crashes during the second part of the
processing. For recovery to a consistent state, each pixel should be
persisted only after a thread persists the corresponding noise values,

requiring intra-thread PMO. After power-up, each thread resumes
processing from the persisted values and the partially processed
image [18, 52].
Reduction (Red): Section 4 details Reduction. It requires both
intra-threadblock and inter-threadblock PMO [47].
Multiqueue (MQ): In this kernel, each threadblock in a kernel
maintains a single persistent queue [4]. A batch of entries is in-
serted or removed from the queue in a transaction. Each thread is
responsible for processing a subset of entries in the batch. Recovery
requires either all entries in a batch to be inserted or none. For this
purpose, a queue’s head and tail indices are logged to PM. Once
all threads finish inserting or removing entries, the tail/head is
updated by a leader thread, creating an intra-threadblock PMO. The
leader also marks a transaction complete after logging the tail/head,
creating an intra-thread PMO. During recovery, queue heads and
tails are restored from the log for in-progress transactions to ensure
a consistent state of the queues.
Scan: This kernel computes the scan of many data arrays. As in
reduction, the scan of an element is computed iteratively. A thread
uses the output from the previous iteration of another thread in the
threadblock. This needs intra-threadblock PMO. During recovery,
the computation resumes from the persisted array contents [47].

7.2 Performance Analysis
Figure 6 shows the performance of the models (higher is better).
We normalize the performance to epoch-far (higher is better). Ap-
plications on the left half have only intra-thread PMO. The right
half has those with inter-thread PMO. There are five bars for each
application. Besides GPM [52], we evaluate the epoch persistency
model on two system designs – PM-far and PM-near. Note that
GPM only works for PM-far as it avoids hardware changes.

First, note that epoch-far outperforms GPM by 6% on average,
and by up to 16%. While both follow epoch persistency, in GPM
writes to both volatile and PM are flushed on an epoch barrier,
unlike for epoch-far. Since epoch-far strictly outperforms GPM, we
do not focus our analysis on GPM for the latter parts of the section.

SBRP-far outperforms GPM and epoch-far by 21% and 14%, on
average, respectively. The difference can be up to 121% and 90%,
respectively. SBRP-near outperforms epoch-near by 15% on average
and up to 68%. This establishes the importance of a scoped, buffered
persistence model for a GPU, irrespective of the system design.

We also observe that epoch-near outperforms epoch-far by 116%,
SBRP-near outperforms SBRP-far by 119% and GPM by 165%. The
removal of the PCIe bottleneck is crucial to the improved perfor-
mance of PM-near. This demonstrates the value of placing NVM
onboard the GPU.

The epoch model expresses both inter- and intra-thread PMO
using global barriers. At a barrier, threads flush persists to PM and
invalidate them from L1 cache. Invalidation is needed to ensure
that threads executing the barrier for inter-threadblock PMO do
not read stale data. In SBRP, L1 cache contents remain unaffected
on intra-thread (oFence) and intra-threadblock (block-scope) PMO
as the accessing threads share the SM’s L1 cache. The use of oFence
for intra-thread PMO in gpKVS and HM avoids invalidating L1
cache, unlike in epoch, explaining their speedups. Cached PM data
is invalidated only on inter-threadblock PMO and dFence.

696

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shweta Pandey, Aditya K Kamath, and Arkaprava Basu

0%

25%

50%

75%

100%

SBRP-far SBRP-near SBRP-far SBRP-near SBRP-far SBRP-near
Red MQ Scan

Buffers Scopes

C
o
n
tr
ib
u
ti
o
n

Figure 7: Speedup breakdown.

0%

25%

50%

75%

100%

gpKVS HM SRAD Red MQ Scan

Epoch-far SBRP-far Epoch-near SBRP-near

N
o

rm
al

iz
e

d
 r

e
ad

 m
is

se
s

0.01%2.9%

Figure 8: L1 read misses for NVM data.

0.8x

0.9x

1.0x

1.1x

1.2x

gpKVS HM SRAD Red MQ Scan GMean

Epoch-far SBRP-far

Sp
ee
d
u
p

1.83x

Figure 9: SBRP speedup with eADR.

0.8x
1.0x
1.2x
1.4x
1.6x
1.8x

gpKVS HM SRAD Red MQ Scan GMean

12.50% 25% 50% 100%

Sp
e
e
d
u
p

(a) Varying L1 coverage.

0.8x
1.0x
1.2x
1.4x
1.6x
1.8x

gpKVS HM SRAD Red MQ Scan GMean

50% 100% 200%

Sp
ee
d
u
p

(b) Varying bandwidth.

0.6x
0.8x
1.0x
1.2x
1.4x
1.6x
1.8x

gpKVS HM SRAD Red MQ Scan GMean

2 4 6 8 10

Sp
e
ed

u
p

(c) Varying window sizes.

Figure 10: SBRP sensitivity studies. Speedups of SBRP over epoch.

SRAD performs all calculations, then persists its results. Due to
bursty writes to the PMwhile persisting, all models behave similarly.
For these applications, SBRP-far outperforms epoch-far by 3% and
SBRP-near outperforms epoch-near by 6%. SRAD requires only
intra-thread PMO; it benefits from buffering but not from scopes.

