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Abstract—GPUs are becoming first-class compute citizens
and increasingly support programmability-enhancing features
such as shared virtual memory and hardware cache coherence.
This enables them to run a wider variety of programs. However,
a key aspect of general-purpose programming where GPUs still
have room for improvement is the ability to invoke system calls.

We explore how to directly invoke system calls from
GPUs. We examine how system calls can be integrated with
GPGPU programming models, where thousands of threads
are organized in a hierarchy of execution groups. To answer
questions on GPU system call usage and efficiency, we im-
plement GENESYS, a generic GPU system call interface for
Linux. Numerous architectural and OS issues are considered
and subtle changes to Linux are necessary, as the existing
kernel assumes that only CPUs invoke system calls. We assess
the performance of GENESYS using micro-benchmarks and
applications that exercise system calls for signals, memory
management, filesystems, and networking.

Keywords-accelerators and domain-specific architecture,
graphics oriented architecture, multicore and parallel archi-
tectures, virtualization and OS, GPUs

I. INTRODUCTION

GPUs have evolved from fixed function 3D accelerators

to fully programmable units [1–3] and are now widely

used for high-performance computing (HPC), machine learn-

ing, and data-analytics. Increasing deployments of general-

purpose GPUs (GPGPUs) have been partly enabled by

programmability enhancing features like virtual memory [4, 4–

9] and cache coherence [10–14].

GPU programming models have evolved with these hard-

ware changes. Early GPGPU programmers [15–19] adapted

graphics-oriented programming models such as OpenGL [20]

and DirectX [21] for general-purpose usage. Since then,

GPGPU programming has become increasingly accessible to

traditional CPU programmers, with graphics APIs giving

way to computation-oriented languages with a familiar

C/C++ heritage such as OpenCL [22], C++AMP [23], and

CUDA [24]. However, access to privileged OS services via

system calls is an important aspect of CPU programming

that remains out of reach for GPU programs.

*Author contributed to this work while working at AMD Research

Designers have begun exploring ways to fill this research

void. Studies on filesystem I/O (GPUfs [25]), networking I/O

(GPUnet [26]), and GPU-to-CPU callbacks [27] established

that direct GPU invocation of some specific system calls

can improve GPU performance and programmability. These

studies have two themes. First, they focus on specific system

calls (i.e., for filesytems and networking). Second, they

replace the traditional POSIX-based APIs of these system

calls with custom APIs to drive performance. In this study,

we ask – can we design an interface for invoking any system

call from GPUs, and can we do so with standard POSIX

semantics to enable seamless and wider adoption? To answer

these questions, we design the first framework for generic
system call invocation on GPUs, or GENESYS. GENESYS

offers several concrete benefits.

First, GENESYS can support implementation of most of

Linux’s 300+ system calls. As a proof of concept, we go

beyond the specific set of system calls from prior work

[25–27] and implement not only filesystem and networking

system calls, but also those for asynchronous signals, memory

management, resource querying, and device control.

Second, GENESYS’s use of POSIX allows programmers

to reap the benefits of standard APIs developed over decades

of real-world usage. Recent work on SPIN [28] takes a step

in this direction by considering how to modify the specific

system calls in GPUfs to match traditional POSIX semantics.

But GENESYS’s generality in supporting all system calls

means that it goes further, enabling, among other things,

backwards compatibility – GENESYS makes it possible to

deploy on GPUs the vast body of legacy software written to

invoke OS-managed services.

Third, GENESYS’s generality enables GPU acceleration of

programs that were previously considered a poor match for

GPUs. For example, it allows applications to directly manage

their memory, query the system for resource information,

employ signals, interface with the terminal, etc., in a manner

that lowers programming effort for GPU deployment. These

examples underscore GENESYS’s ability to support new

programming strategies and even legacy applications (e.g.,

using terminal/signals).
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Finally, GENESYS can leverage the benefits of support for

important OS features that prior work cannot. For example,

GPUnet’s use of custom APIs precludes the use traffic

shaping and firewalls that are already built into the OS.

When designing GENESYS, we ran into several design

questions. For example, what system calls make sense for

GPUs? System calls such as pread/pwrite to file(s) or

send/recv to and from the network stack are useful because

they underpin many I/O activities required to complete a

task. But system calls such as fork and execv do not, for now,

seem necessary for GPU threads. In the middle are many

system calls that need adaptation for GPU execution and

are heavily dependent on architectural features that could

be supported by future GPUs. For example, getrusage can

be adapted to return information about GPU resource usage.

We summarize the conclusions from this qualitative study.

We then perform a detailed design space study on the

performance benefits of GENESYS. Key questions are:

How does the GPU’s hardware execution model impact
system call invocation strategies? To manage parallelism,

the GPU’s underlying hardware architecture decomposes

work into a hierarchy of execution groups. The granularity

of these groups ranges from work-items (or GPU threads)

to work-groups (composed of hundreds of work-items) to

kernels (composed of hundreds of work-groups)1. This

naturally presents the following research question – at which

of these granularities should GPU system calls be invoked?

How should GPU system calls be ordered? CPU system

calls are implemented such that instructions prior to the sys-

tem call have completed execution, while code following the

system call remains unexecuted. This model is a good fit for

CPUs, which generally target single-threaded execution. But

such “strong ordering” semantics may be overly conservative

for GPUs. It acts as implicit synchronization barriers across

thousands of work-items, compromising performance. Similar

questions arise as to whether GPU system calls should be

“blocking” or “non-blocking.”

Where and how should GPU system calls be processed?
Like all prior work, we assume that system calls invoked by

GPU programs need to ultimately be serviced by the CPU.

This makes efficient GPU-CPU communication and CPU-

side processing fundamental to GPU system calls. We find

that careful use of modern GPU features like shared virtual

addressing [4] and page fault support [8, 9], coupled with

traditional interrupt mechanisms, can enable efficient CPU-

GPU communication of system call requests and responses.

To explore these questions, we study GENESYS with

microbenchmarks and end-to-end applications. Overall, our

1 Without loss of generality, we use AMD’s terminology of work-items,
work-groups, kernels, and compute unit (CU), although our work applies
equally to the NVIDIA threads, thread-blocks, kernels, and streaming
multiprocessors (SMs), respectively.

contributions are:

1©: We take a step toward realizing truly heterogeneous

programming by enabling GPUs to directly invoke OS-

managed services, just like CPUs. This builds on the promise

of recent work [25–28] but goes further by enabling direct

invocation of any system call through standard POSIX APIs.

This permits GPUs to use the entire ecosystem of OS-

managed system services developed over decades of research.

2© As a proof-of-concept, we use GENESYS to realize system

calls previously unavailable on GPUs to directly invoke OS

services for memory management, signals, and specialized

file-system use. Additionally, we continue supporting all the

system services made available by prior work (i.e., GPUs,

GPUnet, SPIN), but do so with standard POSIX APIs.

3© We shed light on several novel OS and architectural

design issues in supporting GPU system calls. We also offer

the first set of design guidelines for practitioners on how to

directly invoke system calls in a manner that meshes with

the execution hierarchy of GPUs to maximize performance.

While we use Linux as a testbed to evaluate our concepts, our

design choices are applicable more generally across OSes.

4© We publicly release GENESYS under the Radeon Open

Compute stack [29–33], offering its benefits broadly.

II. MOTIVATION

A reasonable question to ponder is, why equip GPUs with

system call invocation capabilities at all? Conceptually, OSes

have traditionally provided a standardized abstract machine

in the form of a process to user programs executing on

the CPU. Parts of this process abstraction, such as memory

layout, the location of program arguments, and ISA, have

benefited GPU programs. Other aspects, however, such as

standardized and direct protected access to the filesystem,

network, and memory allocation, are extremely important for

processes but are yet lacking for GPU code. Allowing GPU

code to invoke system calls is a further step to providing a

more complete process abstraction to GPU code.

Unfortunately, GPU programs can currently only invoke

system calls indirectly, and thereby suffer from performance

challenges. Consider the diagram on the left in Figure 1.

Programmers are currently forced to delay system call

requests until the end of the GPU kernel invocation. This

is not ideal because developers have to take what was a

single conceptual GPU kernel and partition it into two – one

before the system call and one after it. This model, which is

akin to continuations, is notoriously difficult to program [34].

Compiler technologies can assist the process [35], but the

effect of ending the GPU kernel, and restarting another is

the same as a barrier synchronization across all GPU threads

and adds unnecessary round-trips between the CPU and the

GPU, both of which incur significant overhead.
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Table I
GENESYS ENABLES NEW CLASSES OF APPLICATIONS AND SUPPORTS ALL PRIOR WORK.

Type Application Syscalls Description

Previously
Unrealizable

Memory Management miniAMR madvise, getrusage Uses madvise to return unused memory to the OS
(Sec VIII-A).

Signals signal-search rt sigqueueinfo Uses signals to notify the host about
partial work completion (Sec VIII-B).

Filesystem grep read, open, close Work-item invocations not supported by prior work,
prints to terminal (Sec VIII-C).

Device Control (ioctl) bmp-display ioctl, mmap Kernel granularity invocation to query and setup
framebuffer properties (Sec VIII-E)

Previously
Realizable

Filesystem wordsearch pread, read Supports the same workloads as prior work (GPUfs)
(Sec VIII-C).

Network memcached sendto, recfrom Possible with GPUnet but we do not need
RDMA for performance (Sec VIII-D).

process_data(buf)

load_data(buf)

request data

load_data(buf)

request data

CPU GPU

process_data(buf)

process_data(buf)

process_data(buf)

load_data(buf)

load_data(buf)

kernel finish

kernel finish

kernel start

kernel start

CPU GPU

GENESYSConventional

Figure 1. (Left) Timeline of events when the GPU has to rely on a CPU to
handle system services; and (right) when the GPU has system call invocation
capabilities.

In response, recent studies invoke OS services from GPUs

[25–28], as shown on the right in Figure 1. This approach

eliminates the need for repeated kernel launches, enabling

better GPU efficiency. System calls (e.g., request data)

still require CPU processing, as they often require access

to hardware resources that only the CPU interacts with.

However, CPUs only need to schedule tasks in response

to GPU system calls as and when needed. CPU system call

processing also overlaps with the execution of other GPU

threads. Studies on GPUfs, GPUnet, GPU-to-CPU callbacks,

and SPIN are seminal in demonstrating such direct invocation

of OS-managed services but suffer from key drawbacks:

Lack of generality: They target specific OS-managed ser-

vices, and therefore, realize only specific APIs for filesystem

or networking services. These interfaces are not readily

extensible to other system calls/OS services.

Lack of flexibility: They focus on specific system call

invocation strategies. Consequently, there has been no design

space exploration on the general GPU system call interface.

Questions such as the best invocation granularity (i.e.,

whether system calls should be invoked per work-item, work-

group, or kernel) or ordering remain unexplored, and as we

show, can affect performance in subtle and important ways.

Reliance on non-standard APIs: Their use of custom

APIs precludes the use of many OS-managed services (e.g.,

memory management, signals, process/thread management,

scheduler). Further, custom APIs do not readily take advan-

tage of existing OS code-paths that enable a richer set of

system features. Recent work on SPIN points this out for

filesystems, where using custom APIs causes issues with

page caches, filesystem consistency, and incompatibility with

virtual block devices such as software RAID.

While these past efforts broke new ground and demon-

strated the value of OS services for GPU programs, they did

not explore the question we pose – why not simply provide

generic access from the GPU to all POSIX system calls?

III. HIGH-LEVEL DESIGN

Figure 2. High-level overview of how GPU system calls are invoked and
processed on CPUs.

Figure 2 outlines the steps used by GENESYS. When the

GPU invokes a system call, it has to rely on the CPU to

process system calls on its behalf. Therefore, in step 1 ,

the GPU places system call arguments and information in

a portion of system memory also visible to the CPU. We

designate a portion of memory as the syscall area to store

this information. In step 2 , the GPU interrupts the CPU,

conveying the need for system call processing. Within the
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interrupt message, the GPU also sends the ID number of the

wavefront issuing the system call. This triggers the execution

of an interrupt handler on the CPU. The CPU uses the

wavefront ID to read the system call arguments from the

syscall area in step 3 . Subsequently, in step 4 , the CPU

processes the interrupt and writes the results back into the

syscall area. Finally, in step 5 , the CPU notifies the GPU

wavefront that its system call has been processed.

We rely on the ability of the GPU to interrupt the CPU

and use readily-available hardware [36–38] for this. However,

this is not a fundamental design requirement; in fact, prior

work [25, 27] uses a CPU polling thread to service a

limited set of GPU system service requests instead. Further,

while increasingly widespread features such as shared virtual

memory and CPU-GPU cache coherence [4, 8, 9, 13] are

beneficial to our design, they are not necessary. CPU-GPU

communication can also be achieved via atomic reads/writes

in system memory or GPU device memory [39].