Reduction greatly benefits from block-scoped pAcq and pRel,
providing 90% speedup for SBRP-far over epoch-far and 68% for
SBRP-near over epoch-near. Scopes allow SBRP-far to overcome the
bandwidth limitations of PCIe. The process of reducing a subarray
by a threadblock can be performed within the L1 cache, avoiding
traversing the PCIe. As writes under SBRP-near remain in L1 cache
without being flushed to the PM, it speeds up over epoch-near. MQ
benefits from inter-threadblock PMO. However, intra-thread PMO
during logging causes frequent flushes, limiting speedups for SBRP
to 8% under PM-near. In scan, every iteration has many accesses to
bandwidth-limited NVM, limiting its speedup (6-7%).
Importance of scopes: To quantify the impact of scopes for appli-
cations with intra-threadblock PMO, we converted all block-scope
operations to device-scope. Figure 7 shows the relative contribu-
tion of buffers and scopes to SBRP’s speedups. As gpKVS, HM,
SRAD use only intra-thread PMO, scopes are irrelevant for them,
and are excluded. For the rest, scopes are key except for MQ with
SBRP-far. MQ is bottlenecked while persisting data during logging,
further exacerbated by the poor bandwidth in SBRP-far. On aver-
age, scopes account for 77% of the speedups for applications with
intra-threadblock PMO.
Impact on caching: Figure 8 shows the number of L1 cache read
misses (normalized to epoch-far) to quantify SBRP’s impact on
cache utilization (lower is better). gpKVS and HM witness lower L1
readmisses with SBRP since oFence does not invalidate the L1 cache.
SRAD’s persists happen at the end of the computation, limiting
benefits from improved L1 utilization. The block-scope operations
lower L1 read misses for reduction and scan under SBRP as data is
cached longer. Due to logging, benefits from block-scope operations
are limited in MQ. In general, SBRP improves read latency over
the epoch model, as it caches data longer by avoiding invalidating
cache lines for intra-thread and intra-threadblock PMO. This helps
relatively read-heavy workloads like reduction.

Impact of eADR: Intel recently announced enhanced ADR (eADR)
feature that allows battery-backed servers to drain the CPU cache
contents to PM on power failure [59]. It obviates the need to explic-
itly flush lines from CPU caches for persistence. Although, Intel
acknowledges that enabling eADR is challenging [26]. We study
the impact of eADR on GPU persistency models. Note it affects
only PM-far systems. Under eADR, persists from a GPU need to
only reach the CPU’s LLC to become durable. Figure 9 shows SBRP-
far’s performance normalized to epoch-far in the presence of eADR.
SBRP-far speeds up over epoch-far by 14%, on average. This is sim-
ilar to that without eADR since eADR doesn’t remove the PCIe
bandwidth bottleneck. It only reduces the latency of persisting.
Scopes and buffering in SBRP help by limiting the PCIe traversals.

7.3 Sensitivity Studies and Recovery Cost
Persist buffer: Figure 10 (a) shows the speedup of SBRP-near over
epoch-near with varying the PB size. The different bars indicate
the percentage of L1 cache that the PB covers, e.g., if the L1 cache
holds 512 cache lines, then a 50% buffer (default) holds 256 entries.
If threads try to bring more PM data to the L1 cache than the PB can
hold, it starts draining cache lines. This can lead to anomalies, as
in HM, where the 50% buffer outperforms 100%, as eagerly flushing
reduces the amount of data that needs to be persisted in the critical
path. On average, the 50% buffer performs within 1% of the 100%
buffer, showing that buffer size is not a key factor. As expected, the
performance drops if the buffer is too small, seen in gpKVS.
NVM bandwidth: Figure 10 (b) shows the speedup of SBRP-near
over epoch-near with varying NVM bandwidth. The 100% bar is the
baseline we evaluate on (84 GBPS read and, 42 GBPS write band-
width). The 200% bar represents when we double those bandwidths,
while the 50% bar represents when bandwidths are halved. For gp-
KVS and HM, benefits of buffering log writes reduces with higher
bandwidth. Similarly, for reduction, epoch’s performance loss due
to flushing persists that could’ve been retained in the L1 cache
moderates. Conversely, an increased bandwidth helps SRAD, MQ,
and scan perform better as the bursty persists are lesser concern.
On average, SBRP-near provides noticeable speedups regardless of
NVM bandwidth with 15%, 15% and 12% performance improvement
for 50%, 100%, and 200% bandwidth.

697

Scoped Buffered Persistency Model for GPUs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

0

0.5

1

gpKVS HM SRAD Red MQ Scan GMeanN
o

rm
al

iz
e

d

ru
n

ti
m

e

Epoch SBRP

Figure 11: Normalized runtime of recovery kernel.

Window size: Figure 10 (c) shows speedup of SBRP-near with
varying window sizes. The best speedup is obtained with a window
size of 6 (default), i.e., each SM maintains 6 outstanding persists. If
the window is too small, PM is underutilized, while larger window
leads to congestion.
Recovery time: Figure 11 compares the recovery time under epoch-
near and SBRP-near (normalized to epoch-near; lower is better).
We evaluated scenarios with highest recovery time. For example,
we crash gpKVS just before the transaction completes. This creates
the largest log size. Upon recovery, all logged pairs are read and
re-inserted to KVS. We observe that the average recovery time for
both models are similar – within 3%. For gpKVS, however, SBRP’s
recovery is 10% slower. Here, the recovery kernel reads the entire
log from PM, re-inserts old pairs into the PM-resident KVS, and
then all updates are persisted using epoch barrier in epoch-near and
dFence in SBRP, before clearing the log. While a barrier flushes ea-
gerly, dFence uses buffering that takes longer to drain writes to PM.
While buffering speeds up the common case of crash-free execution
(Figure 6), it slightly slows down recovery. Scan and HM also slows
down slightly (< 5%) for the same reason. For others, recovery does
not need bulk persists. Thus, recovery time is identical.