IV. ANALYZING SYSTEM CALLS

While designing GENESYS, we classified all of Linux’s

over 300 system calls and assessed which ones to support.

Some of the classifications were subjective and were debated

even among ourselves. Many of the classification issues relate

to the unique nature of the GPU’s execution model.

Recall that GPUs use SIMD execution on thousands

of concurrent threads. To keep such massive parallelism

tractable, GPGPU programming languages like OpenCL [22]

and CUDA [24] expose hierarchical groups of concurrently

executing threads to programmers. The smallest granularity

of execution is the GPU work-item (akin to a CPU thread).

Several work-items (e.g., 32-64) operate in lockstep in the

unit of wavefronts, the smallest hardware-scheduled unit of

execution. Many wavefronts (e.g., 16) constitute programmer

visible work-groups and execute on a single GPU compute

unit (CU). Work-items in a work-group can communicate

among themselves using local CU caches and/or scratchpads.

Hundreds of work-groups comprise a GPU kernel. The CPU

dispatches work to a GPU at the granularity of a kernel. Each

work-group in a kernel can execute independently. Further,

it is possible to synchronize just the work-items within a

single work-group [12, 22]. This avoids the cost of globally

synchronizing across thousands of work-items in a kernel,

which is often unnecessary in a GPU program and might not

be possible under all circumstances2.

The bottom-line is that GPUs rely on far greater forms

of parallelism than CPUs. This implies the following

OS/architectural considerations in designing system calls:

Level of OS visibility into the GPU: When a CPU thread

invokes the OS, that thread has a representation within the

2 Although there is no single formally-specified barrier to synchronize
across work-groups today, recent work shows how to achieve the same
effect by extending existing non-portable GPU inter-work-group barriers to
use OpenCL 2.0 atomic operations [40].

kernel. The vast majority of modern OS kernels maintain

a data-structure for each thread for several common tasks

(e.g., kernel resource use, permission checks, auditing). GPU

tasks, however, have traditionally not been represented in the

OS kernel. We believe this should not change. As discussed

above, GPU threads are numerous and short lived. Creating

and managing a kernel structure for thousands of individual

GPU threads would vastly slow down the system. These

structures are also only useful for GPU threads that invoke

the OS and represent wasted overhead for the rest. Hence,

we process system calls in OS worker threads and switch

CPU contexts if necessary (see Section VI). As more GPUs

support system calls, this is an area that will require careful

consideration by kernel developers.

Evolution of GPU hardware: Many system calls are heavily

dependent on architectural features that could be supported

by future GPUs. For example, consider that modern GPUs

do not expose their thread scheduler to software. This

means that system calls to manage thread affinity (e.g.,

sched setaffinity) are not implementable on GPUs today.

However, a wealth of research has shown the benefits of

GPU warp scheduling [41–45], so should GPUs require

more sophisticated thread scheduling support appropriate for

implementation in software, such system calls may ultimately

become valuable.

With these design themes in mind, we discuss our

classification of Linux’s system calls.

1© Readily-implementable: Examples include pread, pwrite,
mmap, munmap, etc. This group is also the largest subset,

comprising nearly 79% of Linux’s system calls. In GENESYS,

we implemented 14 such system calls for filesystems (read,
write, pread, pwrite, open, close, lseek), networking (sendto,
recvfrom), memory management (mmap, munmap, madvise),

system calls to query resource usage (getrusage), and signal

invocation (rt sigqueueinfo). Furthermore, we also implement

device control ioctls. Some of these system calls, like read,
write, lseek, are stateful. Thus, GPU programmers must use

them carefully; the current value of the file pointer determines

what value is read or written by the read or write system

call. This can be arbitrary if invoked at work-item or work-

group granularity for the same file descriptor because many

work-items/work-groups can execute concurrently.

An important design issue is that GENESYS’s support

for standard POSIX APIs allows GPUs to read, write, and

mmap any file descriptor Linux provides. This is particularly

beneficial because of Linux’s “everything is a file” philosophy

– GENESYS readily supports features like terminal for user

I/O, pipes (including redirection of stdin, stdout, and stderr),

files in /proc to query process environments, files in /sys to

query and manipulate kernel parameters, etc. Although our

studies focus on Linux, the broader domains of OS-services

represented by the specific system calls generalize to other
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Table II
EXAMPLES OF SYSTEM CALLS THAT REQUIRE HARDWARE CHANGES TO BE IMPLEMENTABLE ON GPUS. IN TOTAL, THIS GROUP CONSISTS OF 13% OF

ALL LINUX SYSTEM CALLS. IN CONTRAST, WE BELIEVE THAT 79% OF LINUX SYSTEM CALLS ARE READILY-IMPLEMENTABLE.

Type Examples Reason that it is not currently implementable
capabilities capget, capset Needs GPU thread representation in the kernel
namespace setns Needs GPU thread representation in the kernel
policies set mempolicy Needs GPU thread representation in the kernel
thread scheduling sched yield, set cpu affinity Needs better control over GPU scheduler
signals sigaction Signals require the target thread to be paused and then resumed after signal

suspend action has been completed. GPU threads cannot be targeted. It is currently
sigreturn not possible to independently set program counters of individual threads.
sigprocmask Executing signal actions in newly spawned threads might require freeing

of GPU resources.
architecture specific ioperm Not accessible from GPU

OSes like FreeBSD and Solaris.

At the application level, implementing this array of system

calls opens new domains of OS managed services for GPUs.

In Table I, we summarize previously unimplementable system

calls realized and studied in this paper. These include

applications that use madvise for memory management and

rt sigqueueinfo for signals. We also go beyond prior work

on GPUfs by supporting filesystem services that require

more flexible APIs with work-item invocation capabilities for

good performance. Finally, we continue to support previously

implementable system calls.

2© Useful but implementable only with changes to GPU
hardware: Several system calls (13% of the total) seem use-

ful for GPU code, but are not easily implementable because

of Linux’s existing design. Consider sigsuspend/sigaction
– there is no kernel representation of a GPU work-item to

manage and dispatch a signal to. Additionally, there is no

lightweight method to alter the GPU program counter of a

work-item from the CPU kernel. One approach is for signal

masks to be associated with the GPU context and for signals

to be delivered as additional work-items. This works around

the absence of GPU work-item representation in the kernel.