We also noticed that the (worst case) recovery time as the per-
centage of crash-free execution time varies between 0.7-42% across
applications. The highest was for gpKVS as it involves reading all
old pairs from the log, re-inserting and persisting them. In contrast,
SRAD, Red, MQ need negligible recovery time. In general, crash-
free execution is the common case and recovery is important but
uncommon. Thus, runtimes of recovery is relatively less important
than crash-free execution.

8 RELATEDWORK
GPU persistency models: There are relatively limited number of
works exploring NVMs for GPUs [3, 5, 14, 34, 39, 52]. Lin et al. [39]
proposed a pragma-based compiler and transactional API to adopt
strict and epoch persistency. The authors do not propose any new
model for GPUs. Gope et al. [2, 14] proposed new instructions for
GPU persistency called scoped persist barriers. It provides inter-
thread PMO by forcing all threads in the specified scope to wait until
prior writes have persisted (made durable). Their model is actually
not scope-aware, as it globally communicates all PMO requirements.
The model uses a buffer architecture inspired by quick release [21],
but does not distinguish between intra-thread or inter-thread PMO
requirements,. A persist barrier simply stalls the issuing thread,
drains the buffer, and waits for the writes to reach PM. In SBRP,
the buffers allow intra- and inter-thread PMO to proceed without
global synchronization. In SBRP, acquire/release for inter-thread
PMO and limits the impact of PMOs only to the warps of the partic-
ipating threads. Lazy persistency for GPUs [3] proposed a software
optimization for recoverable applications where idempotent code
regions can persist writes without any strict ordering. In contrast,

we propose a hardware persistency model that supports all classes
of GPU applications.
CPU persistency models: There exists a rich literature on hard-
ware persistency models for CPUs. Some were discussed in Sec-
tions 2 and 4. DPO [37] proposed a relaxed consistency, buffered
strict persistency model that maintains buffers to store and order
persists separately from the caches. HOPS [45] extends the cache
hierarchy to enforce ordering and durability constraints for persists
separately. LLP [36] provides language-level persistency semantics
to programmers. Gogte et al. [13] proposed a hardware implemen-
tation of strand persistency which divides thread execution into
strands. PMO is enforced within strands but not across them.

An orthogonal set of work [11, 15, 16, 40–42] also focuses on
detecting bugs in persistent memory programs. These bugs are
caused by programmer mistakes, such as missing fences. To reason
about whether PM-aware programs contain bugs, a formalization
of the persistency model is required – the focus of this work.

Several works proposed optimizing CPU’s logging to PM [17,
27, 30, 51, 60]. Some of the optimizations, e.g., leveraging multi-
versioning in thememory hierarchy to avoid logging overheads [17],
can speedup half of our applications that use logging. However,
optimizing logging or even eliminating it does not obviate the need
to have a well-specified, efficient GPU persistency model.

9 CONCLUSION
Important applications, such as persistent KVS, can benefit from
both GPU’s parallelism and PM’s fine-grain persistence. However,
a well-specified GPU persistency model is a pre-requisite for GPU
programs to reason about recoverability. We propose a scope-aware,
buffered persistency model that allows GPU programmers to ex-
press PMO through acquire/release semantics. We show that our
new model can provide a speedup of up to 90% across various
applications.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive feedback.
We thank Ashish Panwar and Ajay Nayak for their feedback on
an earlier draft of this work. This work is supported by research
grants from VMware Inc and Intel Labs. Arkaprava is supported
by a Young Investigator Fellowship by Pratiksha Trust, Bangalore.
Shweta is supported by Google PhD Fellowship.

10 DATA AVAILABILITY STATEMENT
We make the artifact for the work available [53]. The artifact con-
tains scripts to reproduce all important figures from section 7.

A ARTIFACT APPENDIX
A.1 Abstract
We provide the source code and setup for our GPU persistency
model, Scoped Buffered Release Persistency (SBRP). SBRP is a scope-
aware, buffered persistency model that provides high performance
to GPU applications that wish to persist data on Non-Volatile Mem-
ory (NVM). SBRP modifies the GPU hardware and has been imple-
mented using GPGPU-Sim, a GPU simulator.

698

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shweta Pandey, Aditya K Kamath, and Arkaprava Basu

This artifact consists of the source code of the simulator, bench-
marks used for evaluation and all scripts needed to replicate the
figures in the paper.

A.2 Artifact check-list (meta-information)
• Compilation: CUDA 11.4, GCC 9.4.0.
• Binary: Included for x86-64.
• Data set: Scripts are provided to download/generate datasets.
• Run-time environment: Workloads can be run on the bare ma-

chine. To run the workloads on bare machine, CUDA 11.4 is required
on a Linux installation of Ubuntu 20.04.

• Hardware: A machine with atleast 12 threads and 50 GiBs of mem-
ory is required.

• Execution: Compiled CUDA binaries are run on our hardware
simulator. Makefiles and python scripts are provided.

• Output:We generate csv files and bar graphs for each experiment.
The graphs and csv files can be found in outputs folder. Raw numbers
for each figure can be found in the results folder associated with
them.

• How much disk space required (approximately)? Atleast 10
GiBs of storage space.

• How much time is needed to prepare workflow (approxi-
mately)? 10 minutes.

• How much time is needed to complete experiments (approxi-
mately)? 20 hours.

• Publicly available? Yes.
• Archived (provide DOI)? Yes,
https://doi.org/10.5281/zenodo.7306303

A.3 Description
The artifacts contains the source of SBRP model along with the
evaluated benchmarks. It allows to reproduce the following results:

• Figure 6: Speedup over epoch-far of different models.
• Figure 8: L1 read misses for NVM data.
• Figure 9: SBRP speedup with eADR.
• Figure 10: SBRP sensitivity studies. Speedups of SBRP over
epoch.
– (a) Varying L1 coverage.
– (b) Varying bandwidth.
– (c) Varying window sizes.

• Figure 11: Normalized runtime of recovery kernel.

A.3.1 How to access. The artifact is made available in the GitHub
repository https://github.com/csl-iisc/SBRP-ASPLOS23 and also at
https://doi.org/10.5281/zenodo.7306303.

A.3.2 Hardware dependencies. The scripts require a processor sup-
porting at least 12 threads and at least 50 GiBs of memory.

A.3.3 Software dependencies. The artifact needs CUDA-11.4 on a
bare machine. We also provide a Docker container with all included
dependencies. To install CUDA 11.4 on a bare machine follow the
instructions mentioned in the README or download from NVIDIA.
To run the simulator, dependencies for GPGPU-Sim also have to
be downloaded. Follow the README or the instruction manual for
GPGPU-Sim [35]. The dependencies can be installed as follows:

$ sudo apt-get install build-essential xutils-dev bison \
zlib1g-dev flex libglu1-mesa-dev
$ sudo apt-get install libxi-dev libxmu-dev libglut3-dev

Also ensure that CUDA_PATH variables are properly set before
running the artifact.

We have also containerized our setup and provide a docker image
for ease of use. To install Docker on an Ubuntu machine, use the
following command.

$ sudo apt install docker.io

A.3.4 Data sets. Scripts are provided to generate or download data
sets.

A.4 Installation
The artifact can be downloaded and accessed as -
$ git clone \
https://github.com/csl-iisc/SBRP-ASPLOS23
$ cd SBRP-ASPLOS23

A.5 Experiment workflow
The outermost directory consists of two important folders: models,
benchmarks. models/ contains all the models needed for evaluat-
ing all the figures. benchmarks/ contains all the benchmarks we
evaluate on. Apart from that, the scripts/ folder contains the scripts
needed for generating all the figures.

The experiments can be run in parallel. However it would require
more compute and memory. We provide a Makefile that compiles,
executes and generates a comma-separated file and bar-graph re-
ports for the figures 6, 8, 9, 10a, 10b, 10c and 11.

The experiments can be run within a docker container or a bare
machine. To run experiments within the container, first build the
container in the main folder using –

$ docker build . -t sbrp:v1

Run theDocker container in interactivemode using the following
command. This command opens a bash shell in the Docker image.

$ docker run -it sbrp:v1

Individual experiments can now be run as follows: Note, these
experiments can also be run outside the docker container with the
correct setup required for GPGPU-Sim.

$ make run_figure6 #To run figure 6
$ make run_figure9 #To run figure 9
$ make run_figure10_a #To run figure 10(a)
$ make run_figure10_b #To run figure 10(b)
$ make run_figure10_c #To run figure 10(c)
$ make run_figure11 #To run figure 11

To run all figures, run the following command:

$ make run_all #To run all figures

The raw numbers and figures can be obtained from the outputs
folder present in the outermost directory.

A.6 Evaluation and expected results
For each key result, a comma separated file and a graph are gener-
ated. The outputs folder contains all generated reports and graphs.
The reports can be matched against figures reported in the paper.

699

https://doi.org/10.5281/zenodo.7306303
https://github.com/csl-iisc/SBRP-ASPLOS23
https://doi.org/10.5281/zenodo.7306303

Scoped Buffered Persistency Model for GPUs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

The generated reports and output folders are given in Table 3.
To obtain the reports and graphs, use the following command:
$ make output_figure6
$ make output_figure8
$ make output_figure9
$ make output_figure10_a
$ make output_figure10_b
$ make output_figure10_c
$ make output_figure11

Run the following commands to make all outputs:
$ make output_all

Table 3: Output folders for each figure

Fig Raw numbers Graphs CSV files
6 figure6_results/ figure6_graph.pdf figure6_output.txt
8 figure6_results/ figure8_graph.pdf figure8_output.txt
9 figure9_results/ figure9_graph.pdf figure9_output.txt

10(a) figure10_a_results/ figure10_a_graph.pdf figure10_a_output .txt
10(b) figure10_b_results/ figure10_b_graph.pdf figure10_b_output .txt
10(c) figure10_c_results/ figure10_c_graph.pdf figure10_c_output .txt
11 figure11_results/ figure11_graph.pdf figure11_output.txt

REFERENCES
[1] Dan A. Alcantara, Andrei Sharf, Fatemeh Abbasinejad, Shubhabrata Sengupta,

Michael Mitzenmacher, John D. Owens, and Nina Amenta. 2009. Real-Time
Parallel Hashing on the GPU. In ACM SIGGRAPH Asia 2009 Papers (Yokohama,
Japan) (SIGGRAPH Asia ’09). Association for Computing Machinery, New York,
NY, USA, Article 154, 9 pages. https://doi.org/10.1145/1661412.1618500

[2] Arkaprava Basu, Mitesh R Meswani, Dibakar Gope, Sooraj Puthoor. 2019. Scoped
persistence barriers for non-volatile memories. https://patentimages.storage.
googleapis.com/8e/40/ee/6b238c91b5ffcf/US10324650.pdf.