However, POSIX requires threads that process signals to

pause execution and resume only after the signal has been

processed. Targeting the entire GPU context would mean

that all GPU execution needs to halt while the work-item

processing the signal executes, which goes against the parallel

nature of GPU execution. Recent work has, however, shown

the benefits of hardware support for dynamic kernel launch

that allows on-demand spawning of kernels on the GPU

without any CPU intervention [46]. Should such approaches

be extended to support thread recombination assembling

multiple signal handlers into a single warp (akin to prior

approaches on control flow divergence [42]), sigsuspend or

sigaction may become implementable. Table II presents more

examples of currently not implementable system calls (in

their original semantics).

3© Requires extensive modification to be supported:
This group (8% of the total) contains perhaps the most

controversial set of system calls. At this time, we do not

believe that it is worth the implementation effort to support

these system calls. For example, fork necessitates cloning a

copy of the executing caller’s GPU state. Technically, this

can be done (e.g., it is how GPGPU code is context switched

with the graphics shaders) but it seems unnecessary at this

time.

V. DESIGN SPACE EXPLORATION

A. GPU-Side Design Considerations

Invocation granularity: In assessing how best to use GPU

system calls, several questions arise. The first and most

important question is – how should system calls be aligned

with the hierarchy of GPU execution groups? Should a GPU

system call be invoked separately for each work-item, once

for every work-group, or once for the entire GPU kernel?

Consider a GPU program that writes sorted integers to a

single output file. One might, at first blush, invoke the write
system call at each work-item. This can present correctness

issues, however, because write is position-relative and re-

quires access to a global file pointer. Without synchronizing

the execution of write across work-items, the output file will

be written in a non-deterministic unsorted order.

Using different system call invocation granularities can fix

this issue. One could, for example, use a memory location

to temporarily buffer the sorted output. Once all work-items

have updated this buffer, a single write system call at the

end of the kernel can be used to write the contents of the

buffer to the output file. This approach loses some benefits of

the GPU’s parallel resources, because the entire system call

latency is exposed on the program’s critical path and might

not be overlapped with the execution of other work-items.

Alternatively, one could use pwrite system calls instead of

write system calls. Because pwrite allows programmers to

specify the absolute file position where the output is to be

written, per-work-item invocations present no correctness

issue. However, per-work-item pwrites result in a flood of

system calls, potentially harming performance.

Overly coarse kernel-grained invocations also restrict per-

formance by reducing the possibility of overlapping system

call processing with GPU execution. A compromise may be

to invoke a pwrite system call per work-group, buffering
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Figure 3. Work-items in a work-group (shown as a blue box) execute
strongly ordered system calls.

Figure 4. Work-group invocations can be relax-ordered by removing one
of the two barriers.

the sorted output of the work-items until the per-work-group

buffers are fully populated. Section VII demonstrates that

these decisions can lead to a 1.75× performance difference.

System call ordering semantics: When programmers invoke

system calls on CPUs, they expect that all program instruc-

tions before the system call will complete execution before

the system call executes. They also expect that instructions

after the system call will only commence once the system call

returns. We call this “strong ordering.” For GPUs however,

we introduce “relaxed ordering” semantics. The notion of

relaxed ordering is tied to the hierarchical execution scopes of

the GPU and is needed for both correctness and performance.

Figure 3 shows a programmer-visible work-group (in blue),

consisting of four wavefronts A, B, C and D. Each wavefront

has two work-items (e.g., A0 and A1). If system calls (SysCs)

are invoked per work-item, they are strongly ordered. Another

approach is depicted in Figure 4, where one work-item, A0,

invokes a system call, on behalf of the entire work-group.

Strong ordering is achieved by placing work-group barriers

(Bar1, Bar2) before and after system call execution. One can

remove these barriers with relaxed ordering, allowing threads

in wavefronts B, C, and D to execute overlapping with the

CPU’s processing of A’s system call.

For correctness, we need to allow programmers to use

relaxed ordering when system calls are invoked at kernel

granularity (across work-groups). This is because kernels can

consist of more work-items than can concurrently execute on

the GPU. For strongly ordered system calls at the kernel-level,

all kernel work-items must finish executing pre-invocation

instructions prior to invoking the system call. But all work-

items cannot execute concurrently because GPU runtimes

do not preemptively context switch work-items of the same

kernel. It is not always possible for all work-items to execute

all instructions prior to the system call. Strong ordering at

kernel granularity risks deadlocking the GPU.

At the work-group invocation granularity, relaxed order-

ing can improve performance by avoiding synchronization

overheads and overlapping CPU-side system call processing

with the execution of other work-items. The key is to remove

the barriers Bar1/Bar2 in Figure 4. To do this, consider that

from the application point of view, system calls are usually

producers or consumers of data. Take a consumer call like

write, invoked at the work-group level. Real-world GPU

programs may use multiple work-items to generate the data

for the write, but instructions after the write call typically

do not depend on the write outcome. Therefore, other work-

items in the group need not wait for the completion of the

system call, meaning that we can remove Bar2, improving

performance. Similarly, producer system calls like read
typically require system calls to return before other work-

items can start executing program instructions post-read, but

do not necessarily require other work-items in the work-group

to finish executing all instructions before the read invocation.

Bar1 in Figure 4 becomes unnecessary in these cases. The

same observations apply to per-kernel system call invocations

that need relaxed ordering for correctness anyway.

In summary, work-item invocations imply strong ordering.

Programmers balance performance/programmability for work-

group invocations by choosing strong or relaxed ordering.

Finally, programmers must use relaxed ordering for kernel

invocations so that the GPU does not deadlock.

Blocking versus non-blocking approaches: Most tradi-

tional CPU system calls – barring those for asynchronous

I/O (e.g., aio read, aio write) – return only after the system

call completes execution. Blocking system calls have a

disproportionate impact on performance because GPUs use

SIMD execution. In particular, if even a single work-item is

blocked on a system call, no other work-item in the wavefront

can make progress either. We find that GPUs can often

benefit from non-blocking system calls that can immediately

return before system call processing completes. Non-blocking

system calls can therefore overlap system call processing on

the CPU with useful GPU work, improving performance by

as much as 30% in some of our studies (see Section VII).