[3] Ardhi Wiratama Baskara Yudha, Keiji Kimura, Huiyang Zhou, and Yan Solihin.
2020. Scalable and Fast Lazy Persistency on GPUs. In 2020 IEEE International
Symposium on Workload Characterization (IISWC). 252–263. https://doi.org/10.
1109/IISWC50251.2020.00032

[4] Long Chen, Oreste Villa, Sriram Krishnamoorthy, and Guang R. Gao. 2010. Dy-
namic load balancing on single- and multi-GPU systems. In 2010 IEEE Inter-
national Symposium on Parallel Distributed Processing (IPDPS). 1–12. https:
//doi.org/10.1109/IPDPS.2010.5470413

[5] Sui Chen, Lei Liu, Weihua Zhang, and Lu Peng. 2020. Architectural Support for
NVRAM Persistence in GPUs. In IEEE Transactions on Parallel and Distributed
Systems, Vol. 31. 1107–1120. https://doi.org/10.1109/TPDS.2019.2960233

[6] Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. 2013. Optimistic Crash Consistency. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles
(Farminton, Pennsylvania) (SOSP ’13). Association for Computing Machinery,
New York, NY, USA, 228–243. https://doi.org/10.1145/2517349.2522726

[7] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,
Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: Making Persistent Objects
Fast and Safe with next-Generation, Non-Volatile Memories. In Proceedings of
the Sixteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (Newport Beach, California, USA) (ASPLOS
XVI). Association for Computing Machinery, New York, NY, USA, 105–118. https:
//doi.org/10.1145/1950365.1950380

[8] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Ben-
jamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O through Byte-
Addressable, Persistent Memory. In Proceedings of the ACM SIGOPS 22nd Sym-
posium on Operating Systems Principles (Big Sky, Montana, USA) (SOSP ’09).
Association for Computing Machinery, New York, NY, USA, 133–146. https:
//doi.org/10.1145/1629575.1629589

[9] CXL. November 2020. CXL Consortium. Compute Express Link Specification
Revision 2.0. https://www.computeexpresslink.org/download-the-specification.

[10] Mahesh Dananjaya, Vasilis Gavrielatos, Arpit Joshi, and Vijay Nagarajan. 2020.
Lazy Release Persistency. In Proceedings of the Twenty-Fifth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(Lausanne, Switzerland) (ASPLOS ’20). Association for Computing Machinery,
New York, NY, USA, 1173–1186. https://doi.org/10.1145/3373376.3378481

[11] Bang Di, Jiawen Liu, Hao Chen, and Dong Li. 2021. Fast, Flexible, and Com-
prehensive Bug Detection for Persistent Memory Programs. In Proceedings of
the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (Virtual, USA) (ASPLOS 2021). Association for
Computing Machinery, New York, NY, USA, 503–516. https://doi.org/10.1145/
3445814.3446744

[12] Eduardo Berrocal Garcia De Carellan. 2018. Recovery and Fault-Tolerance
for Persistent Memory Pools Using Persistent Memory Development Kit
(PMDK). https://www.intel.com/content/www/us/en/developer/articles/
technical/recovery-and-fault-tolerance-for-persistent-memory-pools-using-
persistent-memory.html.

[13] Vaibhav Gogte, William Wang, Stephan Diestelhorst, Peter M. Chen, Satish
Narayanasamy, and Thomas F. Wenisch. 2020. Relaxed Persist Ordering Using
Strand Persistency. In Proceedings of the ACM/IEEE 47th Annual International
Symposium on Computer Architecture (Virtual Event) (ISCA ’20). IEEE Press,
652–665. https://doi.org/10.1109/ISCA45697.2020.00060

[14] Dibakar Gope, Arkaprava Basu, Sooraj Puthoor, and Mitesh Meswani. 2018. A
Case for Scoped Persist Barriers in GPUs. In Proceedings of the 11th Workshop on
General Purpose GPUs (Vienna, Austria) (GPGPU-11). Association for Computing
Machinery, New York, NY, USA, 2–12. https://doi.org/10.1145/3180270.3180275

[15] Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky. 2021. Jaaru: Efficiently
Model Checking Persistent Memory Programs. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (Virtual, USA) (ASPLOS 2021). Association for Computing Ma-
chinery, New York, NY, USA, 415–428. https://doi.org/10.1145/3445814.3446735

[16] Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky. 2022. Yashme: Detecting
Persistency Races. In Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (Lau-
sanne, Switzerland) (ASPLOS 2022). Association for Computing Machinery, New
York, NY, USA, 830–845. https://doi.org/10.1145/3503222.3507766

[17] Siddharth Gupta, Alexandros Daglis, and Babak Falsafi. 2019. Distributed Logless
Atomic Durability with Persistent Memory. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (Columbus, OH, USA)
(MICRO ’52). Association for ComputingMachinery, New York, NY, USA, 466–478.
https://doi.org/10.1145/3352460.3358321

[18] Juan Gómez-Luna, Izzat El Hajj, Li-Wen Chang, Víctor García-Floreszx, Si-
mon Garcia de Gonzalo, Thomas B. Jablin, Antonio J. Peña, and Wen-mei Hwu.
2017. Chai: Collaborative heterogeneous applications for integrated-architectures.
In 2017 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). 43–54. https://doi.org/10.1109/ISPASS.2017.7975269

[19] Tom’s Hardware. August 2022. Intel Kills Optane Memory Business. https://
www.tomshardware.com/news/intel-kills-optane-memory-business-for-good.

[20] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K. Govindaraju, and Tuyong
Wang. 2008. Mars: A MapReduce Framework on Graphics Processors. In Proceed-
ings of the 17th International Conference on Parallel Architectures and Compilation
Techniques (Toronto, Ontario, Canada) (PACT ’08). Association for ComputingMa-
chinery, New York, NY, USA, 260–269. https://doi.org/10.1145/1454115.1454152

[21] Blake A. Hechtman, Shuai Che, Derek R. Hower, Yingying Tian, Bradford M.
Beckmann, Mark D. Hill, Steven K. Reinhardt, and David A. Wood. 2014. Quick-
Release: A throughput-oriented approach to release consistency on GPUs. In 2014
IEEE 20th International Symposium on High Performance Computer Architecture
(HPCA). 189–200. https://doi.org/10.1109/HPCA.2014.6835930

[22] Derek R. Hower, Blake A. Hechtman, Bradford M. Beckmann, Benedict R. Gaster,
Mark D. Hill, Steven K. Reinhardt, and David A. Wood. 2014. Heterogeneous-
Race-Free Memory Models. SIGARCH Comput. Archit. News 42, 1 (Feb. 2014),
427–440. https://doi.org/10.1145/2654822.2541981

[23] Intel. 2020. Why Is the Intel® Optane™ Persistent Memory in Memory
Mode Not Persistent? https://www.intel.com/content/dam/support/us/en/
documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-
DC-Persistent-Memory-Quick-Start-Guide.pdf.

[24] Intel. 2021. Intel Optane Persistent Memory. https://www.intel.in/content/www/
in/en/architecture-and-technology/optane-dc-persistent-memory.html. Ac-
cessed: 2021-11-15.

[25] Intel. 2021. Intel PmemKV. https://github.com/pmem/pmemkv.
[26] Intel. 2021. Section "Power-Fail Protected Domains" of "Persistent Memory

LearnMore Series Part 2". https://www.intel.com/content/www/us/en/developer/
articles/training/pmem-learn-more-series-part-2.html. Accessed: 2021-11-15.

[27] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. 2016. Failure-Atomic
Persistent Memory Updates via JUSTDO Logging. SIGARCH Comput. Archit.
News 44, 2 (mar 2016), 427–442. https://doi.org/10.1145/2980024.2872410

[28] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen
Zhao, and Steven Swanson. 2019. Basic Performance Measurements of the Intel
Optane DC Persistent Memory Module. http://arxiv.org/abs/1903.05714.

[29] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. 2015. Efficient
persist barriers for multicores. In 2015 48th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO). 660–671. https://doi.org/10.1145/2830772.
2830805

700

https://doi.org/10.1145/1661412.1618500
https://patentimages.storage.googleapis.com/8e/40/ee/6b238c91b5ffcf/US10324650.pdf
https://patentimages.storage.googleapis.com/8e/40/ee/6b238c91b5ffcf/US10324650.pdf
https://doi.org/10.1109/IISWC50251.2020.00032
https://doi.org/10.1109/IISWC50251.2020.00032
https://doi.org/10.1109/IPDPS.2010.5470413
https://doi.org/10.1109/IPDPS.2010.5470413
https://doi.org/10.1109/TPDS.2019.2960233
https://doi.org/10.1145/2517349.2522726
https://doi.org/10.1145/1950365.1950380
https://doi.org/10.1145/1950365.1950380
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/1629575.1629589
https://www.computeexpresslink.org/download-the-specification
https://doi.org/10.1145/3373376.3378481
https://doi.org/10.1145/3445814.3446744
https://doi.org/10.1145/3445814.3446744
https://www.intel.com/content/www/us/en/developer/articles/technical/recovery-and-fault-tolerance-for-persistent-memory-pools-using-persistent-memory.html
https://www.intel.com/content/www/us/en/developer/articles/technical/recovery-and-fault-tolerance-for-persistent-memory-pools-using-persistent-memory.html
https://www.intel.com/content/www/us/en/developer/articles/technical/recovery-and-fault-tolerance-for-persistent-memory-pools-using-persistent-memory.html
https://doi.org/10.1109/ISCA45697.2020.00060
https://doi.org/10.1145/3180270.3180275
https://doi.org/10.1145/3445814.3446735
https://doi.org/10.1145/3503222.3507766
https://doi.org/10.1145/3352460.3358321
https://doi.org/10.1109/ISPASS.2017.7975269
https://www.tomshardware.com/news/intel-kills-optane-memory-business-for-good
https://www.tomshardware.com/news/intel-kills-optane-memory-business-for-good
https://doi.org/10.1145/1454115.1454152
https://doi.org/10.1109/HPCA.2014.6835930
https://doi.org/10.1145/2654822.2541981
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
https://www.intel.in/content/www/in/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.in/content/www/in/en/architecture-and-technology/optane-dc-persistent-memory.html
https://github.com/pmem/pmemkv
https://www.intel.com/content/www/us/en/developer/articles/training/pmem-learn-more-series-part-2.html
https://www.intel.com/content/www/us/en/developer/articles/training/pmem-learn-more-series-part-2.html
https://doi.org/10.1145/2980024.2872410
http://arxiv.org/abs/1903.05714
https://doi.org/10.1145/2830772.2830805
https://doi.org/10.1145/2830772.2830805

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shweta Pandey, Aditya K Kamath, and Arkaprava Basu

[30] Arpit Joshi, Vijay Nagarajan, Stratis Viglas, and Marcelo Cintra. 2017. ATOM:
Atomic Durability in Non-volatile Memory through Hardware Logging. In 2017
IEEE International Symposium on High Performance Computer Architecture (HPCA).
361–372. https://doi.org/10.1109/HPCA.2017.50

[31] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim, Aasheesh Kolli,
and Vijay Chidambaram. 2019. SplitFS: Reducing Software Overhead in File
Systems for Persistent Memory. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). Association
for Computing Machinery, New York, NY, USA, 494–508. https://doi.org/10.
1145/3341301.3359631

[32] Aditya K. Kamath and Arkaprava Basu. 2021. IGUARD: In-GPU Advanced Race
Detection. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles (Virtual Event, Germany) (SOSP ’21). Association for Computing
Machinery, New York, NY, USA, 49–65. https://doi.org/10.1145/3477132.3483545

[33] Aditya K. Kamath, Alvin A. George, and Arkaprava Basu. 2020. ScoRD: A Scoped
Race Detector for GPUs. In 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA). 1036–1049. https://doi.org/10.1109/ISCA45697.
2020.00088