The concepts of blocking/non-blocking and strong/relaxed

ordering are related but orthogonal. The strictness of ordering

refers to the question of when a system call can be

invoked with respect to the progress of work-items within

its granularity of invocation. System call blocking refers to

how the return from a system call relates to the completion

of its processing. Relaxed ordering and non-blocking can be

combined in several useful ways. For example, consider a

case where a GPU program writes to a file at work-group

granularity. The execution may not depend upon the output

of the write, but the programmer may want to ensure that the

write successfully completes. In such a scenario, blocking

writes may be invoked with weak ordering. Weak ordering

permits all but one wavefront in the work-group to proceed

without waiting for completion of the write (see Section VI).
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Blocking invocation, however, ensures that one wavefront

waits for the write to complete and can raise an alarm if the

write fails. Consider another scenario, where a programmer

wishes to prefetch data using read system calls but may not

use the results immediately. Here, weak ordering with non-

blocking invocation is likely to provide the best performance

without breaking the program’s semantics. In short, different

combinations of blocking and ordering enable programmers

to fine-tune performance and programmability tradeoffs.

B. CPU Hardware

GPUs rely on extreme parallelism for performance. This

means there may be bursts of system calls that CPUs need

to process. System call coalescing is one way to increase

the throughput of system call processing. The idea is to

collect several GPU system call requests and batch their

processing on the CPU. The benefit is that CPUs can

manage multiple system calls as a single unit, scheduling

a single software task to process them. This reduction in

task management, scheduling, and processing overheads

can often boost performance (see Section VII). Coalescing

must be performed judiciously as it improves system call

processing throughput at the expense of latency. It also

implicitly serializes the processing of system calls within a

coalesced bundle.

To allow the GPGPU programmer to balance the benefits

of coalescing with its potential challenges, GENESYS accepts

two parameters – a time window length within which the

CPU coalesces system calls, and the maximum number of

system call invocations that can be coalesced within the time

window. Section VII shows that system call coalescing can

improve performance by as much as 10-15%.

C. CPU-GPU Communication Hardware

Prior work implemented system calls using polling, where

GPU wavefronts monitored predesignated memory locations

populated by CPUs upon system call completion. But recent

advances in GPU hardware enable alternate modes of CPU-

GPU communication. For example, AMD GPUs now allow

wavefronts to relay interrupts to CPUs and then halt execution,

relinquishing SIMD hardware resources [36]. CPUs can in

turn message the GPU to wake up halted wavefronts.

We have implemented polling and halt-resume approaches

in GENESYS. With polling, if the number of memory

locations that needs to be polled by the GPU exceeds its

cache size, frequent cache misses lower performance. On the

other hand, halt-resume has its own overheads, namely the

latency to resume a halted wavefront.

We have found that polling yields better performance when

system calls are invoked at coarser work-group granularities

since fewer memory locations are needed to convey informa-

tion at the work-group versus work-item level. Consequently,

the memory locations easily fit in the GPU’s L2 data cache.

When system calls are invoked per work-item however, the

Table III
SYSTEM CONFIGURATION USED FOR OUR STUDIES.

SoC Mobile AMD FX-9800PTM

CPU 4× 2.7GHz
AMD Family 21h Model 101h

Integrated-GPU 758 MHz AMD GCN 3 GPU
Memory 16 GB Dual-Channel DDR4-1066MHz

Operating system Fedora 26 using
ROCm stack 1.6

(based on Linux 4.11)
Compiler HCC-0.10.17166 + LLVM 5.0

C++AMP with HC extensions

Figure 5. Content of each slot in syscall area.

Figure 6. State transition diagram for a slot in syscall area. Green shows
GPU state/actions, blue shows that of the CPU.

sheer number of such memory locations becomes so high

that cache thrashing becomes an issue. In these situations,

halt-resume approaches outperform polling. We quantify the

impact of this in the following sections.

VI. IMPLEMENTING GENESYS

We implemented GENESYS on the system in Table III. We

used an AMD FX-9800P processor with an integrated GPU

and ran the open-source Radeon Open Compute (ROCm)

software stack [47]. Although we use a system with integrated

GPU, GENESYS is not specific to integrated GPUs, and

generalizes to discrete GPUs. We modified the GPU driver

and Linux kernel to enable GPU system calls. We also

modified the HCC compiler to permit GPU system call

invocations in C++AMP.

Invoking GPU system calls: GENESYS permits work-item,

work-group, and kernel-level invocation. At work-group or

kernel-level invocations, a single work-item is designated as

the caller. For strongly ordered work-group invocations, we

use work-group scope barriers before and after system call

invocations. For relaxed ordering, a barrier is placed either

before (for consumer system calls) or after (for producer

calls) system call invocation.

GPU to CPU communication: GENESYS facilitates effi-

cient GPU to CPU communication of system call requests.
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GENESYS uses a preallocated shared memory syscall area
to allow the GPU to convey parameters to the CPU (see

Section III). The syscall area maintains one slot for each

active GPU work-item. The OS and driver code can identify

the desired slot by using the hardware ID of the active work-

item, which is available to GPU runtimes. This hardware ID

is distinct from the programmer-visible work-item ID. Each

of the work-items has a unique work-item ID visible to the

application programmer. At any one point in time, however,

only a subset of these work-items executes (as permitted by

the GPU’s CU count, supported work-groups per CU, and

SIMD width). The hardware ID distinguishes among these

active work-items. Overall, our system uses 64 bytes per slot,

totaling 1.25 MBs of syscall area.

Figure 5 shows the contents in a slot – the requested

system call number, the request state, system call arguments

(as many as 6, in Linux), and padding to avoid false sharing.

The field for arguments is also re-purposed for the return

value of the system call. When a GPU program’s work-item

invokes a system call, it atomically updates the state of the

corresponding slot from free to populating (Figure 6). If the

slot is not free, system call invocation is delayed. Once the

state is populating, the invoking work-item populates the

slot with system call information and changes the state to

ready. The work-item also adds one bit of information about

whether the invocation is blocking or non-blocking. The

work-item then interrupts the CPU using a scalar wavefront
GPU instruction 3 (s sendmsg on AMD GPUs). For blocking

invocation, the work-item either waits and polls the state of

the slot or suspends itself using halt-resume.

CPU-side system call processing: Once the GPU interrupts

the CPU, system call processing commences. The interrupt

handler creates a new kernel task and adds it to Linux’s

work-queue. This task is also passed the hardware ID of the

requesting wavefront. At an expedient future point in time

an OS worker thread executes this task. The task scans the

64 syscall slots of the given hardware ID and atomically

switches any ready system call requests to the processing
state. The task then carries out the system call work.

A challenge is that Linux’s traditional system call routines

implicitly assume that they are to be executed within the

context of the original process invoking the system call.

Consequently, they use context specific variables (e.g., the

current variable used to identify the process context). This

presents a challenge for GPU system calls, which are instead

serviced purely in the context of the OS’ worker thread.