[34] Sudarsun Kannan, Ada Gavrilovska, Karsten Schwan, and Dejan Milojicic. 2013.
Optimizing Checkpoints Using NVM as Virtual Memory. In Proceedings of the 2013
IEEE 27th International Symposium on Parallel and Distributed Processing (IPDPS
’13). IEEE Computer Society, USA, 29–40. https://doi.org/10.1109/IPDPS.2013.69

[35] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G. Rogers. 2020.
Accel-Sim: An Extensible Simulation Framework for Validated GPU Modeling. In
Proceedings of the ACM/IEEE 47th Annual International Symposium on Computer
Architecture (Virtual Event) (ISCA ’20). IEEE Press, 473–486. https://doi.org/10.
1109/ISCA45697.2020.00047

[36] Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Diestelhorst, Peter M. Chen,
Satish Narayanasamy, and Thomas F. Wenisch. 2017. Language-Level Persistency.
In Proceedings of the 44th Annual International Symposium on Computer Architec-
ture (Toronto, ON, Canada) (ISCA ’17). Association for Computing Machinery,
New York, NY, USA, 481–493. https://doi.org/10.1145/3079856.3080229

[37] Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven Pelley, Sihang
Liu, Peter M. Chen, and Thomas F. Wenisch. 2016. Delegated Persist Ordering. In
The 49th Annual IEEE/ACM International Symposium on Microarchitecture (Taipei,
Taiwan) (MICRO-49). IEEE Press, Article 58, 13 pages.

[38] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel. 2019. KVell:
The Design and Implementation of a Fast Persistent Key-Value Store. In Proceed-
ings of the 27th ACM Symposium on Operating Systems Principles (Huntsville,
Ontario, Canada) (SOSP ’19). Association for Computing Machinery, New York,
NY, USA, 447–461. https://doi.org/10.1145/3341301.3359628

[39] Zhen Lin, Mohammad Alshboul, Yan Solihin, and Huiyang Zhou. 2019. Exploring
Memory Persistency Models for GPUs. In 2019 28th International Conference
on Parallel Architectures and Compilation Techniques (PACT). 311–323. https:
//doi.org/10.1109/PACT.2019.00032

[40] Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan. 2021. PMFuzz:
Test Case Generation for Persistent Memory Programs. In Proceedings of the
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (Virtual, USA) (ASPLOS 2021). Association for
Computing Machinery, New York, NY, USA, 487–502. https://doi.org/10.1145/
3445814.3446691

[41] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch, Aasheesh Kolli,
and Samira Khan. 2020. Cross-Failure Bug Detection in Persistent Memory Programs.
Association for Computing Machinery, New York, NY, USA, 1187–1202. https:
//doi.org/10.1145/3373376.3378452

[42] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira Khan. 2019.
PMTest: A Fast and Flexible Testing Framework for Persistent Memory Pro-
grams. In Proceedings of the Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (Providence, RI,
USA) (ASPLOS ’19). Association for Computing Machinery, New York, NY, USA,
411–425. https://doi.org/10.1145/3297858.3304015

[43] Daniel Lustig, Sameer Sahasrabuddhe, and Olivier Giroux. 2019. A Formal
Analysis of the NVIDIA PTX Memory Consistency Model. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems (Providence, RI, USA) (ASPLOS ’19). Association

for Computing Machinery, New York, NY, USA, 257–270. https://doi.org/10.
1145/3297858.3304043

[44] Seung Won Min, Vikram Sharma Mailthody, Zaid Qureshi, Jinjun Xiong, Eiman
Ebrahimi, and Wen-mei Hwu. 2020. EMOGI: Efficient Memory-Access for out-of-
Memory Graph-Traversal in GPUs. Proc. VLDB Endow. 14, 2 (oct 2020), 114–127.
https://doi.org/10.14778/3425879.3425883

[45] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. wift, Haris Volos, and
Kimberly Keeton. 2017. An Analysis of Persistent Memory Use withWHISPER. In
Proceedings of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems (Xiaposan, China) (ASPLOS
’17). Association for Computing Machinery, New York, NY, USA, 135–148. https:
//doi.org/10.1145/3037697.3037730

[46] NVIDIA. 2011. Peer-to-Peer and Unified Virtual Addressing. https://developer.
download.nvidia.com/CUDA/training/cuda_webinars_GPUDirect_uva.pdf.

[47] NVIDIA. 2019. CUDA Software Development Kit Samples. https://docs.nvidia.
com/cuda/cuda-samples/index.html.

[48] NVIDIA. 2020. CUDA Toolkit 11.2 Downloads. https://developer.nvidia.com/
cuda-11.2.0-download-archive.

[49] NVIDIA. 2021. CUDA C++ Programming Guide. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/. Accessed: 2021-11-15.

[50] NVIDIA. 2021. Parallel Thread Execution ISA Version 7.5. https://docs.nvidia.
com/cuda/parallel-thread-execution/index.html. Accessed: 2021-11-15.

[51] Matheus Almeida Ogleari, Ethan L. Miller, and Jishen Zhao. 2018. Steal but No
Force: Efficient Hardware Undo+Redo Logging for Persistent Memory Systems.
In 2018 IEEE International Symposium on High Performance Computer Architecture
(HPCA). 336–349. https://doi.org/10.1109/HPCA.2018.00037

[52] Shweta Pandey, Aditya K Kamath, and Arkaprava Basu. 2022. GPM: Leveraging
Persistent Memory from a GPU. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (Lausanne, Switzerland) (ASPLOS 2022). Association for Computing Ma-
chinery, New York, NY, USA, 142–156. https://doi.org/10.1145/3503222.3507758

[53] Shweta Pandey, Aditya K Kamath, and Arkaprava Basu. 2023. "Scoped Buffered
Persistency Model for GPUs". https://doi.org/10.5281/zenodo.7306303.