GENESYS overcomes this challenge in two ways – it either

switches to the context of the original CPU program that

invoked the GPU kernel, or it provides additional context

information in the code performing system call processing.

3 Scalar wavefront instructions are part of the Graphics Core Next ISA
and are executed once for the entire wavefront, rather than for each active
work-item. See Chapter 4.1 in the manual [36].

The exact strategy is determined on a case-by-case basis.

GENESYS implements coalescing by waiting for a prede-

termined amount of time in the interrupt handler before

enqueueing a task to process a system call. If multiple

requests are made to the CPU during this time window,

they are coalesced with such that they can be handled as a

single unit of work by the OS worker-thread. GENESYS uses

Linux’s sysfs interface to communicate coalescing parameters.

Communicating results from the CPU to the GPU: Once

the CPU worker-thread finishes processing the system call,

the results are put in the field for arguments in the slot

for blocking requests. Further, the thread also changes the

state of the slot to finished for blocking system calls. For

non-blocking invocations, the state is changed to free. The

invoking GPU work-item is then re-scheduled (on hardware

that supports wavefront suspension) or automatically restarted

because it was polling on this state. The work-item can

consume the result and continue execution.

Other architectural design considerations: GENESYS re-

quires two key data structures to be exchanged between

GPUs and CPUs – the syscall area and for some system

calls, syscall buffers that maintain data required for system

call processing. We discovered that carefully leveraging

architectural support for CPU-GPU cache coherence in

the context of these data structures was vital to overall

performance.

Consider, for example, the syscall area. As described in

Section III, every GPU work-item invoking a system call is

allocated space in the syscall area. Like many GPUs, the one

used as our experimental platform supports L2 data caches

that are coherent with CPU caches/memory but integrates

non-coherent L1 data caches. At first blush, one may decide

to manually invalidate L1 data cache lines. However, we

sidestepped this issue by restricting per-work-item slots in

the syscall area to individual cache lines. This design permits

us to use atomic instructions to access memory – these atomic

instructions, by design, force lookups of the L2 data cache

and guarantee visibility of the entire cacheline, sidestepping

the coherence challenges of L1 GPU data caches. We quantify

the measured overheads of the atomic operations we use

for GENESYS in Table IV, comparing them to the latency

of a standard load operation. Through experimentation, we

achieved good performance using cmp-swap atomics to claim

a slot in the syscall area when GPU work-items invoked

system calls, atomic-swaps to change state, and atomic-loads
to poll for completion.

Unfortunately, the same approach of using atomics does not

yield good performance for accesses to syscall buffers. The

key issue is that syscall buffers can be large and span multiple

cache lines. Using atomics here meant that we suffered the

latency of several L2 data cache accesses to syscall buffers.

We found that a better approach was to eschew atomics in

favor of manual software L1 data cache coherence. This
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Table IV
PROFILED PERFORMANCE OF GPU ATOMIC OPERATIONS.

Op cmp-swap swap atomic-load load
Time(us) 1.352 0.782 0.360 0.243
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Figure 7. Impact of system call invocation granularity. The graphs show
average and standard deviation of 10 runs.

meant, for example, that we preceded sys write system calls

with L1 data cache flush.

VII. MICROBENCHMARK EVALUATIONS

Invocation granularity: Figure 7 quantifies performance for

a microbenchmark that uses pread on files in tmpfs4. The

x-axis plots the file size, and y-axis shows read time, with

lower values being better. Within each cluster, we separate

runtimes for different pread invocation granularities.

Figure 7(left) shows that work-item invocation granularities

tend to perform worst. This is not surprising as it is the finest

granularity of system call invocation and leads to a flood of

individual system calls that overwhelm the CPU. On the other

end of the granularity spectrum, kernel-level invocation is

also challenging as it generates a single system call and fails

to leverage any potential parallelism in processing of system

call requests. This is particularly pronounced at large file

sizes (e.g., 2GB). A good compromise is to use work-group

invocation granularities. It does not overwhelm the CPU

with system call requests while still being able to exploit

parallelism in servicing system calls.

When using work-group invocation, an important question

is how many work-items should constitute a work-group.

While Figure 7(left) uses 64 work-items in a work-group,

Figure 7(right) quantifies the performance impact of pread
system calls as we vary work-group sizes from 64 (wg64)

to 1024 (wg1024) work-items. In general, larger work-group

sizes enable better performance, as there are fewer unique

system calls necessary to handle the same amount of work.

Blocking and ordering strategies: To quantify the impact

of blocking/non-blocking with strong/relaxed ordering, we

4 Tmpfs is a filesystem without permanent backing storage. In other
words, all structures and data are memory-resident.
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Figure 8. Performance implications of system call blocking and ordering
semantics. The graph shows average and standard deviation of 80 runs.

designed a GPU microbenchmark that performs block permu-

tation on an array, similar to the permutation steps performed

in DES encryption. The input data array is preloaded with

random values and divided into 8KB blocks. Work-groups

each execute 1024 work-items independently permute blocks.

The results are written to a file using pwrite at work-group

granularity. The pwrite system calls for one block of data

are overlapped with permutations on other blocks of data. To

vary the amount of computation per system call, we permute

multiple times before writing the result.

Figure 8 quantifies the impact of using blocking versus non-

blocking system calls with strong and weak ordering. The

x-axis plots the number of permutation iterations performed

on each block by each work-group before writing the results.

The y-axis plots execution time for one permutation (lower

is better). Figure 8 shows that strongly ordered blocking

invocations (strong-block) hurt performance. This is expected

as they require work-group scoped barriers to be placed

before and after pwrite invocations. The GPU’s hardware

resources for work-groups are stalled waiting for the pwrite
to complete. Not only does the inability to overlap GPU par-

allelism hurt strongly ordered blocking performance, it also

means that GPU performance is heavily influenced by CPU-

side performance vagaries like synchronization overheads,

servicing other processes, etc. This is particularly true at

iteration counts where system call overheads dominate GPU-

side computation – below 15 compute iterations. Even when

the application becomes GPU-compute bound, performance

remains non-ideal.

Figure 8 shows that when pwrite is invoked in a non-

blocking manner (with strong ordering), performance im-

proves. This is because non-blocking pwrites permit the

GPU to end the invoking work-group, freeing GPU resources

it was occupying. CPU-side pwrite processing can overlap

with the execution of another work-group permuting on

a different block of data. Figure 8 shows that latencies

generally drop by 30% compared to blocking calls at low

iteration counts. At higher iteration counts (beyond 16), these

benefits diminish because the latency to perform repeated
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Figure 9. Impact of polling on memory contention.

permutations dominates any system call processing times.