[54] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory Persistency.
In Proceeding of the 41st Annual International Symposium on Computer Architecture
(Minneapolis, Minnesota, USA) (ISCA ’14). IEEE Press, 265–276.

[55] Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. 2019. Persistency
Semantics of the Intel-X86 Architecture. Proc. ACM Program. Lang. 4, POPL,
Article 11 (Dec. 2019), 31 pages. https://doi.org/10.1145/3371079

[56] RocksDB. 2021. RocksDB. https://rocksdb.org/.
[57] Andy Rudoff. 2021. Persistent Memory on CXL. https://www.snia.org/

educational-library/persistent-memory-cxl-2021. Accessed: 2021-11-15.
[58] Samsung. August 2022. Samsung Memory-Semantic CXL SSD. https://tinyurl.

com/3daezum2.
[59] Steve Scargall. 2020. Programming persistent memory: A comprehensive guide for

developers. Springer Nature.
[60] Seunghee Shin, Satish Kumar Tirukkovalluri, James Tuck, and Yan Solihin. 2017.

Proteus: A Flexible and Fast Software Supported Hardware Logging Approach
for NVM. In Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture (Cambridge, Massachusetts) (MICRO-50 ’17). Association for
Computing Machinery, New York, NY, USA, 178–190. https://doi.org/10.1145/
3123939.3124539

[61] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven Swan-
son. 2020. An Empirical Guide to the Behavior and Use of Scalable Persistent
Memory. In Proceedings of the 18th USENIX Conference on File and Storage Tech-
nologies (Santa Clara, CA, USA) (FAST’20). USENIX Association, USA, 169–182.

[62] Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu Tang, Hong Jiang, Chang-
sheng Xie, and Xubin He. 2020. MatrixKV: Reducing Write Stalls and Write
Amplification in LSM-tree Based KV Stores with Matrix Container in NVM. In
2020 USENIX Annual Technical Conference (USENIX ATC 20). USENIX Association,
USA, 17–31. https://www.usenix.org/conference/atc20/presentation/yao

[63] Kai Zhang, Kaibo Wang, Yuan Yuan, Lei Guo, Rubao Lee, and Xiaodong Zhang.
2015. Mega-KV: A Case for GPUs to Maximize the Throughput of in-Memory
Key-Value Stores. Proc. VLDB Endow. 8, 11 (July 2015), 1226–1237. https://doi.
org/10.14778/2809974.2809984

701

https://doi.org/10.1109/HPCA.2017.50
https://doi.org/10.1145/3341301.3359631
https://doi.org/10.1145/3341301.3359631
https://doi.org/10.1145/3477132.3483545
https://doi.org/10.1109/ISCA45697.2020.00088
https://doi.org/10.1109/ISCA45697.2020.00088
https://doi.org/10.1109/IPDPS.2013.69
https://doi.org/10.1109/ISCA45697.2020.00047
https://doi.org/10.1109/ISCA45697.2020.00047
https://doi.org/10.1145/3079856.3080229
https://doi.org/10.1145/3341301.3359628
https://doi.org/10.1109/PACT.2019.00032
https://doi.org/10.1109/PACT.2019.00032
https://doi.org/10.1145/3445814.3446691
https://doi.org/10.1145/3445814.3446691
https://doi.org/10.1145/3373376.3378452
https://doi.org/10.1145/3373376.3378452
https://doi.org/10.1145/3297858.3304015
https://doi.org/10.1145/3297858.3304043
https://doi.org/10.1145/3297858.3304043
https://doi.org/10.14778/3425879.3425883
https://doi.org/10.1145/3037697.3037730
https://doi.org/10.1145/3037697.3037730
https://developer.download.nvidia.com/CUDA/training/cuda_webinars_GPUDirect_uva.pdf
https://developer.download.nvidia.com/CUDA/training/cuda_webinars_GPUDirect_uva.pdf
https://docs.nvidia.com/cuda/cuda-samples/index.html
https://docs.nvidia.com/cuda/cuda-samples/index.html
https://developer.nvidia.com/cuda-11.2.0-download-archive
https://developer.nvidia.com/cuda-11.2.0-download-archive
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://doi.org/10.1109/HPCA.2018.00037
https://doi.org/10.1145/3503222.3507758
https://doi.org/10.5281/zenodo.7306303
https://doi.org/10.1145/3371079
https://rocksdb.org/
https://www.snia.org/educational-library/persistent-memory-cxl-2021
https://www.snia.org/educational-library/persistent-memory-cxl-2021
https://tinyurl.com/3daezum2
https://tinyurl.com/3daezum2
https://doi.org/10.1145/3123939.3124539
https://doi.org/10.1145/3123939.3124539
https://www.usenix.org/conference/atc20/presentation/yao
https://doi.org/10.14778/2809974.2809984
https://doi.org/10.14778/2809974.2809984

	Abstract
	1 Introduction
	2 Background
	3 System designs for GPU and NVM
	4 Designing a GPU persistency model
	5 Scoped Buffered Release Model
	5.1 Recovery under SBRP
	5.2 Interaction between VMO and PMO
	5.3 Possibility of Scoped Persistency Bugs

	6 Implementation
	6.1 Operation of SBRP
	6.2 Hardware Optimization

	7 Evaluation
	7.1 Applications
	7.2 Performance Analysis
	7.3 Sensitivity Studies and Recovery Cost

	8 Related work
	9 Conclusion
	Acknowledgments
	10 Data Availability Statement
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results

	References