For relaxed ordering with blocking (weak-block), the post-

system-call work-group-scope barrier is eliminated. One

out of every 16 wavefronts5 in the work-group waits for

the blocking system call, while others exit, freeing GPU

resources. The GPU can use these freed resources to run

other work-items to hide CPU-side system call latency.

Consequently, the performance trends follow those of strong-
non-block, with minor differences in performance arising

from differences GPU scheduling of the work-groups for

execution. Finally, Figure 8 shows system call latency is best

hidden using relaxed and non-blocking approaches (weak-
non-block).

Polling/halt-resume and memory contention: As previ-

ously discussed, polling at the work-item invocation gran-

ularity leads to memory reads of several thousands of per-

work-item memory locations. We quantify the resulting

memory contention in Figure 9, which showcases how the

throughput of CPU accesses decreases as the number of

polled GPU cache lines increases. Once the number of polled

memory locations outstrips the GPU’s L2 cache capacity

(roughly 4096 cache lines in our platform), the GPU polls

locations spilled to the DRAM. This contention on the

memory controllers shared between GPUs and CPUs. We

advocate using GENESYS with halt-resume approaches at

such granularities of system call invocation.

Interrupt coalescing: Figure 10 shows the performance

impact of coalescing system calls. We use a microbenchmark

that invokes pread. We read data from files of different

sizes using a constant number of work-items. More data is

read per pread system call from the larger files. The x-axis

shows the amounts of data read and quantifies the latency

per requested byte. We present two bars for each point on the

x-axis, illustrating the average time needed to read one byte

with the system call in the absence of coalescing and when

up to eight system calls are coalesced. Coalescing is most

beneficial when small amounts of data are read. Reading

more data takes longer; the overhead reduction is negligible

compared to the significantly longer time to process the

system call.

5Each wavefront has 64 work-items. Thus, a 1024 work-item work-group
has 16 wavefronts.
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Figure 10. Implications of system call coalescing. The graph shows average
and standard deviation of 20 runs.

VIII. CASE STUDIES

A. Memory Workload

We now assess the end-to-end performance of workloads

that use GENESYS. Our first application requires memory

management system calls. We studied miniAMR [48] and

used the madvise system call directly from the GPU to better

manage memory. MiniAMR performs 3D stencil calculations

using adaptive mesh refinement and is a candidate for memory

management because it varies its memory needs in a data-

model-dependent manner. For example, when simulating

regions experiencing turbulence, miniAMR needs to model

with higher resolution. However, if lower resolution is possi-

ble without compromising simulation accuracy, miniAMR

reduces memory and computation usage, making it possible to

free memory. While relinquishing excess memory in this way

is not possible in traditional GPU programs without explicitly

dividing the offload into multiple kernels interspersed with

CPU code (see Figure 1), GENESYS permits this with direct

GPU madvise invocations. We invoke madvise using work-

group granularities with non-blocking and weak ordering.

We leverage GENESYS’ generality by also using getrusage
to read the application resident set size (RSS). When the

RSS exceeds a watermark, madvise relinquishes memory.
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Figure 11. Memory footprint of miniAMR using getrusage and madvise
to hint at unused memory.

We execute miniAMR with a dataset of 4.1GB – just

beyond the hard limit we put on physical memory available

to GPU. Without using madvise, memory swapping increases
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so dramatically that it triggers GPU timeouts, causing the

existing GPU device driver to terminate the application.

Because of this, there is no baseline to compare to as the

baseline simply does not complete.

Figure 11 shows two results: one for a 3GB RSS water-

mark, and one for 4GB. Not only does GENESYS enable

miniAMR to complete, it also permits the programmer to

balance memory usage and performance. While rss-3GB
lowers memory utilization, it also worsens runtime compared

to rss-4GB. This performance gap is expected; the more

memory is released, the greater the likelihood that the GPU

program suffers from page faults when the memory is touched

again in the future, and the more frequent the madvise system

call is invoked. Overall, Figure 11 illustrates that GENESYS

allows programmers to perform memory allocation to trade

memory usage and performance on GPUs analogous to CPUs.

B. Workload Using Signals
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Figure 12. Runtime of CPU- GPU
map reduce workload.

GENESYS also enables sys-

tem calls that permit the

GPU to send asynchronous

notifications to the CPU.

This is useful in many

scenarios. We study one

such scenario and imple-

ment a map-reduce appli-

cation called signal-search.

The application runs in two

phases. The first phase per-

forms parallel lookup in a

data array, while the second phase processes blocks of

retrieved data and computes sha512 checksums on them.

The first phase is a good fit for GPUs since the highly

parallel lookup fits its execution model, while the second

phase is more appropriate for CPUs, many of which support

performance acceleration of sha checksums via dedicated

instructions.

Without support for signal invocation on GPUs, program-

mers would launch a kernel with the entire parallel lookup on

the GPU and wait for it to conclude before proceeding with

the sha512 checksums. GENESYS overcomes this restriction

and permits a heterogeneous version of this code, where

GPU work-groups can emit signals using rt sigqueueinfo to

the CPU, indicating per-block completions of the parallel

search. As a result, the CPU can begin processing these

blocks immediately, permitting overlap with GPU execution.

Operationally, rt sigqueueinfo is a generic signal system

call that allows the caller to fill a siginfo structure that

is passed along with the signal. In our workload, we find

that work-group level invocations perform best, so the GPU

passes the identifier of this work-group through the siginfo
structure. Figure 12 shows that using work-group invocation

granularity and non-blocking invocation results in roughly

14% performance speedup over the baseline.

C. Storage Workloads

We have also studied how to use GENESYS to support

storage workloads. In some cases, GENESYS permits the

implementation of workloads supported by GPUfs, but in

more efficient ways.
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Figure 13. a) Standard grep, OpenMP grep, versus work-item/work-group
invocations with GENESYS. b) Comparing the performance of CPU, GPU
with no system call, and GENESYS implementations of wordcount. Graphs
show average and standard deviation of 10 runs.

Supporting storage workloads more efficiently than
GPUfs: We implement a workload that takes as input a

list of words and a list of files. It then performs grep -F -l
on the GPU, identifying which files contain any of the words

on the list. As soon as these files are found, they are printed

to the console. This workload cannot be supported by GPUfs

without significant code refactoring because of its use of

custom APIs. Instead, since GENESYS naturally adheres to

the UNIX “everything is a file” philosophy, porting grep to

GPUs requires only a few hours of programming.

Figure 13 shows the results of our GPU grep exper-

iments. We compare a standard CPU implementation, a

parallelized OpenMP CPU implementation, and two GPU

implementations with GENESYS, with non-blocking system

calls invoked at work-item (WI) and work-group (WG)

granularities. Furthermore, since work-item invocations can

sometimes achieve better performance using halt-resume

(versus work-group and kernel invocations, which always

achieve better performance with polling), we separate results

for WI-polling and WI-halt-resume. GENESYS enables our

GPU grep implementation to print output lines to console or

files using standard OS output. GENESYS achieves 2.0-2.3×
speedups over an OpenMP version of grep.

Figure 13 also shows that GENESYS’ flexibility with invo-

cation granularity, blocking/non-blocking, and strong/relaxed

ordering can boost performance (see Section V). For our

grep example, because a file only needs to be searched

until the first instance of a matching word, a work-item

can immediately invoke a write of the filename, rather than

waiting for all matching files. We find that WI-halt-resume

outperforms both WG and WI-polling by roughly 3-4%.
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Figure 14. Wordcount I/O and CPU utilization reading from SSD. Graphs
show average and standard deviation of 10 runs.

Workload from prior work: GENESYS also supports a

version of the same workload that is evaluated in the original

GPUfs work; i.e., traditional word count where using open,

read, and close system calls. Figure 13 shows our results.

We compare the performance of a parallelized CPU version

of the workload with OpenMP, a GPU version of the

workload with no system calls, and a GPU version with

GENESYS. Both CPU and GPU workloads are configured

to search for occurrences of 64 strings. We found that with

GENESYS, these system calls were best invoked at work-

group granularity with blocking and weak-ordering semantics.

All results are collected on a system with an SSD.

We found that GENESYS achieves nearly 6× performance

improvement over the CPU version. Without system call

support, the GPU version is far worse than the CPU version.

Figure 14 sheds light on these benefits. We plot traces for

CPU and GPU utilization and disk I/O throughput. GENESYS

extracts much higher throughput from the underlying storage

device (up to 170MB/s compared to the CPU’s 30MB/s).

Offloading search string processing to the GPU frees up the

CPU to process system calls effectively. The change in CPU

utilization between the GPU workload and CPU workload

reveals this trend. In addition, we found that the GPU’s

ability to launch more concurrent I/O requests enabled the

I/O scheduler to make better scheduling decisions.

D. Network Workloads

We have studied the benefits of GENESYS for network I/O

in the context of memcached. While this can technically be

implemented using GPUnet, the performance implications

are unclear because the original GPUnet paper used APIs

that extracted performance using dedicated RDMA hardware.

We make no such assumptions and focus on the two core

commands – SET and GET. SET stores a key-value pair, and

GET retrieves a value associated with a key if it is present.

Our implementation supports a binary UDP memcached
version with a fixed-size hash table as a back-end storage. The

hash table is shared between CPU and GPU, and its bucket

size and count are configurable. Further, this memcached
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Figure 15. Latency and throughput of memcached. Graphs show average
and standard deviation of 20 runs.

implementation enables concurrent operations. CPUs can

handle SETs and GETs, while the GPU supports only GETs.

Our GPU implementation parallelizes the hash computation,

bucket lookup, and data copy. We use sendto and recvfrom
system calls for UDP network access. These system calls are

invoked at work-group granularity with blocking and weak

ordering as this performs best.

Figure 15 compares the performance of a CPU version

of this workload with GPU versions using GENESYS. GPUs

accelerate memcached by parallelizing lookups on buckets

with more elements. For example, Figure 15 shows speedups

when there are 1024 elements per bucket (with 1KB data

size). Without system calls, GPU performance lags behind

CPU performance. However, GENESYS achieves 30-40%

latency and throughput benefits over not just CPU versions,

but also GPU versions without direct system calls.

E. Device Control

Finally, we also used GENESYS to implement ioctl system

calls. As an example, we used ioctl to query and control

framebuffer settings. The implementation is straightforward;

the GPU opens /dev/fb0, and issues a series of ioctl commands

to query and set settings of the active frame buffer. It then

proceeds to mmap the framebuffer memory and fill it with

data from a previously mmaped raster image. This results

in the image displayed on computer screen. While not a

critical GPGPU application, this ioctl example demonstrates

the generality and flexibility of OS interfaces implemented

by GENESYS.

IX. DISCUSSION

Asynchronous system call handling: GENESYS enqueues

the GPU system call’s kernel task and processes it outside of

the interrupt context. We do this because Linux is designed

such that few operations can be processed in an interrupt

handler. A potential concern with this design, however, is

it defers the system call processing to potentially past the

end of the life-time of the GPU thread and potentially the

process that created the GPU thread itself! It is an example of

a more general problem with asynchronous system calls [49].
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Figure 16. Raster image copied to the framebuffer by the GPU.

Our solution is to provide a new function call, invoked by

the CPU, that ensures all GPU system calls have completed

before the termination of the process.

Related work: Beyond work already discussed [25, 26, 28],

the latest generation of C++AMP [23] and CUDA [24]

provide access to the memory allocator. These efforts use

a user-mode service thread on the CPU to proxy requests

from the GPU [27]. Like GENESYS, system call requests are

placed in a shared queue by the GPU. From there, however,

the designs are different. Their user-mode thread polls this

shared queue and “thunks” the request to the libc runtime

or OS. This incurs added overhead for entering and leaving

the OS kernel.

Some studies provide network access to GPU code [26, 50–

52]. NVidia provides GPUDirect [52], used by several MPI

libraries [53–55], that allows the NIC to bypass main memory

and communicate directly to memory on the GPU itself.

GPUDirect does not provide a programming interface for

GPU-side code. The CPU must initiate communication with

the NIC. Oden exposed the memory-mapped control interface

of the NIC to the GPU and thereby allowed the GPU to

directly communicate with the NIC [51]. This low-level

interface, however, lacks the benefits of a traditional OS

interface (e.g., protection, sockets, TCP).

X. CONCLUSIONS

We shed light on research questions fundamental to the

idea of accessing OS services from accelerators by realizing

an interface for generic POSIX system call support on GPUs.

Enabling such support requires subtle changes of existing

kernels. In particular, traditional OSes assume that system

call processing occurs in the same context as the invoking

thread, and this needs to change for accelerators. We have

released GENESYS to make these benefits accessible for

broader research on GPUs.
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